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Abstract 

The game of cops and robbers is played with a set of 'cops' and a 'robber' who occupy some 
vertices of a graph. Both sides have perfect information and they move alternately to adjacent 
vertices. The robber is captured if at least one of the cops occupies the same vertex as the robber. 
The problem is to determine on a given graph, G, the least number of cops sufficient to capture 
the robber, called the cop-number, c(G). We investigate this game on three products of graphs: 
the Cartesian, categorical, and strong products. (~) 1998 Elsevier Science B.V. All rights reserved 

I.  Introduction 

Cops and robbers is a 2-player pursuit game played on an undirected graph, 

G = ( V , E ) ;  a set of  cops versus the robber. Player 1 starts the game by choosing 

vertices (not necessarily distinct) for a set o f  cops after which Player 2 chooses a ver- 

tex for the robber. The two players then take turns beginning with Player 1 who slides 

a subset of  the cops along the edges of  G to adjacent vertices. Player 2 responds by 

moving the robber to an adjacent vertex or by keeping the robber at his current position 

(passing). For convenience, we often say Player 1 is the set o f  cops and Player 2 is 

the robber. Both sides always know each other's positions and we assume they play 

their optimal strategy at all times. 

The cops win if, in a finite number of  moves, one (or more) of  them occupies the 

same vertex as the robber. The robber wins if  he can perpetually avoid this situation. 

By varying the constraints imposed on the two parties, many versions of  the game are 

possible. However, we shall only consider two quite natural variations, called passive 

and active, which differ in the moves allowed for each side. 
In the passive game both sides have the option of  passing. We note that a pass by 

the cops cannot be negative for the robber since he then has an opportunity to improve 
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Fig. 1. 

his position by moving. If no move is advantageous, then the robber passes but in 
neither case has his position deteriorated. We illustrate in Fig. 1 two situations where, 
given it is the robber's turn, he must pass in order to win. 

In the active game both the robber and a non-empty subset of the cops must move 
at their respective turns. This variation was first introduced by Aigner and Fromme [1] 
and investigated further by Toni6 [13] and Neufeld [8]. 

If G is a reflexive graph (i.e., with a loop at each vertex) then the passive and the 
active games are equivalent since passing is equivalent to moving along a loop. Thus, 
we consider only graphs with no loops (i.e. irreflexive). 

The minimum number of cops sufficient to win on a graph, G, is called the cop- 
number and is denoted by c(G) for the passive game and by c'(G) for the active 
game. In addition begin irreflexive, the graphs we consider in this paper are simple (no 
multiple edges) and connected. We impose these conditions because the cop-number 
is unaffected by multiple edges and because c(G) is just the sum of the cop-numbers 
of each connected component of G. Thus, unless specified otherwise, all graphs in this 
paper are assumed to be simple, undirected, connected, and irreflexive. 

Note that the cop-number is unaffected by the initial position since from any given 
position the cops may migrate to their optimal initial position (since G is connected) 
and consider this to be the starting point of the game. 

Lemma 1.1. Let G be a graph. Then 

c(G) - 1 <~c'(G)<<,c(G). 

Proof. We observe that c(G) cops must have a winning strategy in the passive game 
in which at least one of their number moves at each turn. Since the robber's options 
in the active game are a subset of those in the passive game we see that c'(G)<~c(G). 

Let c'(G) + 1 cops play the passive game on G. Let one of these cops, S, move 
toward the robber so that the robber cannot perpetually pass. The remaining c'(G) 
cops play their winning strategy in the active game whenever the robber moves. If 
the robber passes, then all cops pass except S who moves toward the robber. Hence, 
c(G)<~c'(G)+ 1. [] 

If c ' ( G ) = c ( G ) -  1, then we refer to G as c* win. If c ( G ) = l ,  then G is sim- 
ply called cop-win. Quilliot [11] and, independently, Nowakowski and Winkler [10] 
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obtained a characterization of cop-win graphs. Later Aigner and Fromme [1] showed 
that c(G)~<3 for planar graphs G, and Quilliot [12] extended this to graphs of positive 
genus k obtaining c(G)~<3 + 2k. Andreae [2] examined graphs with excluded minors 
and Frankl [5,6] graphs with large girths and Cayley graphs. Bridged graphs were 
investigated by Anstee and Farber [3]. 

In this paper we consider the cop-number for three products of graphs; namely, the 
Cartesian, categorical, and strong products and we obtain some bounds and some exact 
results. We use the symbols [], ×, and 6, due to Ne~etfil, which represent the product 
of two edges in the Cartesian, categorical and strong products respectively. The n-fold 
products we denote by [~i=lGi,n xn= 1Gi, and []  ni=l Gi. 

We use the symbol x to refer to the generic product, i.e. any one of the three 
products named above. 

In all three products, the vertex set of the product graph is the Cartesian product 
of the vertex sets of the factors Gi = (V/,Ei), i = 1,2, . . . ,  n. Denote the vertices in the 

product graph by a = ( a l , a 2  . . . .  ,an) where ai is a vertex of G i for each i, 1 <~i<~n. 
Two vertices a = ( a l , a 2  . . . .  ,a,) and _b=(bl,b2 . . . . .  bn) are adjacent in the n-fold 

Cartesian product if and only if ai ~ bi for precisely one i, 1 ~< i ~< n and, for this i, 

(ai, bi) is an edge in Gi. 
Thus, in the Cartesian product a cop or the robber moves by changing exactly one 

of her/his coordinates. 
An example of a Cartesian product is shown in Fig. 2. Here c(GDH)= 

c'(G[]H)=2, whereas the constituent graphs, G and H, have cop-numbers equal to 
1 and 2, respectively. A second example is the n-cube which we may regard as the 
n-fold Cartesian product of n paths of length 1. 

In the n-fold categorical product (a,_b) is an edge if and only if for all i, 1 <~i<~n, 
(ai, bi) is an edge in Gi. Note that if each graph Gi, 1 ~< i ~<n, is bipartite then the 
resulting product graph is not connected. 

Fig. 3 illustrates the categorical product. Here c(G x H )  = 4 and c'(G x H) = 2. 
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In the n-fold strong product (a ,b)  is an edge if  and only if  for each i, 1 <~i<~n, 
either (ai, b i )  is an edge in Gi or ai = bi. Note that the edge set for G1 [] G2 is the 

disjoint union of  the edge sets of  G1 [] G2 and Gl × G2 but this is no longer true if 
there are three or more graphs in the product. 

In the example o f  the strong product shown in Fig. 4, c(G [] H ) =  e'(G [] H)=  2. 
A projection of  G x H  onto G is a map n6:G×H--*G defined as nc(x ,y)=x.  

Likewise a projection o f  G × H onto H we define as nn(X,y)= y. 
We observe that if m and n are the number of  vertices o f  H and G, respectively, 

then the vertex set o f  any one of  our three products can be thought o f  as consisting o f  n 
copies of  vertices of  H or alternatively m copies o f  vertices of  G. We use the notation 
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G.{x} to refer to the subgraph of G x H  where the second coordinate is xE  V(H) 
and the first coordinate is any vertex of G. We define {y} .H in a similar way. Since 
in the Cartesian and strong products the subgraphs G.{x} and {y} .H are isomorphic 
to G and H we refer to G.{x} and {y} .H as copies of G and H in the product. 

In the categorical product, G.{x} and {y} .H  are empty graphs on n and m vertices; 

nevertheless, to avoid cumbersome language we also speak of G.{x} and {y} .H as 

copies of G and H. 
We say that a player moves on G if his projection onto H remains unchanged. We 

similarly define moving on H. A vertex v is said to be captured if a cop occupies v. 
Capturing the projection of a vertex w = (u, v), u E V(G), v E V(H), onto G (resp. H )  

means capturing (u,x) for some x E V(H) (resp. (x, v) for some x E V(G)). A cop is 
said to shadow the robber on G (resp. H)  if after each turn his projection onto G 

(resp. H )  is the same as the robber's. 
A walk W from u to v is a sequence of not necessarily distinct vertices V(W)=-- 

(u, al,a2 . . . . .  v) and a set of edges E(W)=(u,  al),(abae) . . . . .  (ai-t,ai),. . . ,(aj, v). 
A path is a walk where all the vertices are distinct. 

The neighborhood of a vertex, denoted N(u), consists of the vertex u and all vertices 
adjacent to u. The neighborhood of a player is defined in a similar way. The distance 
between two vertices u, v, denoted d(u, v), is the length of a shortest path between 
them. We let 6(G) denote the minimum vertex degree among all vertices of  G. For 

any terms not defined in this paper please refer to Chartrand and Lesniak [4]. 

2. Cartesian products 

The game of cops and robbers has been previously investigated on Cartesian products 
by To~id [13], and by Maamoun and Meyniel [7]. 

Theorem 2.1 (To~id [13]). Let G and H be graphs with cop-numbers c(G) and c(H). 
Then 

c( GDH) <, c( G) ÷ c(H). 

n ~ n 
Clearly, Theorem 2.1 implies c( IZ]i= 1Gi)-.~ ~i=1 c(Gi). We also note the relationship 

given in Theorem 2.1 holds for the active game. 
A trivial lower bound for c (GDH)  is: max(c(G),c(H))<~c(GDH) since this number 

of  cops are required if the robber simply restricts his movements to G. {x} where 
x E V(H) or to {y}.H,  where y E V(G). However, in many cases the cop-number is 
much larger than this. 

Thus, for the Cartesian product we can in general provide an upper bound and a 
(trivial) lower bound. However, for some special graphs such as paths and trees, cycles 
and complete graphs, we can calculate the cop-number of  their Cartesian product more 
specifically. We begin with the following theorem. 
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Theorem 2.2. Let G and H be graphs and suppose at least one o f  G and H is c* 
win. Then, 

c(G[]H)<~c(G) + e(H) - 1. 

Proof. Suppose, without loss of  generality, that G is c* win. Let c ( G ) + c ( H ) - 1  cops 
play on a copy of H in G[]H so that c ( G ) -  1 of their number occupy the projection 

of  the robber onto H.  Thus, these cops are in the same copy of G as the robber and 

from now on shadow the robber on H. Now the remaining c(H) cops move to the 
same copy of H as the robber where they play their winning strategy on H. Thus, 
the robber must, from time to time, move on G. Whenever this occurs, the c(G) - 1 
shadowing cops play their winning active game strategy on G. Hence, the robber is 

eventually captured. [] 

An immediate consequence of Theorem 2.2 is the following: 

Corollary 2.1. Let G1,G2 . . . . .  Gn be graphs and suppose k of  them, O<<.k <<.n, are c* 
win. Then, 

C ( ~  ai)  ~ { z i n | e ( a i ) - k ,  if k~n,  
i=1 Zin__l c(Gi) n + 1, i f  k = n .  

Proof. Apply the technique in Theorem 2.2 together with induction on n. [] 

Thus, if we know that graphs are c* win we can obtain a refinement of  Tosic's 

result given in Theorem 2.1. However, being c* win is quite a strong condition on a 
graph and we would like to weaken this condition somewhat and obtain a result similar 

to Theorem 2.2. 
We note that certain graphs are in a sense 'close' to c* win. For example, consider 

a cycle, C, of  length 4 and, more generally, the Cartesian product, T1 [] T2 of two 
trees. In both cases, c'(C) = c(C) = cl(T1 [] 7'2) = e(TI [] Tz ) = 2. However, if we force 

the robber to move first, then c'(C)=-c(C)=c'(T1 t3T2)= 1 while c ( T  1 []T2)=2.  This 
motivates the following definition. 

Definition 2.1. Let G=[Zin=lGi, n~>l, and let c ( G ) -  1 cops play on G. Let W be the 

walk taken by the robber during this game where the robber avoids the c ( G ) -  1 cops. 
G is said to be nearly c* win provided these cops can play so that for each Gi, 1 <<.i<<.n, 
the projection of W onto Gi necessarily contains the vertex sequence ui, vi . . . . .  vi, ui for 

some Ui, l) i E V(Gi). 

Note that in Definition 2.1 if n = 1, then c(G) - 1 cops can force the robber to 
'backtrack', i.e., the robber must move x---~ y---~x for some x , y  E V(G). 

Examples of nearly c* win graphs are cycles of  length at least 4, the Petersen graph, 
and the Cartesian product of  two trees. 
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Theorem 2.3. Suppose G and H are nearly c* win 9raphs and let T be a tree. Then, 

(i) c(G[]H)<.c(G)[]c(H)-  I, 
(ii) e(G[]T)=c(G) .  

Proof.  (i) Let G=E]in=lGi, n~> 1, and let H=Diml t t i ,  m>~l. Let c (G )+  c ( H ) -  1 

cops play on G[]H. Let the current position of  the robber be r = ( a , b )  where 

a _ = ( a l , a 2  . . . . .  an)E V(G) and b=(bl ,b2  . . . .  ,bm)E V(H). Let u = ( a l  . . . . .  ai-l,Ui, 
ai+l . . . .  ,an)E V(G) such that (ui, ai) is an edge in Gi. 

Let a subset P = {S1,$2 . . . . .  So(n)} of  the set of  cops capture u. Whenever the robber 

moves on H,  or moves so that at = ui the cops in P play their winning strategy on H. 

I f  the robber moves on G but not to ui, then the cops in P maintain their position on 

u relative to a. 
The remaining e ( G ) -  1 cops migrate to G.{b}. Since G is nearly c* win these 

cops can force the robber to move on H or to move so that at = ui. Thus, there will 

eventually be a cop in set P, say S1, with coordinates (u,_v) where _v=(bl . . . . .  bj-I ,  
vj, bj~-i . . . . .  bin) and (bj, vj) is an edge in Hj. On the move this occurs, the remaining 

cops in P move to a E V(G). 
From now on, if ai = u~ ever occurs, then the robber is captured by $1. Hence, the 

robber cannot move indefinitely on G. Whenever the robber moves on H, S1 maintains 

her position on _v relative to b. But now, since H is nearly c* win, the remaining cops 

in P can force bj = vj from which position the robber is captured by $1. 

(ii) Let H = T, a tree. We use the procedure in (i). The set P then consists of  a 

single cop S~. The cop S~ plays her winning strategy on T whenever the robber moves 

on T or when ui =ai. Since G is nearly c* win, the c ( G ) -  1 remaining cops can force 

one o f  these two situations to occur. The robber is captured when he is in a copy of  

G adjacent to S1 and must move either to ui or to the copy of  G containing $1. 
Thus, c(G[]T)<~c(G) and since e(G)<.c(GtzT) we have e (GDT)=c(G) .  [] 

For several o f  our results on Cartesian products we need the following lemma. 

Lemma 2.1. Suppose 9raphs G~, G2 . . . . .  G, have the property that for any u, v E V( Gi ), 

uCv ,  IN(u ) n N(v)l~<2. Then, for any vertices u_,v_C V(G) where G=[~i~_lGi and 
u_¢v_, we have IN(u) AN(v)[  ~<2. 

Proof.  In order that N ( u ) N  N ( v ) ~  0, u must be equal to v in all but one or two 

coordinates since two vertices are adjacent in G if and only if they differ in precisely 

one coordinate. 
Let u_=(ul,u2 . . . . .  un). Suppose v differs from u_ in two coordinates, say i and j ,  

i.e., v = (ul . . . .  ui-1, Vi, Ui+-I . . . .  U j--  I, V j, Uj+I,. . . ,  Un). Then the only possible vertices 

in N(u)NN(_v) are (ul . . . .  ui-l,vi,ui+l . . . .  u,)  and (ul . . . .  uj_l,vj, uj+l . . . . .  u,). If  u 

differs from _v in one coordinate, say i, then v_=(ul . . . .  Ui_l,Vi, Ui+l . . . .  Un) and so 
IN(u_) o N(_v)l~<2 since by assumption [N(ui)O N(vi)l<~2, which completes the 

proof. [] 
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Lemma 2.2. Suppose 9raphs Gi, 1 <~ i <~ n, have the property that for any u, v E V ( Gi ), 
IN(u) •N(v)p <~2. Then, 

c(~=lGi) >/ I n 2  ~ 1 ]  and c t (~=lGi)~ [ 2 ] "  

n 
Proof. Let the position of the robber be r = ( r l , r 2 , .  ,rn). We no te  ~([--]i=lGi)>/n. 
By Lemma 2.1 each cop in the product graph can dominate at most two neighbors 
of  r_. Thus, if  n is even, then at least ~n/2] + 1 cops are required in the passive 

game and at least ~n/2] cops in the active game. I f  n is odd, then In~21 cops are 
required in both the passive and active games. Hence, c([~in=lGi)>~ [(n + 1)/21 and 

t n c (Di=lGi)>/~n/21. [] 

2.1. Active 9ame 

Toni6 [13] considered the active game on the n-cube, Qn, and found that 

c'(Qn) = ~n/2], n ~ 2 (mod4), and [n/2~ <<.c'(Qn) <<. rn/2~ + l, n = 2 (mod4). However, 
this result can be improved. 

Theorem 2.4. Let Qn be the n-cube. Then 

c'(Qn)= [2]  for n>~3. 

Proof. It suffices to prove the theorem for n = 2 ( m o d 4 )  since Toni6 has shown 
c ' (Qn)=  In/2] when n ~ 2  (mod4). Let n = 2  (mod4) and put Qn =Qn-2[]Q2. Label 
the vertices of  Q2 cyclically 0, 1, 2, and 3. From Togi6's result we have c I (Q,_2)=  

r ( n - 2 ) / 2 ]  = rn/2] --1. Suppose ~n/2] cops are located on Qn-2. {0}. Since these cops 
could capture the robber were he confined to Q~-2. {0}, one of their number, S, can 
therefore capture the projection of the robber onto Q~-2. Once this is accomplished 
S shadows the robber on Qn-2. The remaining ~n/2]-I cops migrate to the same 

copy of Qn-2 as  the robber and force the robber to move to a different copy of Qn-2, 
say to Qn-2. {y}. If  y = 0, then the robber's position coincides with S and so he is 
captured. I f  y = 1 or 3 the robber will be captured on the next move by S. If  y = 2, 

then In~21 - 1 cops move to Qn-2.{2} and force the robber to move to Qn-2.{1} or 
Qn-2.{3} where he will be captured by S. Hence, c~(Qn)<<. [n/2]. From To~i6's result 

above, In/2] ~< ct(Q~) and so c'(Qn)= In/21 which concludes the proof. [] 

We now consider the active game on a Cartesian product of  n trees, which is a 
generalization of Theorem 2.4. We begin with the following lemma. 

Lemma 2.3. Let G be the Cartesian product of two finite trees. I f  the robber cannot 
stay indefinitely on the same vertex of G, then one cop can win on G. 

ProoL Let the robber's coordinates be a = ( a l , a 2 )  and let the coordinates of  the cop, 
S, be b=(bbb2). At her turn S moves to decrease the distance d(a,b) by reducing 
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max(d(al,bl),d(a2,b2)) unless d(al,bl)=d(a2,b2). In the latter situation, S passes 
and waits for the robber to move. Because each tree is finite we must eventually have 
d(al, bL)= d(a2,b2) and once this occurs it re-occurs after each cop move. Since the 

robber must move from time to time and since each tree is finite, it is clear that after 

a finite number of  moves the robber is captured by S. [] 

Theorem 2.5. Let T1, T2 . . . . .  Tn be trees. Then 

c'([-1 7 ) =  , n~>3. 

Proof.  We note that c ' ( 7 ) =  1, and that c ' ( [ ~ =  1 7)~>2 since there is at least one cycle 
of  length 4 in [-qi2= l Ti. 

Let two cops, Sl and $2, play the active game on a product o f  two trees. Let Sl use 

the strategy in Lemma 2.3. When the winning strategy dictates that $l pass $2 moves 
t 2 to comply with the rules of  the active game. Hence, c (1---1/=1 T~) = 2. 

Now consider [~]i41 7 = G[]H where G and H are each the Cartesian product of  

two trees. Again let two cops, $1 and $2, play the active game on this graph. From the 
previous paragraph, we know that one of  the cops, say Sl, can capture the projection 

of  the robber onto G. ( I f  the robber moves on H only, then his projection onto H can 
be captured by $2.) 

Let S1 shadow the robber on G. I f  the robber moves on H ,  then S1 plays her winning 
strategy on H as in Lemma 2.3. The cop, $2, moves to the same copy of  G as the 
robber and employs the strategy in Lemma 2.3. Therefore, the robber must from time to 
time move on H or he will be captured by S 2.  But now, by Lemma 2.3, S1 captures the 

t 4 robber. Hence, c'([5]~_ 1 7 ) =  2. The results c ' (D~_ 1 7 ) =  2 and c (I--]i= 1 7 ) =  2 implies 
c'tf-] 3 7 ) = 2 =  In~21 Hence, the theorem is true for n = 3 , 4 .  \ i = l  

/ n 
Assume c(Di=lTi )=In/2  ] for all n where 4<~n<k. Let n = k  and consider 

~-2 T, * [Z]~= 1 7 = ( V I i =  1 i)E3([--]i= l 7)=G[]H.  Let [k/2] be the number of  cops playing oll 
[Zi=l~ 7. By hypothesis, [k/2] - 1 cops can capture the projection of  the robber onto G. 
Let S shadow the robber on G. Whenever the robber changes his ( k -  1 )th or kth co- 

ordinate, S plays her winning strategy on H as in Lemma 2.3. The remaining [k/2] - l 

cops move to the same copy of  G as the robber and force him to move on H.  Thus, the 
t k robber will eventually be captured by S and hence c ([Z]i= I ~)~< [(k - 2)/2] +1  = [k/2]. 

Therefore, c'(V]7= 1 7)~< In~2] for all n~>3. 
Since 6([~i~=l 7 ) = n ,  we have by Lemmas 2.1 and 2.2 that [n/2] <~c'([Z]7_ l Ti). 

Therefore, c'(V-]7_ I 7 ) =  In~2]. [] 

2.2. Passive game 

Maamoun and Meyniel [7] have shown that the cop-number on a Cartesian product 
of  n trees, T1, T2 . . . . .  Tn, is [(n + 1 )/21 . 

We will first consider the Cartesian product o f  cycles and then a Cartesian product 
of  trees and cycles combined. 
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Theorem 2.6. Let  G =IS]n=1 Ci where each Ci is a cycle of  length at least 4. Then, 

c(G) = n + 1. 

Proof.  We proceed by induction on n. I f  n = 1, then it is clear that c(G)= 2 = n + 1 
and that G is nearly c* win. Suppose the theorem is true for n = k -  1 and con- 

sider n = k. Suppose also that H = [~_5-11 Ci is nearly c* win. Now by Theorem 2.3, 

c(G)=c(H[]Ck)<<.c(H)+c(Ck)-  l - - k +  1. It remains to be shown that H is nearly 

c* win implies G is nearly c* win. 

Let k cops play on G. Since H is nearly c* win, it suffices to show that if W is the 

walk taken by the robber during the game, then these cops can ensure that the projection 

o f  W onto Ck contains the vertex sequence u,v . . . .  ,v,u for some u, vE V(Ck). Orient 

Ck so that we may speak of  clockwise and counterclockwise directions on Ck. 

Let r__ E V(G) be the robber's current position and let u_ E V(G) be the predecessor 

o f  r in W. Since c (H)=  k, one cop, S, can capture the projection o f  u onto H.  Let 

H=F[]Ck_1 and let S shadow the robber on F.  We may suppose the projections of  

u u_ and r onto H differ in coordinate k - 1; otherwise, k -  1 cops in the same copy 

of  F as the robber can force the robber to move on Ck, first in one direction, then 

in the other, ensuring that the projection of  W onto Ck contains the vertex sequence 

u, v . . . . .  v, u for some u, v E V(Ck). 
Let S reduce her distance to the robber on Ck-1 whenever the robber moves on 

Ck- 1 and let s be the position o f  S on H.  Let the remaining k - 1 cops migrate to the 
same copy of  H as the robber, say to H .  {y}. 

Since H is nearly c* win, the cops on H .  {y} can play so that either the robber 

moves on Ck or the projection o f  r onto H must, from time to time, be s_. When- 

ever the latter occurs, S moves toward the robber on Ck, say in the clockwise di- 

rection, which eventually forces the robber to move on Ck in the same direction. 

Once this occurs, S moves in the counterclockwise direction on Ck whenever the 

projection o f  r onto H is s. This eventually forces the robber to also move in the 

counterclockwise direction on Ck. Thus, the projection o f  W onto Ck contains the ver- 

tex sequence u,v . . . . .  v,u for some u, vC V(Ck) and hence G is nearly c* win. Thus, 

c(G) = c(D~=l G ) < k  + l. 
Because 6([---1~=1Ci)=2k, by Lemmas 2.1 and 2.2, we have k + l<~c(F-Iki=lCi). 

Therefore, c([[]~= l G ) = k +  1 and so e([--]i~=l G ) = n +  1 for all n>~l. [] 

The next two theorems concern a combined Cartesian product of  trees and cycles. 

n Theorem 2.7. Let C1,C2,...,Cn be cycles each of  length at least 4. Let H =~-qi= 1C i 
and T be a tree. Then, 

c ( H D T ) = n  + 1. 

Proof. We have c(H) = n + 1 by Theorem 2.6. Also by Theorem 2.6, H is nearly c* 
win and so c ( H g T ) = n +  1 by Theorem 2.3. [] 
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Theorem 2.8. Let C1, C2 . . . . .  Ck be cycles each of length at least 4. Let G =[]~:1 ft. 
Let T1,T2 . . . . .  Tj be trees and let H:[-]{= l Ti. Then 

1 
Proof. From Theorem 2.7, if j = 1, then c(G[]H)=k + 1. Suppose that the theorem 
is true for arbitrary fixed k and for all j where 1 <<.j<m. Let j = m  and consider 
G []F [] Tm-l [] Tm where F--1--]i%-12 77/. Let the position of the robber be (p,x, y) where 
pC V(G[]F), xE V(Tm-1) and yE V(Tm). By hypothesis k +  r ( m - 1 ) / 2 ]  cops can 
capture p, say with cop S. If the robber moves on G[]F, then S shadows the robber 
on G[]F. If the robber moves on T,,-1GTm then S plays her winning strategy on 

Tin-1 [] Tm as in Lemma 2.1. 
The remaining k + [ ( m -  1)/2] cops move to G[]F.{x,y} and again proceed to 

capture p. To avoid capture the robber is forced to move on Tin-1 [] Tm and so will 
eventually be captured by S. Therefore, c(Gc3H)<<.k + I(J + 1)/2], j,k>~ 1. 

To see that k + r(J + 1)/2] cops are necessary we note that 6(G~H)=2k + j  and 
so by Lemmas 2.3 and 2.2, the minimum number of cops needed are (2k + j)/2 + 1 if 
j is even and k + ( j  + 1)/2 if j is odd which in both cases is k + F(J + 1)/2]. Thus, 

c ( G ~ H ) : k  + [ ( j +  1)/21, j ,k  >~l. [] 

Finally, we consider the Cartesian products of complete graphs. 

Theorem 2.9. Let H be the Cartes&n product of n complete 9raphs Ki each of size 
at least 3. Then, 

c(H) = c'(H) = n. 

Proof. Since c(Ki)=l we have, by Theorem 2.1, that c(H)<~n and c'(H)<~n. 
Let u,v, EV(H). Since H is ~i"_-l(Igil- 1) regular and Ki>>.3, IN(u)nN(v)l is 
at most one of the terms in the sum. Thus, n<~c(H) and n<<.c~(H) and so 
c(H) = c'(H) = n. [] 

We note that Theorem 2.9 holds if the complete graphs are infinite in cardinality. 

3. Categorical product 

A difficulty in determining an upper bound for the categorical product is that the 
product may be disconnected. However, if all the constituent graphs of the product are 
connected and at least one of them is not bipartite, then the categorical product is also 
connected. 

Theorem 3.1. Let  G and H be the connected non-bipartite 9raphs and let 
c(H)~e(G). 
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(i) Suppose c(H)~>2. Then, 

c(G x H)<~2c(G) + c(H) - 1. 

(ii) Suppose e(G)= c (H)= 1. Then, 

c(G x H)~<3. 

Proof. (i) Let n = 2 c ( G ) +  c ( H ) -  1 cops play on two adjacent copies of H (i.e., on 

{ x , y } . H  where (x,y) is an edge in G). Let __r = (a, b), aEG,  b E H  be the current 

position of the robber. Let a set P = {$I,$2 . . . .  ,S2c(a)} of  2c(G) cops capture b. After 
this capture each Si E P shadows the robber on H. Let one of the remaining c(H) - 1 

cops, say Sk, force the robber to move. Because G has an odd cycle and because of 
the existence of Sk, the cops in P can move so that c(G) of them occupy {x} . H  and 
c(G) of them occupy {y} .H. 

Match each cop Si on {x}. H with a 'following' cop S[ on {y}. H. This means that 

whenever Si moves from (say) (x,u) to (z,v), S[ moves to (x,v). Let U C P  be the 
set of  cops occupying { x } . H  and V C P  be the set occupying { y } . H .  The cops in 
U and V shadow the robber on H which prevents the robber from entering the same 

copy of H as any of the cops in P. 
The cops in U play their winning strategy on G whenever the robber moves, which 

must occur from time to time due to the existence of Sk. Thus, the robber must 

eventually move either to a copy of H adjacent to one containing a cop Si E U (whence 
the robber is captured by Si) or to a copy of H containing a cop Si E U (whence the 

robber is captured by S~ E V). 
(ii) Since both G and H are cop-win, two cops, S1,$2 can each capture the projection 

of the robber onto G with one cop capturing on G. {x} and the other on G. {y} where 
x is adjacent to y in H. They then play their winning strategy in H whenever the 
robber moves maintaining their position in adjacent copies of G. This prevents the 
robber from entering the same copy of G as either of  the two cops. A third cop 
is needed to force the robber to move. Thus, the robber is eventually captured by 

$1 or  3 2. [] 

We have the following corollary to Theorem 3.1. 

Corollary 3.1. Let Gi, 1 ~ i ~ n  be non-bipartite 9raphs. 
(i) l f  c(Gi)>~2 for some i, l <~i<<,n, then, 

c(Xin=lGi)<~2 I ~-~c(Gi)li=l - m a x c ( G i ) - n +  l. 

(ii) l f  c(Gi)= 1 for all i, 1 ~i<<,n, then, 

c(Xin=iGi)<,n q- 1. 

Proof. Apply Theorem 3.1 and proceed by induction on n. [] 
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We can be more specific about some special graphs such as paths and complete 

graphs. For example, suppose G and H are each paths of  length at least 3. Note 

that G x H consists of  two disconnected components each of  which is essentially the 

Cartesian product of  two paths. Hence, in the passive game two cops on each com- 

ponent are sufficient and so c(G x H)~<4. If  each path is of  length at least 3, then 

each component must have at least 1 cycle of  length 4. Hence, if this is the case, 

c(G x H )  = 4. 

On the other hand, in the active game only one cop is needed on each of  the 

components by Lemma 2.3 and so c~(G x H)  = 2 

For complete graphs we have the following result. 

Theorem 3.2. Let G = (V1,Ex) and H = (V2,E2) be complete 9raphs. 

(i) Suppose 11/11/>4 and jV21>~4. Then, 

c ( G x H ) = 3  and c ~ ( G x H ) = 2 .  

(ii) Suppose [Vii or IV2l=3. Then 

c(G x H )  = c'(G x H )  = 2. 

Proof.  (i) We show c(G xH)~<3  and c~(G×H)<~2. Suppose that all 3 cops ini- 

tially choose distinct positions in the same copy of  G (i.e., G.{x}, x E V2). The robber 

must also choose a vertex in this same copy of  G, otherwise he is caught immedi- 

ately. Let the coordinates of  the robber be (a,x). One cop then moves to (a, y )  and a 

second cop moves to (a,z), z ~ y. The third cop moves to (b, y )  directly attacking the 

robber. The robber has no safe move and so is captured at the cops'  next turn. Hence, 
c(G x H)~<3. 

In the active game, after the first two cops move as described, the robber must move 

to a vertex where he can be captured. Hence ct(G x H)~<2. 

We show c(G x H)>~3 and cl(G x H)>~2. We note one cop is not sufficient in the 

passive or active game since an avoidance strategy for the robber is simply to choose 

the same copy of  G (or H )  as the cop. Thus, c(G x H)~>2 and # ( G  x H)~>2 which 
implies c~ ( G x H)  = 2. 

Let two cops, S1, $2, play the passive game on G x H and suppose their current 

coordinates are (x, y )  and (u, v). I f  they have a coordinate in common, say x = u, then 

the robber chooses vertex (x,w) where w C y, v, which is not adjacent to $1 or S:. 

Similarly, if y = v the robber may choose a safe vertex. If  x ¢ u and y ¢ v, then the 

robber may choose vertex (x,v) which is not adjacent to $1 or $2. Thus, the robber 

has a safe initial position. We now consider the situation after the cops'  turn. 
(a) Neither cop is adjacent to the robber. The robber then passes. 

(b) At least one cop, say Sl, is adjacent to the robber. This means both coordinates of  

Si differ from the robber. I f  SI and $2 have a coordinate in common, say x = u, 
then the robber chooses the safe vertex (x, p )  where p ¢ w,y,v.  This is always 
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possible since I v11~4 and IV2[/>4. Similarly, if  y =  v, the robber can choose a 
safe vertex. 

I f  S1 and $2 have no coordinate in common, then the robber chooses vertex (x, v) or 

vertex (u, y )  one of  which is a safe vertex. Again this is possible because I/,'111>4 and 

IV2[ i>4. Thus, when playing against two cops the robber has an avoidance strategy. 
Hence, c(G x H )  ~> 3 whence we conclude c(G x H )  = 3. 

(ii) Suppose IV l I= 3. Clearly, one cop is not sufficient to win in either the passive 
or the active game since the robber can always choose to go to the same copy of  G 
as the cop where he is not threatened. Hence, c~(G x H ) / > 2  and c(G x H)~>2.  By (i) 

we have c' ( G x H )  = 2. 
Let two cops occupy different vertices in a copy of  H (i.e., (x, a) and (x, b)). Then 

the robber must also choose this copy of  H (i.e., (x,c)) or he will be caught on the 

next move. The cops now move to (y ,d)  and (z,d), y C z ,  d ¢ c ,  from which position 
the robber is attacked. The robber has no safe move since IV l I= 3 and so is captured 

on the next move. By a similar argument, i f  IV z I =  3, then two cops can capture the 
robber. Thus, c(G x H)~<2 and we conclude c(G x H)- - -2 .  [] 

We note that in Theorem 3.2(i), G or H may be infinite complete graphs. We now 

extend Theorem 3.2 to the n-fold categorical product. 

Theorem 3.3. Let H be the categorical product o f  n complete graphs each of  size 
at least 3. Then, 

c(H)~< I ~ - ~  ] ÷ l  and c'(H)<~ I ~ -  1 forn>~2. 

Proof.  Let the robber have position r = (rl, rz . . . . .  rn) in H and suppose cops $1 and $2 

have positions u=(r l , r2  . . . . .  ri-l,ui, ri+l,... ,rn) and v_=(rhr2,...,ri_l,vi, ri+l . . . .  , r n ) ,  

ui 7 ~ vi. I f  the robber is now forced to move, he is captured on the next move by $1 
or S:. Thus, it suffices to show this situation can be achieved. 

Assume, without loss of  generality, that all of  the cops initially occupy the same 
vertex (al,  ae . . . . .  an). Let the initial position of  the robber be the same as the cops in k 
coordinates and different in j coordinates. After re-ordering let the robber 's  position be 

(al ,a2 . . . . .  ak, bk+l . . . . .  bk+j). I f  k<n/2,  then the cops at their next move will change 
the j coordinates of  theirs which are different from the robber 's  to be the same as his. 
They now have k > n/2. Therefore, we may assume from the outset that k >>. n/2 which 

implies j ~< [(n - 1 )/2]. 
Now let one cop, $1, move to attack the robber. It is to the robber 's  advantage to 

move to a vertex with j coordinates the same as the vertex occupied by the remaining 

cops $2,$3 . . . .  (i.e., to (bl,b2 . . . . .  bk, ak+1 . . . .  ,ak+j)). Otherwise, at their next move 
these cops could move to a vertex which has at least k + 1 coordinates the same as 
the robber 's  vertex. 

One cop, $2, now moves to a vertex with k coordinates identical to the robber 's  ver- 
tex and j coordinates different (i.e., to (bl, b2 . . . . .  bk+j)). The remaining cops, $3, $4 . . . . .  
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choose a vertex with k coordinates identical to the robber's vertex and j coordi- 
nates different from both the robber's vertex and the vertex occupied by $2 (i.e. to 
(bl, b2 . . . . .  bk, Ck+l . . . . .  Ck+j)). This is always possible since [Ki[ ~> 3. The robber cannot 
on his next move choose a vertex with coordinates all different from $2 or he will 

be caught by $2 on the next move. Therefore, the robber must choose a vertex with 

ith coordinate b i for some i where k <i<~k +j .  Since bi ~L ci ' the cops $3,$4 . . . .  can 
at their turn move to a vertex with at least k + 1 coordinates identical to the vertex 

occupied by the robber. 
By repeating this process we find that if the robber is forced to move, then j + 1 

cops are sufficient to produce a situation where two cops have positions equal to the 
robber's in all coordinates but one. Thus, in the active game j + 1 cops are sufficient 

to produce the winning position, whereas in the passive game an additional cop for a 
total of j + 2 are sufficient. Now since j ~< I(n - 1)/21, we have the result. [] 

4. Strong product 

The final product on graphs which we will consider is the strong product. Earlier 
Nowakowski and Winkler [10] showed that a finite strong product of cop-win graphs is 

also cop-win. Here we generalize somewhat and consider the finite product of  graphs 

with arbitrary cop-numbers. Combinations of  some disjoint subsets of  the strong prod- 
uct were investigated by Neufeld and Nowakowski [9]. We begin with the following 

theorem. 

Theorem 4.1. Let G and H be graphs with c(G)~>2 or c(H)~>2. Then, 

c(G [] H)  <~ c(G) + c(H) - 1. 

Proof. Suppose, without loss of generality, that c(H)~>2. Let a set P = { S 1 , S 2  . . . . .  

Sc(,)} cops capture the projection of the robber onto G. This requires a total of 
c(G) + c ( H ) -  1 cops. The cops in P then shadow the robber on G and at the same 

time play their winning strategy on H. [~ 

Theorem 4.1 implies that if c(Gi)>.2 for some i, l<<.i<~n, then c([]in_~lGi)<. 

zin=l c(Gi) -- n ÷ 1. 
Finally, we consider the cop-number of the n-fold strong product of cycles. 

Theorem 4.2. Let C/, 1 <<. i <~ n, be cycles which each have a length at least 5. Then, 

c(~=1 Ci) <~n+l" 

Proof. We proceed by induction on n. Consider first a product of two cycles Cl [] C2. 
Let the position of the robber be (x, y). Let three cops play on CI [] C2 so that two of 

their number, say $1 and $2, capture x. 
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On subsequent  moves  $1 and $2 each shadow the robber  on C1 and at the same t ime 

m o v e  in opposi te  directions towards the robber  on C2. The robber  is captured when  

both cops are in copies  o f  C1 adjacent  to the robber. Thus, c(C1 ~ C2)<~3 = n + 1. 
Assume  c ( [ ]  k -  1 i = 1 C i ) ~ k  and let n = k .  Let  G =  []~-11.= Ci and consider  G[]Ck. By 

the induct ion hypothesis ,  k + 1 cops can play so that two o f  their  number  capture the 

project ion o f  the robber  onto G. These two cops then adopt  the strategy used above  
¢ n in the product  o f  two cycles.  Thus, c([]/k=l Ci)<<,k+ 1 and hence ( [ ] i=lCi )<~n+ 1 

for a l l n > 7 1 .  [] 
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