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Abstract—We survey work on the different uses of graphical mapping and interaction techniques for visual data mining of large data

sets represented as table data. Basic terminology related to data mining, data sets, and visualization is introduced. Previous work on

information visualization is reviewed in light of different categorizations of techniques and systems. The role of interaction techniques is

discussed, in addition to work addressing the question of selecting and evaluating visualization techniques. We review some

representative work on the use of information visualization techniques in the context of mining data. This includes both visual data

exploration and visually expressing the outcome of specific mining algorithms. We also review recent innovative approaches that

attempt to integrate visualization into the DM/KDD process, using it to enhance user interaction and comprehension.

Index Terms—Information visualization, visual data exploration, visual data mining, survey, framework, model.
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1 INTRODUCTION

THE wide availability of ever-growing data sets from
different domains has created a demand for automatic

processes for extracting information from them. DataMining
(DM) is commonly defined as the extraction of patterns or
models from observed data, usually as part of amore general
process of extracting high-level, potentially useful knowl-
edge, from low-level data, knownasKnowledgeDiscovery in
Databases (KDD) [28], [29].Datavisualizationandvisualdata
exploration play an important role in the KDD process.
Analysts need tools for creating hypotheses about complex
(very large and/orhigh-dimensional) data sets, a process that
requires capabilities for exploring and understanding them.
“Visual datamining” toolswith interactive data presentation
and query resources allow domain experts to quickly
examine “what if” scenarios while interacting with multi-
variate visual displays.

Meanwhile, researchers are realizing that visual feedback

has a role to play within the DM algorithms themselves.

Visual mapping techniques are now being used both to

convey results of mining algorithms in a manner more

understandable to end users and to help them understand

how an algorithm works. In fact, the ability to create a good

mental model of how a particular DM algorithm works is

essential if end users, usually the domain experts, are ever

to exercise a greater control over the DM/KDD process.

Visualization can certainly be explored in this novel context,

in addition to the more traditional “visual data exploration”

one, and the term “visual data mining” can describe

applications of visualization in both contexts.

In this survey, we attempt to review work on informa-
tion visualization that is relevant for researchers using or
trying to use graphical mapping and interaction techniques
for visual DM, in the scope of both contexts mentioned
above. The survey is restrained to visual mapping techni-
ques targeted at table data and does not cover those aimed
at hierarchical, spatial, time-dependent, image, video, or
scientific data. This paper is organized as follows: In
Section 2, we introduce basic terminology on DM, data
sets, and visualization. In Section 3, we describe previous
work on visualization of large data sets. The emphasis is not
on describing particular techniques—although some con-
tributions are briefly discussed—but on reviewing work in
the field under the light of different categorizations, thus
providing an overview of the classes of techniques avail-
able. The role of interaction techniques is discussed, as well
as work addressing the important question of how to select
an appropriate visualization technique. Previous attempts
at creating formal models of visualization are also re-
viewed. Section 4 reviews representative work on the use of
information visualization techniques in the context of
mining data. This includes both visual data exploration
and work dealing with visually expressing the outcome of
specific mining algorithms. We also review innovative
approaches that attempt to integrate visualization into the
DM/KDD process, using it to enhance user interaction and
comprehension. Conclusions are presented in Section 5.

2 BASIC CONCEPTS AND TERMINOLOGY

Both scientific visualization and information visualization
create graphical models and visual representations from
data that support direct user interaction for exploring and
acquiring insight into useful information embedded in the
underlying data. In scientific visualization, the graphical
models are typically constructed from measured or simu-
lated data representing objects or concepts associated with
phenomena from the physical world. As such, the data and,
hence, its derived visual representations represent objects
that exist in a 1D (one-dimensional), 2D, or 3D object space.
Eventually, data will also include a temporal dimension

378 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 3, JULY-SEPTEMBER 2003

. M.C. Ferreira de Oliveira is with the Instituto de Ciências Matemáticas de
São Carlos, CP-Brazil. E-mail: cristina@icmc.usp.br.

. H. Levkowitz is with IVPR-Institute for Visualization and Perception
Research, University of Massachusetts at Lowell, One University Ave.,
Lowell, MA 01854. E-mail: haim@cs.uml.edu.

Manuscript received 15 Feb. 2001; revised 16 July 2001; accepted 27 Sept.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 113632.

1077-2626/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DA BAHIA. Downloaded on May 06,2010 at 17:09:18 UTC from IEEE Xplore.  Restrictions apply. 



and the presence of spatial and temporal dimensions is a
determinant factor in deriving visual representations from
the data. In information visualization, the graphical models
may represent abstract concepts and relationships that do
not necessarily have a counterpart in the physical world,
e.g., information describing user accesses to pages of an
Internet portal or records describing selected properties of
different car brands and models. Typically, each data unity
describes multiple related attributes (usually more than
four) that are not of a spatial or temporal nature. Although
spatial and temporal attributes may occur, the data exists in
an abstract (conceptual) data space.

Raw data come in many formats and, to map a data set
into visual formats, it is convenient to transform it into a
structured relation or a set of relations (tuples). Card et al.
[17] define the Table Data Model: A Data Table is a
structured data format organized as rows and columns that
express relations, in addition to metadata, i.e., descriptive
information about such relations, such as the labels for rows
and columns. In their arrangement, the rows represent
variables (covering the range of values in the tuples) and
the columns represent cases (the data records with sets of
values for each variable). The opposite arrangement is more
common, with the columns representing the data variables
and the rows denoting the data records. The ordering of
rows and columns in the Data Table may or may not be
relevant and this very general definition rules out struc-
tured or hierarchical data.

Hoffman [45] uses the term “Table Visualizations” to
denote visualizations of data sets expressed as Data Tables.
Strictly speaking, the term “dimensions” should be used to
refer to the independent variables represented in the tuples,
whereas “variates” refer to the dependent variables (see
Wong and Bergeron [91] for a good discussion on
terminology). Usually, in a DM or visual exploration task,
one does not know in advance which are the dependent/
independent variables and it is common to refer to data
variables generally as data “dimensions” or “attributes,” the
latter being more common in the DM literature. In this
paper, we use the terms “data item” to denote a tuple
describing a relationship among multiple variables (i.e., a
case, or data record) and “attribute,” rather than dimension,
to denote the variables (either dependent or independent).
“Attribute value” refers to the information content asso-
ciated with a particular attribute of a particular data item
and “attribute range” refers to the range of values assumed
by a particular attribute in a data set. An n-dimensional
visualization is one capable of visually depicting n attributes
of a table data set.

It is not always precisely clear what characterizes a
“high-dimensional” data set. The conceptual boundary
between low and high-dimensional data is around three
to four data attributes. For a lot of people, moving beyond
3D or 4D makes the set significantly more complex.
Certainly, most people are overwhelmed by 5D. Again, as
general guidelines for characterizing dimensionality one
could probably use “low” for up to four, “medium” for five
to nine, “high” for 10 or more, although this is an arbitrary
choice. It is more important to observe the significant
differences in human perceptual capabilities between low
(no more than 4D) and higher. For most human beings,
there is no real difference between dealing with 5D and 50D
data sets: Both are beyond their ability to comprehend, as

geometric projections in more than 4D are ineffective to
convey information to them.

Similarly, the terms “large,” “very large,” and “massive”
are used to qualify data sets in a somewhat loose manner, as
the concept of large varies with the increase in computer
power. As general guidelines, we can currently think of a
“large” data set as one containing over 100,000 data items,
whereas a data set with more than 1,000,000 is definitely
more than just “large” and one with hundreds of millions
items can easily be classified as “massive.” As DM is
usually targeted at massive data sets, interaction between
both fields has made clear the need of interactive visualiza-
tion techniques better equipped for handling such large
data sets. Most visual techniques discussed in Section 3 map
each data item into a corresponding graphical element,
which may be a pixel, a line, an icon, or other graphical
marker. The implication is that they do not scale well when
handling millions of data items, which is just one of the
reasons for the lack in the capability of current visual data
exploration tools in handling databases of such an order of
magnitude.

DM methods have different goals and several methods
may have to be applied successively to achieve a desired
result. Most DM tasks, targeted at either insight or
prediction, fall into one of the following categories [33]:
data processing, prediction, regression, classification, clus-
tering, identifying meaningful associations between data
attributes, model visualization, and exploratory data ana-
lysis. Data processing is generally required as a starting
point of a KDD/DM/Data Exploration project as analysts
may have to select, filter, aggregate, sample, clean, and/or
transform data. Dimension reduction may be necessary to
produce a k-dimensional data set from a given n-dimen-
sional one, where usually n is very large and k should be
much smaller than n. Some common techniques are
Principal Component Analysis [2], Factor Analysis [37],
Multidimensional Scaling [92], and FastMap [27]. Subset-
ting techniques may use sampling to determine a repre-
sentative subset of the original data set or querying to assist
in determining an a priori fixed subset of the data for
further processing. Segmentation techniques produce mul-
tiple subsets of data items based upon attribute values or
attribute ranges of the original data, whereas aggregation
techniques produce a set of aggregate values based upon,
e.g., attribute values and topological properties of the
original data.

Model Visualization and Exploratory Data Analysis
(EDA) are the DM tasks in which visualization has played a
major role up to now. Model visualization is the process of
using visual techniques to make the discovered knowledge
understandable and interpretable by humans. Techniques
range from simple scatter plots and histograms to sophisti-
cated multidimensional visualizations and animations. EDA
is the interactive exploration of (usually) graphical represen-
tations of a data set without heavy dependence on pre-
conceived assumptions and models, thus attempting to
identify interesting andpreviouslyunknownpatterns.Visual
Data Exploration techniques are designed to take advantage
of the powerful visual capabilities of human beings and can
support users in formulating hypotheses about the data that
may be useful in further stages of the mining process.
Different visualization techniques can also support DM tasks
of cluster and outlier detection, important feature detection,
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classification, and rule or pattern detection. A key
distinction is that visual data exploration is a completely
human guided process, whereas DM algorithms can
automatically analyze a data set searching for useful
information and statistically valid patterns. The degree of
automation of DM algorithms actually varies considerably
as different levels of human guidance and interaction are
usually required, but still the algorithm, not the user, is
the one that is to look for patterns.

3 PREVIOUS WORK ON VISUALIZATION OF

LARGE DATA SETS

The typical approach to producing visualizations from Table
Data is to map data attributes to certain features in the
visualization, with the attributes mapped to the spatial axes
(X, Y, Z) usually having a dominating effect on the result.
Rather than describing particular techniques, for which good
surveys are available [20], [52], [55], [91] (see also [66] for a list
of techniques and references), we review thework in the field
under the light of their categorizations: Some attempts at
classifying visualization techniques are discussed in
Sections 3.1 and 3.2. A classification based on the overall
approach adoptedbya technique to generate visualizations is
presented in Section 3.1, where a short description of many
representative techniques is also included. Card et al. [17]
categorize visualization systems based on the type of data
they handle, as discussed in Section 3.2. In Section 3.3, we
focus on the role of interaction in Information Visualization.
In Section 3.4,we reviewworkdealingwith the complex topic
of how to evaluate visualizations and compare different
techniques. This leads us to the question of systematizing and
formalizing the process of generating visualizations, dis-
cussed in Section 3.5.

3.1 Taxonomy of Techniques by Keim

Keim and Kriegel [55] and Keim [52] grouped visual data
exploration techniques for multivariate, multidimensional
data into six classes, namely, geometric projection, icon-
based, pixel-oriented, hierarchical, graph-based, and hy-
brid. In both works, an overall description and a compar-
ison of the most representative techniques are provided. A
summary of techniques mentioned by these and other
authors is provided in [66].

Geometric projection techniques support users in the
task of finding informative projections of multidimensional
data sets. This class includes exploratory statistics techni-
ques typically used for data processing, such as principal
component analysis, factor analysis, and multidimensional
scaling, and also the traditional Scatterplots [23], in which
two data attributes are projected along the x and y axes of a
Cartesian coordinate system. Scatter plot matrices provide a
variation targeted at multidimensional data in which
multiple pairwise projections of the data attributes are
shown simultaneously in a panel matrix. Another well-
known technique is Parallel Coordinates [49], [50], [51],
which maps a k-dimensional data or object space onto the
2D display by drawing k equally spaced axes parallel to one
of the display axes. Each axis is associated with a data
attribute and is linearly scaled within its corresponding
attribute data range, which may be normalized if necessary.
Each data item is presented as a polygonal line that
intersects each axis at the point corresponding to the item’s

associated attribute data value. The technique is effective
for revealing a wide range of data characteristics, such as
different data distributions and functional dependencies. A
major limitation, however, is that, even for relatively small
data sets (say, with more than a few thousand data items),
visual clutter and overlap can severely hamper the user’s
ability to interpret the visualizations and interact with them.

Hoffman [45] adopts a radial arrangement of the axes
and calls it Circular Parallel Coordinates and Fua et al. [31]
present an extension tailored to cope with large and very
large data sets. Their approach consists of displaying
aggregation information derived from a hierarchical clus-
tering of the data. Data clusters can be displayed at different
levels of abstraction and using a color-coding approach
based on cluster proximity, as depicted in Fig. 1. They also
introduce an interaction mechanism for dynamically navi-
gating and filtering the hierarchy, called structure-based
brushing [32].

Another high-dimensional geometric-based technique is
the Radial Coordinate Visualization, RadViz [45]. For an
n-dimensional visualization, n lines emanate radially from
the center of a circle and terminate at its perimeter, each line
associated with one attribute, as shown in Fig. 2. Spring
constants attached to the data attribute values define the
positions of the data points (or, better, of their graphical
representations) along the lines.

The icon-based or iconographic display techniques map
each multidimensional data item to an icon (or glyph)
whose visual features vary depending on the data values.
One of the first approaches is the Chernoff faces technique
[19], [85]. Two data attributes are mapped to the 2D position
of a face icon in the display and the remaining attributes are
mapped to the properties of the face icon—the shape of
nose, mouth, eyes, and the shape of the face itself. A
shortcoming is that the different visual features are not
really comparable to each other, except for some pairs.
Additionally, some features are usually more salient than
others to the human eye—for example, people usually pay
more attention to eyes than to ears.

The “stick figure” is another classical glyph example [34],
[67] in which the icon is a figure with five limbs (see Fig. 3).
Again, two attributes are mapped to the display dimensions
and the remaining ones are mapped to the angles of the
icon’s limbs. If the data items are relatively dense with
respect to the display dimensions, the resulting plots exhibit
shifting textures, creating visual boundaries between
texture regions that identify a shift in the characteristics of
the represented data items. By drawing attention to shifts in
the visual field, rather than to the actual features of
individual glyphs, a user is able to quickly assess where
shifts in characteristics occur within a large collection of
items, as can be observed in Fig. 4. Pickett’s original stick
figure provided exactly five attributes per icon, as he
proposed using the orientation of the five “limbs” plus the
(x, y) location, allowing a total of seven attributes.
Additional attributes may be mapped to length, color, and
other geometrical features or other visual attributes of the
stick figure limbs.

The concept of data-driven geometric icons has been
extended to sound icons [63] in which data attributes
determine sound parameters such as attack rate, intensity,
and timbre, and to color icons [62], which use color, texture,
and shape. Shape coding is another icon-based technique
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[9] that allows visualization of an arbitrary number of
attributes. The idea is to map the attributes to a small array
of pixels so that each data item is represented by a pixel
array taking the form of a square or rectangle. The pixels are
mapped to a gray or color scale according to the value of
their corresponding attributes, with the small squares or
rectangles arranged successively in a line-by-line fashion.

The basic concept of the stick figure is extended in [72],
whose authors also define a data-controlled glyph consist-
ing of an ordered series of connected “feature segments,”
each segment mapped to a data attribute. The horizontal

and vertical components of each feature segment are
controlled by two measures on its associated attribute (the
authors are using variances). If feature segments are
represented as line segments, a noticeable gradual drift
appears in each icon and in the resulting visualization. This
can be eliminated by representing the feature segment as a
small image, scaled along the horizontal and vertical axes
according to the feature’s associated measures. Because the
interest is in the variance that a glyph exhibits from its
counterparts, rather than in identifying individual compo-
nents, glyphs can be stacked on top of one another at a
single horizontal position, considerably increasing the
number of data elements that can be shown. The authors
illustrate their approach with visualizations of a document
data set. The technique supports visual segregation of
clusters of information elements based on degrees of
variance with the prevailing characteristics of the collection.
A hierarchy of variance can be displayed which the user can
control to discover clusters, patterns, and exceptions.

In pixel-based techniques, a pixel is used to represent
data values: Different attributes are exhibited in different
subwindows and the range of possible data values are
mapped to pixels according to a fixed color map [53], [55],
[56] (Fig. 5). The techniques, suitable for large multi-
dimensional data sets, are further categorized as “query
independent” or “query dependent.” In the query indepen-
dent techniques, the arrangement of the pixels in the
subwindows is fixed, independently of the data values
themselves. In the query dependent ones, a query item is
provided and distances from the data values to the given
query value are computed using some metrics. The
mapping of colors to pixels is based on the computed
distances for each attribute and pixels in each subwindow
are arranged according to their overall distances to the
query data item.

Fig. 5 [56] illustrates visualizations using two of the
possible arrangements of pixels, namely, spiral and axes
arrangements (left and right, respectively), produced from a
synthetic data set with uniform distribution and five
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Fig. 2. RadViz visualization of the UCI car data set, with 392 data items
describing attributes of cars manufactured in America, Japan, and
Europe from 1970 to 1982. Seven attributes are shown and coloring is
by the car manufacturing country (attribute Type). The visualization
allows the identification of some positive and negative correlations
between MPG, Cylinders, Weight, Horsepower, Acceleration, and the
car Type. It also allows good visual discrimination among the different
car types. From [45].

Fig. 1. Sequence of visualizations, at increasing levels of detail (from top left to bottom right), produced from a hierarchical clustering of a data set on
fatal accidents with 230,000 data items. A hierarchical tree is created in which each node represents a nested collection of enclosed subclusters or
data points. Variable width opacity bands are used to represent the information at each node, with color coding based on cluster proximity in the tree.
The top left visualization shows a view of information at the root node of the tree, which provides a coarser level of detail, and the one at the bottom
right shows a view of data at the leaf nodes, providing fine detail. From Fua et al. [31].
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clusters. The data set has 7,000 data items with eight
attributes. The color coding adopted ranges from bright
yellow to green, blue, dark red, and almost black, based on
the distance from a data item to the correct answers to a
query: Data items that better satisfy a query are colored
bright yellow and those further away from it are colored
black. In Fig. 5, the top left subwindows in each visualiza-
tion depict the color coding and also the arrangement of the
data items in each case (spiral and axes). These are called
overall result windows, in which pixels representing data
items are positioned according to their overall distance to
the exact answer to the formulated query. The remaining
subwindows exhibit the behavior of the eight attributes
with respect to the query. The pixels for each data item are
placed at the same relative position as they appear in the
overall result window. The regions of different colors allow
the identification of clusters of data items with a compar-
able distance and correlation among different attributes.

An alternative to the regular partitioning of the display
area into rectangular subwindows is proposed by Ankerst
et al. [5]. They suggest displaying the range of values for
each data attribute within a segment of a circle, as depicted
in Fig. 6, assuming a data set with eight attributes. Data

items are arranged within a segment, as indicated by the
arrows in the Fig. 6 so that a single data item appears in the
same position at the different segments. The ordering of the
data items within the segments, as well as their color, are
determined, as in the previous arrangements, by their
overall distance to those data items satisfying a user
specified query.

Hierarchical techniques subdivide the k-dimensional
data space and present subspaces in a hierarchical fashion.
Well-known representatives are n-Vision, also known as
“Worlds-within-Worlds” [12], [14] and Dimension Stacking
[60]. Both techniques can map Table Data, described in a
k-dimensional nonhierarchical data space, onto a hierarch-
ical 2D display space. Treemaps [77] and Cone Trees [69]
are also examples of hierarchical visualization techniques,
but they assume hierarchical structures within the data
space and are thus not directly targeted at Table Data.
Graph-based techniques visualize large graphs using
specific layout algorithms, query languages, and abstraction
techniques [6], [7], [26], [41] to convey their meaning clearly
and quickly. There are several approaches and systems
targeted at this specific domain, which appear under the
Network category in the taxonomy by Card et al., discussed
in Section 3.2. Hybrid techniques integrate multiple
visualization techniques, either in one or multiple windows,
to enhance the expressiveness of the visualizations. Linking
between visualization windows is a useful resource and
most techniques rely heavily on dynamics and interaction
(discussed in Section 3.4). An overview of multidimensional
techniques under this categorization and a concise picture
of their major characteristics are provided in Table 2.

3.2 Taxonomy of Visualization Systems
by Card et al.

Card et al. [17] adopt an alternative approach toward a
categorization of information visualizations, grouping their
application into four different levels. At the highest level are
visualization tools that provide users with visual access to
information collections external to their immediate envir-
onment, such as the Internet or online databases on a server.
At the second level are tools aimed at supporting people in
executing tasks by creating fast accessible and highly
interactive visual representations of the information work-
space required by the task. These are the Workspace tools,

382 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 3, JULY-SEPTEMBER 2003

Fig. 3. The stick figure icon.

Fig. 4. Five-dimensional image data from the Great Lakes region using

the stick figure icon (from http://ivpr.cs.uml.edu/IVPR/gallery/line-

icons.html).
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targeted at augmenting users capabilities of interacting with
their information workspace. At the third level are the
Visual Knowledge Tools that depict visual representations
of some data and a set of controls for interacting with such
representations so that users can determine and extract
relationships from the data. This category encompasses
most of the tools targeted at producing visualizations of
Data Tables. Finally, at the fourth level are visually
enhanced objects whose focus is on revealing more
information about an object of intrinsic visual form. A good
example is a medical visualization of a human organ using
direct volume visualization to depict internal structures.

Visual Knowledge Tools are further categorized based
on the type of Visual Structures (VS) they adopt. The
concept of Visual Structures embeds how space is used to
encode information or, in other words, the dimensionality
of the data representations used. To some extent, the VS
adopted also reflects the task that the environment is meant
to support. Common types of Visual Structures are:

. Physical, referring mainly to data representations
that have a direct correspondence to “real world”
objects, typical of Scientific Visualization. They
comprise techniques for constructing and viewing
3D representations of real world objects such as the

human body, buildings, or molecules for the
purpose of extracting information.

. 1D, 2D, 3D, referring to visualizations that encode
information by positioning marks on orthogonal
axes. 1D VSs are typically used for timelines and text
documents, usually as part of a larger VS. They also
lend themselves to being used as controls, such as
sliders and scroll bars indicating the range of values
of a certain parameter. Examples of 2D VSs are
2D scatter graphs and scatter graph matrices. 3D VSs
are common for physical data, but are also used for
composing 2D visualizations and for 3D abstract
representations.

. Multi-d information visualization environments
handle abstract data with too many attributes to be
encoded directly in the 1D, 2D, or 3D VSs. Usually,
the multiple attributes are not primarily of a spatial
nature and have no explicit structure or relations.
Scientific visualization also deals with multi-d data,
but most of the scientific data sets have spatial
attributes that are determinant for creating visuali-
zations. Typical tasks that must be supported by
such environments involve getting knowledge from
the data, like finding patterns, relationships, clusters,
gaps, and outliers, or finding specific items using
interaction actions, such as zooming, filtering, and
selection.

. Tree and Network denote VSs that use connection
and enclosure to encode relationships among data
items. These correspond, to an extent, to the
hierarchical and graph-based groups of techniques
in Keim’s classification. Hierarchies naturally arise
when describing, for example, taxonomies, organiza-
tion structures, and disk space management informa-
tion. Visualization techniques targeted at this domain
attempt to simultaneously show many nodes, if not
the entire tree itself, while providing mechanisms for
navigation and searching that allowusers to retain the
overall tree structure and reduce disorientation.
Hierarchies are similar to multi-d data in the sense
that their nodes usually contain a fair number of
attributes.NetworkVSsoftendescribedata consisting
of nodes representing data points and links represent-
ing a relationship between two data points, plus
additional information associated with data items or
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Fig. 5. Pixel-based visualizations using the spiral (left) and axes (right) query-dependent arrangements of pixels, from a synthetic data set with 7,000

data items and eight attributes. Color coding ranges from yellow for those data items that better satisfy a posed query to green, blue, red, and almost

black for those further away from it. From Keim and Kriegel [56].

Fig. 6. Arrangement of data items in the Circle Segments pixel-based

technique. The circle is divided into n segments for an n-dimensional

data set (in the figure, n = 8) and each data attribute (dimension) is

shown within a segment. From [53].
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connections. Much work has already been done in
this field; however, the sheer complexity of
relationships and user tasks, particularly for large
networks, still leaves much to be done. Typical
application areas are network and traffic manage-
ment, digital libraries, and visualization of World
Wide Web structure.

Card et al. argue that a classification based on VSs is
better suited for categorizing dynamic interactive environ-
ments than one based on data dimensionality. If an
environment is classified as using a 2D VS, then it can
potentially handle any data that can be mapped into such a
VS. Such a classification builds on an original taxonomy of
information visualization environments by Shneiderman
[79] and North1 and first appeared in OLIVE—The Online
Library of Information Visualization Environments,2 a
useful resource with a good coverage of techniques and
systems up to 1997.

3.3 Interaction

Interaction techniques can empower the user’s perception
of information when visually exploring a data set [43] and
virtually all visualization techniques are used combined
with dynamics and interactivity. The ability to interact with
visual representations can greatly reduce the drawbacks of
the techniques, particularly those related to visual clutter
and object overlap, providing the user with mechanisms for
handling complexity in larger data sets.

Keim [52] identifies two categories of interaction techni-
ques. The first group is comprised of those that operate on
the visual representations to allow visualization of a larger
amount of data. Typically, many such techniques have been
designed as an integrated component of tools targeted at
specific domains and can actually be considered as
visualization techniques themselves, such as FishEye Views
for graph visualization and Hyperbolic Trees for visualiza-
tion of hierarchies. The second category is comprised of
techniques supporting a more effective data exploration by
allowing dynamic or interactive mapping of data attributes
to visualization parameters or direct interaction with
visualization models, of which well-known examples are
Linking-and-Brushing [23], Dynamic Queries [78], and
Detail-on-Demand [59]. A discussion of brushing techni-
ques and a description of an extension for interactive
manipulation of hierarchical data representations is avail-
able in Fua et al. [32]. See also [66] for a short description of
these and other interaction techniques and references.

Chuah and Roth [22] define a comprehensive framework
for user interface techniques used in visualization systems,
building upon work in the field of user interface design
targeted at characterizing user interfaces. The goal of such a
framework is to establish grounds for comparison among
different systems, reuse of previous design elements, and
composition of interaction primitives to create new inter-
faces. They emphasize that different interaction functions,
although achieving different effects, do share similar
component basic interactions. They focus on the semantic
level of interface design and introduce the Basic Visualiza-
tion Interaction as the semantic primitive of their framework.

Several visual data exploration systems resulted from
work on visualization and interaction techniques, some of
which are available for distribution as academic tools (such
as XmdvTool [88] and XGobi3), while others have evolved
into commercial products (such as IVEE [1], now SpotFire4).
Several Web-based resources list visualization and general
data exploration software, see [66] for pointers to some.

3.4 Selection of a Technique

Classification schemes provide some initial insight on
which techniques are oriented to certain data types, but
one doesn’t know for sure what makes a visualization
technique more suitable than others to explore a particular
data set. Selection of a system/technique depends largely
on the task being supported and it is still a largely intuitive
and ad hoc process. One has to rely on previous experience
and knowledge and use multiple techniques so as to weight
their relative strengths and weaknesses.

Keim and Kriegel [55] and Keim [52] compare different
visualization techniques by rating their capabilities in terms
of data characteristics (maximum number of data attributes,
maximum number of data items, capability of handling
categorical data), tasks supported (clustering, multivariate
hot spots), and visualization characteristics (visual overlap
and learning curve). Albeit valid starting points for
comparison, these are subjective evaluations based on
personal experience. Not much work has been done on
practical empirical evaluation of systems or techniques,
either. One such work [83] describes an evaluation of two
hierarchical information visualization techniques, the clas-
sical TreeMap and the Sunburst displays, at conveying
attribute and structure information of computer directory
and file structures and assist users in file browsing tasks.
Additional work on controlled empirical evaluation of
techniques and tools can generate valuable contributions
to the field. In a distinct approach toward tackling the
problem of measuring the effectiveness of data visualization
systems, Keim et al. [54] try to define a model for specifying
the generation of test data to be employed for standardized
and quantitative testing of a system’s performance.
Coupled with appropriate testing procedures, such test
data sets could provide a basis for certifying the effective-
ness of a system and for comparing techniques. Achieving
such a goal is a difficult matter, though, because “general”
data sets are unlikely to meet the needs of users from
specific domains.

One attempt at quantitatively evaluating Table Data
visualizations, by Hoffman [45], is based on the definition of
a Display Utilization Grid. This is an X-Y grid, defined on
the visualization display area, whose resolution ideally
matches the display area resolution. Thus, each grid
element covers one pixel and it contains a list of all the
data records that caused its activation. From such informa-
tion, a set of metrics is computed for screen utilization and
overlap and another one is computed on the graphical
primitives used in the visualizations, namely marks, lines,
and polygons. Two types of overlap statistics can be
computed from these metrics, space overlap and object
overlap. Space overlap results from a “crowding of points”
in a certain region of the screen and it can usually be
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minimized by zooming in or by improving screen resolu-
tion. Object overlap results from multiple data items (for
example, two identical data records) being mapped into
overlapping graphical objects and generally cannot be
alleviated by using higher screen resolution. Based on such
metrics, Hoffman produced several visualizations of 10 pub-
licly available data sets used for testing mining algorithms
and “evaluated” their effectiveness to detect outliers,
clusters, or interesting patterns in the data. However, the
experimentation was not extensive and formal enough to be
conclusive regarding the usefulness of such metrics for
a priori selection of the potentially more effective techni-
ques for a particular situation.

3.5 Formal Models of Visualization

Creating visualizations has been dealt with hitherto
essentially as an ad hoc process, without any formal design
methods, engineering, or evaluation, although some pre-
vious attempts at formalizing the visualization process have
been made. The usefulness of such formal models is
threefold. First, they can offer consistent user guidance on
how to tackle the process of creating visualizations from
data. Second, to some extent they can help in fully or
partially automating the process of creating visualizations.
Third, they can provide an objective basis for comparison of
the effectiveness of different visualizations of the same data
to achieve a certain task and also offer insight for the
creation of new techniques.

Most of the previous work on formal models has been
targeted either at presentation graphics [11], [64] or
scientific visualization [13], [14], [76], 42], [73], [74]5,
[30]. Many research efforts on deriving systematic
approaches for generating scientific visualizations have
been conducted as part of attempts to automate the
process and have been strongly influenced by the early
work on APT—A Presentation Tool [64]. Albeit a starting
point, they do not offer much help in analyzing
visualizations of high-dimensional Table Data as the
nature of both data sets and visual data exploration tasks
differ considerably from those of scientific data.

A notable exception is the Data State Reference Model by
Chi and Riedl [21], which uses an operator framework to
characterize different visualization techniques (both scien-
tific and information visualizations). Chi [20] argues that,
although taxonomies of visualization techniques based on
the data domains are useful to end users, they do not help
implementers to understand the design options and the
potential applicability of such techniques. The Data State
Model, depicted in Fig. 7, is used as the basis for a taxonomy
of visualization.

Thismodel breaks the visualizationpipeline into fourData
Stages and a set of Data Transformation Operators. The Data
Stages reflect the nature of the data being operated upon. In
the initialValue Stage, operations are applied on the rawdata;
in theAnalytical Abstraction Stage, operations are onmetadata
or information extracted from the data; in the Visualization
Abstraction Stage, operations are on visual information
displayed on the screen; and, in the View Stage, operations
are applied on the visualization as awhole. Data Transforma-
tionOperators areof three types, and transformdata fromone

stage toanother toproduce thedataabstractionsmanipulated
in each stage along the visualization pipeline. Within each
Data Stage there are also the so-calledWithin Stage Operators
which, unlike the Data Transformation operators, do not
change the underlying data structures they operate upon.

Chi’s operator-centric framework provides a conceptual
model that extracts all the crucial visualization operations
(meaning user interactions) along the visualization pipeline,
enabling the identification of the important artifacts for
design. As such, it can help both end-users and designers to
get better insight into the whole visualization process,
creating an understanding of the situations in which
operators can be applied, how they can be applied, and
what they do. End users can predict the results of their
interaction actions and choose the appropriate operators to
achieve a desired result. Designers can classify and under-
stand the relationships between operators and the composi-
tion of interactions and also identify similarities among
different techniques, with the potential to encourage system
modularization and standardization. The framework pro-
vides an alternative basis for categorization of visualization
techniques and environments as compared to the ap-
proaches discussed in Sections 3.1 and 3.2. A table is
provided in [21] showing how 36 different techniques and
systems fit into this taxonomy.

Hoffman [45] proposes a formalmodel of Table Visualiza-
tions based on an abstraction named Dimensional Anchor
(DA). The DA is an attempt to provide a unified model for
some table visualization techniques (Parallel Coordinates,
Survey Plot, RadViz, and Scatter Plots). It is a construction
with an associated geometry, typically a straight line, and a
set of graphical parameters. In his particular implementation
of the model, Hoffman defines nine meaningful parameters,
such as size of scatter plot points, width of the rectangle in a
survey plot, and so on. The arrangement of a number of DAs
determines the basic layout of the visualization for different
techniques. Hoffman defines a generalized visualization
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Fig. 7. The Data State Reference Model for Information Visualization

(from [20]).
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space and a visualization function for generating a specific
visualization display, which allows a mathematical treat-
ment of the visualizations. His work is a preliminary
attempt at a generalized treatment of visualization
techniques whose major contribution is to point out the
desirability and feasibility of such a generalization and the
creation of “families” of techniques with shared character-
istics. Further research is required to take it to an
appropriate formalization level as the current formaliza-
tion is not sufficiently general to encompass all visualiza-
tions or even all visualizations in the category it
addresses. Although both this and the Data Space Model
by Chi and Riedl are not formal as compared to the
formal model proposed in [42] or the general reference
model aimed at in [70], they illustrate interesting attempts
toward explaining and systemizing the process of produ-
cing visualizations.

4 ONGOING RESEARCH ON VDM

Much of the commercial software marketed as visual DM
systems is highly interactive visualization systems targeted
at data exploration, with varying degrees of support for
data preprocessing, external database connection, and,
eventually, specific DM algorithms. A major problem that
hampers the use of visual data exploration techniques in
DM is that many of the well-established visual techniques
do not scale well with respect to data set size. Goebel and
Grunenwald [33] have surveyed off-the-shelf commercial
and academic DM/KDD tools and, from a total of
42 products reviewed, 23 are said to include resources for
visually conveying the results of an analysis (model
visualization) and 10 products out of these also include
facilities for exploratory data analysis. So, albeit visualiza-
tion does play a major role in supporting DM, it is not yet
widely integrated into commercial software. Most data
analysts use visualization as part of a process sandwich
strategy of interleaving mining and visualization to reach a
goal, an approach commonly identified in many research
works on applications and techniques for visual DM. As
pointed out by Wong [90], usually the analytical mining
techniques themselves do not rely on visualization.

Most of the papers describing visual DM approaches and
applications found in the literature fall into two categories.
Either they use visual data exploration systems or techni-
ques to support a knowledge extraction goal or a specific
mining task or they use visualization to display the results
of a mining algorithm, such as a clustering process or a
classifier, and thus enhance user comprehension of the
results. Examples from the first group are discussed in
Section 4.1 and those from the second group are described
in Section 4.2. A more promising approach, however, is to
create visual representations of models created along the
steps of an analytical mining algorithm (or, more broadly,
along the steps of the whole knowledge extraction process),
with the goal of supporting users in the process of
interacting with the algorithm. Examples that are, to
different extents, illustrative of such an approach are
described in Section 4.3.

4.1 Visual Data Exploration for Mining

Mining tasks usually demand techniques capable of
handling large amounts of multidimensional data, often in

the format of Data Tables or relational databases. Parallel
coordinates and scatter plots are much exploited in this
context, as shown by the examples drawn from different
application areas. Also, interaction mechanisms for filter-
ing, querying, and selecting data are typically required for
handling larger data sets. This point is strongly emphasized
by Inselberg [49] in a paper illustrating the strength of
parallel coordinates integrated with effective interactive
query mechanisms for providing visual cues in a discovery
process. The papers discussed in this section illustrate
applications of visual data exploration tools to real
problems in different domains.

Symanzik et al. [84] describe how the statistical graphics
package XGobi has been used for visual mining of data
describing the response of neuron cells to electrical stimuli.
They simulated physiological response from three-dimen-
sional neuroanatomical data from which morphological
measurements are obtained, with the goal of exploring the
neuromorphological effects on the electrical response of cells.
Using the brushing-tour strategy and linked brushing in
scatter plots and dot plots, they identified apparent correla-
tion of electrophysiological behavior and certain morpho-
metric parameters that characterize cell morphology.

Hoffman et al. [46] provide a case study describing how
high-dimensional visual data exploration techniques such
as RadViz, Parallel Coordinates, and Sammon Plots [75]
have been used in combination with rule-based classifiers
and neural networks to classify DNA sequences. Cvek et al.
[24] used analytic and visualization techniques for mining
yeast functional genomics data sets. They compare several
classification and clustering techniques on both data sets,
showing how the application of Parallel Coordinates, Circle
Segments [5], and RadViz helped gain insight into the data,
as well as to visually compare and contrast the analytical
techniques. These and other papers and Web sites6

describing mining and visualization tools applied to
Bioinformatics [40], [71] clearly show this domain as one
that poses many challenges to researchers working in
mining and visualization.

In an application to e-commerce, Lee and Podlaseck [61]
analyze clickstreams, i.e., the series of links followed by
customers of an electronic commerce site. They describe an
interactive e-commerce visualization system for web mer-
chandising analysis that supports users in interpreting and
exploring clickstream data of online stores. Their system
includes facilities for zooming, filtering, color coding,
dynamic querying, and data sampling, in addition to
parallel coordinates and scatter plot visualizations. They
describe an empirical case study with clickstream data from
an online retailer in which the visualizations operate on a
set of metrics defined from online merchandising analysis.
Parallel coordinates and scatter plots are used, respectively,
to analyze user sessions and session data integrated with
basket placements and transactions extracted from the
e-commerce server.

Some authors actually propose new visual techniques
targeted at supporting particular DM tasks. The work by
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Keim et al. [57] was one of the first to describe a database
query interface based on a visualization technique designed
to provide users with visual feedback on their queries.
Cadez et al. [16] describe an approach for exploratory
analysis and visualization of the dynamic behavior of
visitors of a particular Web site. The application of mining
to data collected from web server logs is an important
research trend [18], [82], [65], [80], due to the importance of
understanding user behavior in the context of digital
environments in general and the web in particular. Cadez
et al. [16] focus on clustering users with similar behavior
and then visualizing the behavior of users within a cluster.
Their visualization tool uses multiple windows to display
user data regarding the multiple clusters. Sequences of rows
within a window (see Fig. 8) show the paths of single users
through the site, each path being color coded by category
(categories reflect the different types of service provided by
the one particular site analyzed). The tool can help site
administrators in identifying navigation patterns that may
actually suggest actions to be taken to improve the site. In
addition to the detailed view of each cluster, the tool also
provides summary information about clusters.

Independence Diagrams [10] is a technique aimed at the
recognition of complex dependencies between data attri-
butes, a common DM task. It displays dependencies
between two data attributes, providing an alternative to
scatter plot diagrams that is insensitive to data skew and
outliers. The technique works by dividing the two attributes
of interest independently into slices (i.e., rows or columns)
such that each slice has roughly the same number of data
items and, additionally, splitting slices having a large
extension. Each intersection of row and column defines a
2D bucket for which a count of the data items contained is
stored. This grid of slices/buckets is mapped to the screen
so that the width of a cell on the screen is proportional to
the number of items in its corresponding bucket and the
brightness of the cell is proportional to the number of data
items in its corresponding slice, as illustrated in Fig. 9. The
authors state that, after some training, even nonexpert users
can make quantitative judgements based on the data

displays. The limitation is that only pairs of attributes can
be analyzed with this technique.

Another basic task in data analysis and pattern recogni-
tion is classification and Inselberg and Avidan [48] describe
a geometrically motivated classification algorithm that
exploits properties of the representation of multidimen-
sional objects in the Parallel Coordinates visualization
technique. Their classifier has low polynomial worst-case
complexity in the number of variables and data set size,
thus allowing dynamic derivation of rules in near real time.
They test their classifier on three classification benchmark
data sets, with very good results as far as test error rates are
concerned. Dy and Brodley [25] tackle the feature selection
problem, a step that usually precedes clustering to identify
a feature subset that best discovers data clusters. They
introduce a visual feature subset selection approach that
incorporates visualization techniques, clustering, and user
interaction to guide the feature subset search by a human.
This is an alternative to automated feature selection, which
may be a difficult task when coupled with unsupervised
learning. Their approach relies on scatter plots for visuali-
zation: They use Linear Discriminant Analysis to project the
data to 2D and display the data and the different cluster
structures as 2D scatter plots. The approach is illustrated on
a lung image data set.

4.2 Visualization of Mining Models

Another typical use of visualization in mining resides in
visually conveying the results of a mining task, such as
clustering or classification, to enhance user interpretation.
One such example is given by the BLOB and H-BLOB
clustering algorithms [35], [81], which use implicit surfaces
for visualizing data clusters. The authors point out that the
majority of algorithms and systems treating cluster visua-
lization are limited to drawing a simple shape for each data
object, with the actual clustering being done by the user’s
perceptual system. Their previous work on BLOB [35] was
an attempt to explicitly represent clusters by exhibiting
them in an enclosing surface, but this and other previous
work was restricted to visualizing results of partitioning
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Fig. 8. Display of data from a site in the WebCANVAS system. Each window corresponds to a cluster and each row in a window depicts the path of a

single user through the site whose pages have been categorized by subject. Each path is color coded by category (color coding shown on the right).

From [16].
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cluster algorithms, rather than hierarchical ones. H-BLOB
discovers and visualizes hierarchical clustering structures
(cluster trees) in a two-staged approach. In the first one,
called the analytical clustering step, an agglomerative
hierarchical algorithm computes a cluster-tree by partition-
ing data objects into a nested sequence of subsets. The
second stage involves the computation of a single enclosing
shape for each cluster in combination with the visualization
process. The enclosing shape for the cluster is a BLOB
implicit surface that approximates the outline of their
included data objects as closely as possible. A separate
surrounding surface is computed for each cluster at each
hierarchy level. Fig. 10 (from [81]) illustrates the approach
on a set of 100 single objects retrieved from an Intranet
document query.

The Self-Organizing Map (SOM) is a neural network
algorithm based on unsupervised learning that has been
applied in DM and multidimensional exploratory data
analysis in several domains [87]. The SOM is a vector
quantization and projection method that implements an
ordered dimensionality reducing mapping which follows
the probability density function of the training data. A
major characteristic of the SOM is that it can be integrated
with different visualization techniques. Vesanto [86], [87]
provides an overview of techniques for visualization of
SOMs and also elaborates on how the different visualiza-
tions can be linked to enhance interpretation capabilities.

Mineset [15] is a popular commercial DM/KDD tool that
includes several visualization resources, both for explora-
tory data analysis and visualization of mining results.
Analytical mining algorithms are coupled with visualiza-
tion tools to support the user’s understanding. It includes,
for example, an evidence visualizer to display and manip-
ulate Simple Bayes Models [7] and a Tree Visualizer to
display decision trees generated by a decision tree classifier.
Kohavi and Sommerfield [58] also describe a decision table
classifier targeted at business users that uses an interactive
decision table visualizer.

Han and Cercone [36] also argue in favor of using visual

representations along the KDD process to enhance user

participation in the discovery process. They describe CViz,

an interactive system for visualizing the process of

classification rule induction. The original data is visualized

using parallel coordinates and the user can see the results of

data reduction and attribute discretization on the parallel

coordinate representation. The discovered classification

rules are also displayed on the parallel coordinates plots

as rule polygons, colored strips as depicted in Fig. 11, where

a polygon covers the area that connects the (discretized)

attribute values that define particular rules. Rule accuracy

and quality may be coded by coloring the rule polygon and

user interaction is supported to allow focusing on subsets of

interesting rules.
Association rules are a prime example of patterns

discovered with DM and understanding them is not always

simple because resulting sets are often large and the rules

are not self-explanatory. The goal of Hofmann et al. [47] is

to help the user to understand the underlying structure of

association rules by visualizing the contingency tables that

originate them. Contingency tables consist basically of a

table of counts in which each count denotes how often a

given combination of attribute values occurs in a given table

database. An example is shown in Table 1 (a database with

categorical attribute values is assumed). The contingency

table has a cell for each combination of attribute values of

the participating attributes.
Mosaic plots were introduced [39] as a graphical

counterpart of multivariate contingency tables. In the plots,

each table cell is depicted as a tile (or bin). By default, the

tile’s size is directly proportional to the number of data

items in a cell. The construction algorithm determines the

arrangement and splitting of tiles based on the data and
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Fig. 9. An independence diagram for visualizing dependencies between

two attributes (legend on the right). The brightness of a cell in the two-

dimensional grid is proportional to the density of the corresponding data

points. From [10].
Fig. 10. A hierarchical clustering of document objects with 20 clusters,
displayed at different levels of the hierarchical cluster tree. At the top
level, one observes the whole set as a single cluster, the following
images show lower levels of the hierarchical tree, with the lowest one,
with 20 clusters shown at the the bottom right. From [81].
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user supplied information. An example Mosaic Plot is

depicted in Fig. 12.
One way to visualize an association rule X ! Y is to

combine all attributes involved in the lefthand side selection

X as explanatory variables and to draw them within one

Mosaic plot and visualize the response Y by highlighting

the corresponding categories in a bar chart. The approach is

illustrated in Fig. 13, which shows a Mosaic Plot of all

possible association rules involving three attributes, Ax1 ,

Ax2 , and Ay. The first attribute has two possible values and

the second one has four. The second bin in the top row

(Ax1 ¼ x11 ^Ax2 ¼ x22) exemplifies a rule with very high

confidence (the highlighting almost fills the bin entirely),

but with relatively small support (the bin itself and,

therefore, the amount of highlighting, is not very large).

The first bin in the bottom row (Ax1 ¼ x12 ^Ax2 ¼ x21)

represents the rule with the highest support (this bin

contains the largest amount of highlighting), but low

confidence (small highlighting area). By providing the

context of rules in Mosaic plots, the user can better assess

their quality and, moreover, understand the relationship

among association rules.

4.3 Visual Data Mining

Wong [90] argues that, rather than using visual data
exploration and analytical mining algorithms as separate
tools, a stronger DM strategy would be to tightly couple the
visualizations and analytical processes into one DM tool.
Many mining techniques involve different mathematical
steps that require user intervention. Some of these can be
quite complex and visualization can support the decision
processes involved in making such interventions. From this
viewpoint, a Visual Data Mining technique is not just a
visualization technique being applied to exploit data in
some phases of an analytical mining process, but a
DM algorithm in which visualization plays a major role.
Although current data exploration systems will certainly
have a role to play, future visual DM systems are likely to
change to accommodate this new paradigm.

A work that illustrates this tight coupling of visualization
resources into a mining technique is by Hinneburg et al.
[44]. They describe an effective approach for clustering
high-dimensional data combining an advanced clustering
algorithm, called OptiGrid, with visualization methods that
support the interactive clustering process. The approach is a
recursive one: In each step, the actual data set is partitioned
into a number of subsets, if possible, and then the subsets
containing at least one cluster are dealt with recursively.
The partitioning uses a multidimensional grid defined by a
number of separators chosen in regions with minimal point
density. The recursion stops for a subset when no good
separators can be found. Choosing the contracting projec-
tions and specifying the separators for building the multi-
dimensional grid, however, are two difficult problems that
cannot be done fully automatically because of the diverse
cluster characteristics of different data sets. This is where
visualization can help and the authors have developed new
techniques that represent the important features of a large
number of projections. These techniques help identify the
most interesting projections and select the best separators,
thus improving the effectiveness of the clustering process
and allowing users to find clusters otherwise missed.

Hellerstein et al. [38] also explore visualization and user
interface resources to improve user control over the data
discovery process, although the use of visualization and
visual widgets is just one aspect of their work. A KDD
process comprises several steps and demands considerable
user input for issuing queries and/or tuning algorithm-
specific parameters, such as support and confidence for
association rule mining, thresholds for clustering, training
sets for classification, and so on. The authors argue that
making the discovery process visible to the user along its
steps—and not only at a specific stage—makes it easier to
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Fig. 11. Visualization in the CViz system of discovered rules for the UCI
Iris flower data set, which consists of 150 data items containing four
numeric and one categorical attribute (the flower’s class) which may
assume three different values. Each discovered rule is represented as a
polygonal region. The visualization shows all eight rules learned from the
Iris data, including three rules for class 3, three rules for class 2, and one
rule for class 1. The user can interact with the visualization to see only
the rules on a particular class and/or within certain accuracy and quality
thresholds. From [36].

TABLE 1
Contingency Table for Loan Data with Three Attributes (Job, Own-House, and Loan)

The counts denote the frequency of the given combination of attribute values in the database. From [47].
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take informed decisions regarding the guidance and

termination of the process. For example, the ability of

dynamically setting confidence levels for a time-consuming

association rule mining algorithm, as it works on the data,

would be highly desirable, rather than setting it in the

beginning of the process and waiting until it ends to find

out that the choice was inadequate.
Their work fits into an overall project for investigating

mechanisms to improve human-computer interaction dur-

ing data analysis of massive data sets. In this context, they

are investigating user interface widgets for online query

formulation and refinement and interactive data visualiza-

tion algorithms. Their online data visualization technique,

named Clouds, works by rendering records as they are

fetched from the database, but simultaneously using those

records to generate an overlay of shaded regions of colors

(“clouds”) that estimate the missing data. This way the user

can get a feeling of what the overall picture will be and

interact with this transient representation, seeing it improve

gradually as more records are processed.
Ankerst et al. [3], [4] also tackle the users inability to

intervene on a running DM algorithm or get intermediate

results, in the specific context of a classification task. They

point out that current classification algorithms provide very

limited forms of user guidance and interaction. Users

typically select the data set and set some parameter values,
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TABLE 2
Table of Visualization Techniques
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which usually are very difficult to determine a priori and
then have to wait for the final results. To support better user
involvement, their approach to interactive classifier deci-
sion tree construction relies heavily on visualization of both
the data set and the decision tree. An added benefit of
greater user involvement in the decision tree construction is
the insight gained into the data.

They introduced PBC—Perception Based Classification
[4], an interactive decision tree classifier that allows users to
interact with a multidimensional visualization technique to
place split points on numeric attributes for constructing a
univariate decision tree. A limitation, however, was that
most of the decision tree construction process was carried
out manually by the user, who had to select the split
attributes and split points. A second version [3] brings
several improvements. First, both numerical and categorical
attributes are supported, thus increasing the range of
possible applications. Second, they introduce an improved
technique for visualizing the decision trees that provide
greater insight into their construction process. They also
integrate a decision tree construction algorithm supporting
a range of user-computer cooperation levels, ranging from
completely manual over combined to completely automatic
classification. Fig. 14 shows a screen shot of the

PBC prototype system, illustrating a stage of the decision
tree construction process. Visualization of the training data
is based on a modified Circle Segments technique, with
classes mapped to colors. In the version of PBC depicted in
the figure, the decision tree is visualized in a standard way
that is not related to the data visualization. The later version
[3] introduces more effective visualizations of both the
decision tree and the training data.

A similar approach toward classification creates an
interactive visual representation of the decision tree to
increase user insight on the process [89]. Both works show
concern with comparing the benefits of the visual inter-
active approach over the automatic ones, having conducted
initial experimental evaluations. Ware et al. [89] concluded
that success of the visual approach hinges on the domain
and the users’ familiarity with the data. Their users could
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Fig. 12. Mosaic plot of the three attributes of the loan data shown in

Table 1 (from [47]).
Fig. 13. Mosaic plot of attributes named X1 and X2 (right). The bar chart
on the left shows another attribute, Y. The visualization shows an
overview of all possible association rules involving the three attributes
X1, X2, and Y. The category Y ¼ y2 has been selected; highlighting
shows up in the mosaic in color. The second bin in the top row (X1 ¼ x11
and X2 ¼ x22) corresponds to an association rule with very high
confidence (the highlight area almost fills the bin), but small support
(as the bin itself is small). The first bin in the bottom row (X1 ¼ x12 and
X2 ¼ x21) represents the rule with the highest support (its bin contains
the largest highlighted area), yet the confidence of the rule is low (the
highlighted area fills the bin only to one fifth, approximately). From [47].

Fig. 14. A screenshot of the PBC visual classification system. The larger subwindow (top left) depicts the visualization of the training data set using a

variation of the Circle Segments technique. The user interacts with the visualization and auxiliary windows (at the bottom) to interactively construct

the decision tree by visually selecting a splitting attribute and an arbitrary number of split points. The current state of the decision tree under

construction is shown in the top right subwindow. From [4].
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successfully generate accurate classifiers when few attri-
butes could support good predictions, whereas domains
with many high-order attributes favored standard machine
learning techniques.

Ribarsky et al. [68] suggest a mining approach which
emphasizes user interaction, calling it “discovery visualiza-
tion.” Such an approach differs from DM in that it centers
on the users, with responsiveness matched to maximize
their capabilities. In particular, it relies heavily on 4D (time-
dependent) visual display and interaction, which requires
close attention to the organization of data for both graphical
representation and fast, accurate selection via the visualiza-
tion. They describe a fast clustering algorithm that fits into
this approach, supporting data exploration by continuous
adjustment and feedback via interaction with the visualiza-
tion. Their algorithm provides fast clustering, is scalable to
very large data sets, and extends beyond direct spatial
clustering to the distribution of other variables. It uses an
initial binsort to scale the data to a more manageable size
and initially considers the entire (binsorted) data space as
one big cluster. Then, the data set is iteratively subdivided
until a user-specified number of clusters are found or until
it makes no sense to subdivide any further. This approach
allows displaying a general overview of the distribution of
the data very quickly from which the user can select regions
of interest for further exploration. It is illustrated with two
applications involving large collections of data.

The authors argue that a complete visual DM approach
needs a framework to support a highly interactive explora-
tion and discovery process for data of any scale, in addition
to supporting fast queries and collection of data. They
designed a hierarchical paging mechanism for visual DM,
which supports rapid display and provides the data in the
appropriate context. The paging structure was built as a
height-balanced feature tree in which the clusters define the
features. The hierarchy permits navigable visualizations
where users can zoom in, see detail in context, or back up to
gain an overview. Only the top structure of the tree and
those sections being currently explored reside in the main
memory, thus ensuring scalability to large amounts of data.
A “skeleton tree” is kept in memory with a sufficient set of
linking properties so that the next section of the tree or
associated data can be retrieved, based on the user
controlled visual exploration process.

5 CONCLUSIONS

We have surveyed research on the use of Information

Visualization in applications involving mining of large table

databases, as part of an ongoing effort to build a Web

accessible resource providing information about visualiza-

tion and DM techniques, tools, data sets, and research

projects [66]. More than offering resources for interactive

visual exploration of databases, visual mapping techniques

are now being used to enhance user interpretation of

mining tasks and also as an integrated part of analytical

DM algorithms. Many mining techniques require user

intervention at different stages and visualization is starting

to be used to support the decision processes involved in

making such interventions. This indicates a future scenario

in which the term “Visual DM technique” denotes more

than the traditional application of a visualization technique

to support nonanalytic stages of a KDD process, but

analytic DM algorithms in which visualization plays a

major role. Such a scenario has the potential of greatly

increasing the user participation in the KDD process as a

whole, as well as the end user’s overall understanding of

the process. To make it feasible will certainly require a

stronger interaction between the information visualization

and DM communities. Devising intuitive visual representa-

tions for existing and novel DM algorithms, providing real

time interaction and mapping techniques that are scalable

to the huge size of many current databases are some of the

research challenges that remain to be addressed.

ACKNOWLEDGMENTS

M.C.F. de Oliveira’s research at IVPR was supported by the

State of São Paulo Research Funding Agency (FAPESP),

Grant #2000/03397-9. She also acknowledges the support of

the Brazilian Research Funding Agency (CNPq), Grant

#521931/97-5. She was on leave from ICMC-Instituto de
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