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SOME INTUITIONISTIC FUZZY CONGRUENCES

K. HUR, S. Y. JANG AND H. W. KANG

Abstract. First, we introduce the concept of intuitionistic fuzzy group con-

gruence and we obtain the characterizations of intuitionistic fuzzy group con-

gruences on an inverse semigroup and a T ∗-pure semigroup, respectively. Also,
we study some properties of intuitionistic fuzzy group congruence. Next, we

introduce the notion of intuitionistic fuzzy semilattice congruence and we give
the characterization of intuitionistic fuzzy semilattice congruence on a T ∗-pure

semigroup. Finally, we introduce the concept of intuitionistic fuzzy normal

congruence and we prove that (IFNC(ES),∩,∨) is a complete lattice. And
we find the greatest intuitionistic fuzzy normal congruence containing an in-

tuitionistic fuzzy congruence on ES .

1. Introduction

The concept of a fuzzy set was introduced by Zadeh [28] in 1965. Since then, there
has been a tremendous interest in the subject due to its diverse applications ranging
from engineering and computer science to social behavior studies. In particular,
some researchers [9, 22-24, 26, 27] applied the notion of fuzzy sets to congruences.

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was
introduced by Atanassov [1] in 1983. After that time, several researchers [3, 5-8,
10, 11, 13, 14, 16, 17, 19] applied the notion of intuitionistic fuzzy sets to relation,
algebra, topology and topological group. In particular, Hur and his colleagues
[15, 18] introduce the notion of intuitionistic fuzzy congruences on a lattice and a
semigroup, and investigate some of their properties, respectively.

In this paper, first, we introduce the concept of intuitionistic fuzzy group con-
gruence and we obtain the characterizations of intuitionistic fuzzy group congru-
ences on an inverse semigroup and a T ∗-pure semigroup, respectively. Next, we
introduce the notion of intuitionistic fuzzy semilattice congruence and we give the
characterization of intuitionistic fuzzy semilattice congruence on a T ∗-pure semi-
group. Finally, we introduce the concept of intuitionistic fuzzy normal congruence
and we prove that (IFNC(ES),∩,∨) is a complete lattice.

2. Preliminaries

In this section, we list some basic concepts and well-known results which are
needed in the later sections.
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For sets X, Y and Z, f = (f1, f2) : X → Y × Z is called a complex mapping if
f1 : X → Y and f2 : X → Z are mappings.

Throughout this paper, we will denote the unit interval [0, 1] as I. And for a
lattice, refer to [4]. For any ordinary relation R on a set X, we will denote the
characteristic function of R as χR.

Definition 2.1. [2, 6] Let X be a nonempty set. A complex mapping A =
(µA, νA) : X → I × I is called an intuitionistic fuzzy set (in short, IFS) in X
if µA(x) + νA(x) ≤ 1 for each x ∈ X, where the mapping µA : X → I and
νA : X → I denote the degree of membership (namely µA(x)) and the degree of
nonmembership (namely νA(x)) of each x ∈ X to A, respectively. In particular, 0∼
and 1∼ denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole
set in X defined by 0∼(x) = (0, 1) and 1∼(x) = (1, 0) for each x ∈ X, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.2. [2] Let X be a nonempty set and let A = (µA, νA) and B =
(µB , νB) be IFSs on X. Then:
(1) A ⊂ B iff µA ≤ µB and νA ≥ νB ,
(2) A = B iff A ⊂ B and B ⊂ A,
(3) Ac = (νA, µA),
(4) A ∩B = (µA ∧ µB , νA ∨ νB),
(5) A ∪B = (µA ∨ µB , νA ∧ νB),
(6) [ ]A = (µA, 1− µA), < > A = (1− νA, νA).

Definition 2.3. [7] Let {Ai}i∈J be an arbitrary family of IFSs in X, where Ai =
(µAi , νAi) for each i ∈ J . Then:
(1)

⋂
Ai = (

∧
µAi

,
∨

νAi
),

(2)
⋃

Ai = (
∨

µAi
,
∧

νAi
).

Definition 2.4. [6] Let X be a set. Then a complex mapping R = (µR, νR) :
X × X → I × I is called an intuitionistic fuzzy relation (in short, IFR) on X if
µR(x, y) + νR(x, y) ≤ 1 for each (x, y) ∈ X ×X, i.e., R ∈ IFS (X ×X).

We will denote the set of all IFRs on a set X as IFR(X).

Definition 2.5. [6, 10] Let X be a set and let R,Q ∈ IFR(X). Then the compo-
sition of R and Q, Q ◦R, is defined as follows : for any x, y ∈ X,

µQ◦R(x, y) =
∨

z∈X [µR(x, z) ∧ µQ(z, y)]
and
νQ◦R(x, y) =

∧
z∈X [νR(x, z) ∨ νQ(z, y)] .

Definition 2.6. [6, 10] An Intutionistic fuzzy Relation R on a set X is called
an intutionsitic fuzzy equivalence relation (in short, IFER) on X if it satisfies the
following conditions:
(i) it is intutionsitic fuzzy reflexive, i.e.,R(x, x) = (1, 0) for each x ∈ X,
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(ii) it is intutionsitic fuzzy symmetric, i.e.,R(x, y) = R(y, x) for any x, y ∈ X,
(iii) it is intutionsitic fuzzy transitive, i.e., R ◦R ⊂ R.

We will denote the set of all IFERs on X as IFE(X).
Let R be an intuitionistic fuzzy equivalence relation on a set X and let a ∈ X.

We define a complex mapping Ra : X → I × I as follows : for each x ∈ X

Ra(x) = R(a, x).

Then clearly Ra ∈ IFS(X). The intuitionistic fuzzy set Ra in X is called an
intuitionistic fuzzy equivalence class of R containing a ∈ X. The set {Ra : a ∈ X}
is called the intuitionistic fuzzy quotient set of X by R and denoted by X/R.
Result 2.A. [19, Theorem 2.15] Let R be an intuitionistic fuzzy equivalence relation
on a set X. Then the followings hold :

(1) Ra = Rb if and only if R(a, b) = (1, 0) for any a, b ∈ X.
(2) R(a, b) = (0, 1) if and only if Ra ∩Rb = 0∼ for any a, b ∈ X.
(3)

⋃
a∈X Ra = 1∼.

(4) There exists the surjection p : X → X/R defined by p(x) = Rx for each
x ∈ X.

Definition 2.7. [19] Let X be a set and let R ∈ IFR(X). Then the intuitionistic
fuzzy transitive closure of R, denoted by R∞, is defined as follows :

R∞ =
⋃
n∈N

Rn, where Rn = R ◦R ◦ · · · ◦R(n factors).

Result 2.B. [19, Proposition 3.7] Let X be a set and let R,Q ∈ IFE(X). We define
R∨Q as follows : R∨Q = (R∪Q)∞, i.e., R∨Q =

⋃
n∈N(R∪Q)n. Then R∨Q ∈

IFE(X).

Definition 2.8. [18] An IFR R on a groupoid S is said to be:
(1) intuitionistic fuzzy left compatible if µR(x, y) ≤ µR(zx, zy) and νR(x, y) ≥
νR(zx, zy), for any x, y, z ∈ S,
(2) intuitionistic fuzzy right compatible if µR(x, y) ≤ µR(xz, yz) and νR(x, y) ≥
νR(xz, yz), for any x, y, z ∈ S,
(3) intuitionistic fuzzy compatible if µR(x, y)∧µR(z, t) ≤ µR(xz, yt) and νR(x, y)∨
νR(z, t) ≥ νR(xz, yt), for any x, y, z, t ∈ S.

Definition 2.9. [18] An IFER R on a groupoid S is called an:
(1) intuitionistic fuzzy left congruence (in short, IFLC) if it is intuitionistic fuzzy
left compatible,
(2) intuitionistic fuzzy right congruence (in short, IFRC) if it is intuitionistic fuzzy
right compatible,
(3) intuitionistic fuzzy congruence (in short, IFC) if it is intuitionistic fuzzy com-
patible.
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We will denote the set of all IFCs [resp. IFLCs and IFRCs] on a groupoid S as
IFC(S) [resp. IFLC(S) and IFRC(S)].

Result 2.C. [19, Theorem 2.8] Let R be relation on a groupoid S. Then R ∈ C(S)
if and only if (χR, χRc) ∈ IFC(S).

Let R be an intuitionistic fuzzy congruence on a semigroup S and let a ∈ S. The
intuitionistic fuzzy set Ra in S is called an intuitionistic fuzzy congruence class of
R containing a ∈ S and we will denote the set of all intuitionistic fuzzy congruence
classes of R as S/R.

Result 2.D. [19, Proposition 2.21 and Theorem 2.22] Let R be an intuitionistic
fuzzy congruence on a semigroup S. We define the binary operation ∗ on S/R as
follows:for any a, b ∈ S,

Ra ∗Rb = Rab.
Then ∗ is well-defined. Moreover, (S/R, ∗) is a semigroup.

Result 2.E. [19, Corollary 2.22-1] Let R be an intuitionistic fuzzy congruence on
an inverse semigroup S. Then (S/R, ∗) is an inverse semigroup.

3. Intuitionistic Fuzzy Group Congruences

A congruence R on an inverse semigroup S (or indeed on any semigroup) is called
a group congruence [12] if S/R is a group.

Definition 3.1. An intuitionistic fuzzy congruence R on a semigroup S is called
an intuitionistic fuzzy group congruence (in short, IFGC) if (S/R, ∗) is a group.

We will denote the set of all IFGCs on S as IFGC(S).

It is clear that if S is an inverse semigroup, then S/R is an inverse semigroup by
Result 1.E. Since a group is an inverse semigroup having only one idempotent , R
is an IFGC if and only if Re= Rf for any e, f ∈ ES , where ES denotes the set of
all idempotents of a semigroup S.

Result 3.A. [12, Theorem V.3.1] If S is an inverse semigroup with semilattice of
idempotents ES, then the relation

δ = {(a, b) ∈ S × S : ea = eb for some e ∈ ES}

is the least group congruence on S.

The following is the immediate result of Result 3.A and Result 2.C.

Proposition 3.2. Let S be an inverse semigroup. Then (χδ, χδc) ∈ IFGC(S).
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Theorem 3.3. Let S be an inverse semigroup and let R be an intuitionistic fuzzy
congruence on S. Then R ∈ IFGC(S) if and only if δ ⊂ R−1((1, 0)).

Proof. (⇒) Suppose R ∈ IFGC(S) and let (a, b) ∈ H. Then there exists an e ∈ ES

such that ea = eb. By the hypothesis, (S/R, ∗) is a group. Then, we have

Ra = Re ∗Ra = Rea = Reb = Re ∗Rb = Rb.

By Result 2.A(1), R(a, b) = (1, 0). Thus (a, b) ∈ R−1((1, 0)). Hence δ ⊂ R−1((1, 0)).
(⇐) Suppose δ ⊂ R−1((1, 0)). Let e, f ∈ ES . Since S is an inverse semigroup,

ES is commutative (See [12, Theorem V.1.2]). Then efe ∈ ES and (efe)e=(efe)f .
Thus (e, f) ∈ δ. Since δ ⊂ R−1((1, 0)), (e, f) ∈ R−1((1, 0)), i.e, Re = Rf . So S/R
is a group. Hence R ∈ IFGC(S). This completes the proof. �

Proposition 3.4. Let S be a regular semigroup and let R ∈ IFC(S). If Ra is
an idempotent element of S/R, then there exists an idempotent e ∈ S such that
Re = Ra.

Proof. Suppose Ra is an idempotent element of S/R. Then Ra ∗Ra = Ra2 = Ra.
By Result 2.A(1), R(a2, a) = (1, 0). Since S is regular and a2 ∈ S, there exists an
x ∈ S such that a2 = a2xa2 and x = xa2x. Let e = axa. Then e2 = (axa)(axa) =
(axa2)xa = axa = e. Thus e is an idempotent element of S. So,

µR(e, a2) = µR(axa, a2xa2) ≥ µR(a, a2) ∧ µR(xa, xa2)
≥ µR(a, a2) ∧ µR(x, x) ∧ µR(a, a2)
= 1 (Since µR(x, x) = 1)

and

νR(e, a2) = νR(axa, a2xa2) ≤ νR(a, a2) ∨ νR(xa, xa2)
≤ νR(a, a2) ∨ νR(x, x) ∨ νR(a, a2) = 0.

Thus R(e, a2) = (1, 0). On the other hand,

µR(e, a) ≥
∨
z∈S

[µR(e, z) ∧ µR(z, a)] ≥ µR(e, a2) ∧ µR(a2, a) = 1

and

νR(e, a2) ≤
∧
z∈S

[νR(e, z) ∨ νR(z, a)] ≤ νR(e, a2) ∨ νR(a2, a) = 0.

So R(e, a) = (1, 0). Hence Re = Ra. This completes the proof. �

Let S be a semigroup. A nonempty subset A of S is called a subsemigroup of
S if A2 ⊂ A, and is called a bi-ideal of S if ASA ⊂ A. A bi-ideal A of S is said
to be T-pure if A ∩ xSy = xAy for any x, y ∈ S. S is said to be T ∗-pure if every
bi-ideal of S is T -pure. It is well-known[20, Theorem 2.3] that S is T ∗-pure if and
only if S3 is a semilattice of groups. Thus note that the set ES of idempotents of
a T ∗-pure semigroup S is nonempty.

Result 3.B. [21, Theorem 2.6] The set ES of all idempotents of a T ∗-pure semi-
group S is a semilattice.
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Proposition 3.5. Let R be an IFC on a T ∗-pure semigroup S and let a ∈ S. If
Ra is an idempotent of S/R, then there exists e ∈ ES such that Ra = Re.

Proof. Suppose Ra is an idempotent of S/R. Then

Ra = Ra ∗Ra = Ra ∗Ra ∗Ra ∗Ra = Ra4.

Since aSa is a bi-ideal of S and S is T ∗-pure,

a4 ∈ aSa = aSa ∩ aSa = a2Sa2 = a4Sa4.

Thus a4 is a regular element of S. Let x be an inverse in S of a4. Then a4 = a4xa4

and x = xa4x. Let e = a2xa2. Then

e2 = (a2xa2)(a2xa2) = a2(xa4x)a2 = a2xa2 = e.

Thus e ∈ ES . So

Re = Ra2xa2

= Ra2 ∗Rx ∗Ra2 = (Ra)2 ∗Rx ∗ (Ra)2

= (Ra)4 ∗Rx ∗ (Ra)4 = Ra4 ∗Rx ∗Ra4

= Ra4xa4 = Ra4 = Ra.

This complete the proof. �

Let R be a congruence on a semigroup S. Then it is clear that R∗ = (χR, χRc)
is an IFC on S and S/R∗ is a semigroup by Result 2.D. Moreover, we can easily
prove that S/R and S/R∗ are isomorphic. Hence, we have the following result.

Proposition 3.6. Let S be a T ∗-pure semigroup. Then (χδ, χδc) ∈ IFGC(S).

Proposition 3.7. Let S be a T ∗-pure semigroup. If R ∈ IFC(S) such that (χδ, χδc) ⊂
R, then R ∈ IFGC(S).

Proof. It is clear that (S/R, ∗) is a semigroup by Result 2.D. Let e, f ∈ ES . Then
clearly (e, f) ∈ δ. Thus

µR(e, f) ≥ χδ(e, f) = 1 and νR(e, f) ≤ χδc(e, f) = 0.

So R(e, f) = (1, 0). By Result 2.A(1), Re = Rf . Let e ∈ ES and let a ∈ S.
Then e(ea) = (ee)a = ea. Thus (ea, a) ∈ δ. So

µR(ea, a) ≥ χδ(ea, e) = 1 and νR(ea, a) ≤ χδc(ea, e) = 0.

Thus R(ea, a) = (1, 0). By Result 2.A(1), Rea = Ra. So Re ∗Ra = Ra. Hence Re

is an identity of S/R. Since aSa is a bi-ideal of S and S is T ∗-pure,

a3 ∈ aSa = aSa ∩ a2Sa2 = a3Sa3.

Then there exists an x ∈ S such that a3 = a3xa3. Since xa3 ∈ ES and Re is an
idempotent of S/R, by Proposition 3.5, Rxa3 = Re. Thus

Rxa2 ∗Ra = Rxa3 = Re.

So Rxa2 is an inverse of Ra in S/R. Hence S/R is a group. Therefore R ∈ IFGC(S).
This completes the proof. �
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Theorem 3.8. Let R be an IFC on a T ∗-pure semigroup S. Then the following
are equivalent:
(1) R ∈ IFGC(S),
(2) If (a, b) ∈ δ, then Ra = Rb.

Proof. (1) ⇒ (2) : Suppose R is an IFGC on S. Let a, b ∈ S such that (a, b) ∈ δ.
Then, by Result 3.A, there exists an e ∈ ES such that ea = eb. Since R is an IFGC
on S, Re is an identity of S/R. Then

Ra = Re ∗Ra = Rea = Reb = Re ∗Rb = Rb.

Hence Ra = Rb.
(2) ⇒ (1) : Suppose the condition (2) holds. Let a, b ∈ S. Suppose there exists

an e ∈ ES such that ea = eb. Then (a, b) ∈ δ. Thus χδ(a, b) = 1 and χδc(a, b) = 0.
Moreover, by the hypothess, Ra = Rb. Then, by Result 2.A(1), R(a, b) = (1, 0).
Thus (χδ, χδc) = R. Suppose there exists no e ∈ ES such that ea = eb. Then
(a, b) /∈ δ. Thus χδ(a, b) = 0 and χδc(a, b) = 1. So χδ(a, b) ≤ µR(a, b) and χδc(a, b) ≥
νR(a, b). Hence, in all, (χδ, χδc) ⊂ R. Therefore, by Proposition 3.7, R ∈ IFGC(S).
This completes the proof. �

4. Intuitionistic fuzzy semilattice congruences

A congruence R on a semigroup S is called a semilattice congruence if S/R is a
semilattice. An IFC R on a semigroup S is called an intuitionistic fuzzy semilattice
congruence (in short, IFSC) if S/R is a semilattice.

We will denote the set of all IFSCs of S as IFSC(S).

Result 4.A. [23, Lemma 9] Let S be a T ∗-pure semigroup and let a, b ∈ S.
Then

aSb = a2Sb2 and abSab = baSba.
Result 4.B. [23, Theorem 10] Let S be a T ∗-pure semigroup and let δ∗ be the
binary relation on S defined by

δ∗ = {(a, b) ∈ S × S : a3 ∈ bSb and b3 ∈ aSa}.
Then δ∗ is the least semilattice congruence on S.
The following is easily seen.

Proposition 4.1. Let S be a T ∗-pure Semigroup. Then (χδ∗ , χδ∗c) ∈ IFSC(S).

Proposition 4.2. Let S be a T ∗-pure semigroup. If R ∈ IFC(S) such that (χδ∗ , χδ∗c) ⊂
R, then R ∈ IFSC(S).

Proof. It is clear that (S/R, ∗) is a semigroup. Let a, b ∈ S. Then a3 ∈ a2Sa2 and (a2)3 =
a6 ∈ aSa. Thus (a, a2) ∈ δ∗. So

µR(a, a2) ≥ χδ∗(a, a2) = 1 and νR(a, a2) ≤ χδ∗c(a, a2) = 0.

Thus R(a, a2) = (1, 0). By Result 2.A(1), Ra = Ra2 . Then Ra = Ra2 = Ra ∗ Ra.
Since (ab, ba) ∈ δ∗,

µR(ab, ba) ≥ χδ∗(ab, ba) = 1 and νR(ab, ba) ≤ χδ∗c(ab, ba) = 0.
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Then R(ab, ba) = (1, 0). By Result 1.A(1), Rab = Rba. Then Ra ∗ Rb = Rb ∗ Ra.
So S/R is a semilattice. Hence R ∈ IFSC(S). �

Theorem 4.3. Let R be an IFC on a T ∗-pure semigroup S. Then the following
are equivalent:
(1) R ∈ IFSC(S),
(2) (a, b) ∈ δ∗ implies Ra = Rb.

Proof. (1) ⇒ (2) : Suppose R is an IFSC on S. Let a, b ∈ S such that (a, b) ∈ δ∗.
Then a3 ∈ bSb and b3 ∈ aSa. Thus there exist x, y ∈ S such that a3 = bxb and
b3 = aya. Since R is an IFSC on S,

Ra = (Ra)3 = Ra3 = Rbxb = Rb ∗Rxb = (Rb)2 ∗Rxb

= Rb ∗Rbxb = Rb ∗Ra3 = Rb ∗ (Ra)3 = Rb ∗Ra

= (Rb)3 ∗Ra = Rb3 ∗Ra = Raya ∗Ra = Ray ∗ (Ra)2

= Ray ∗Ra = Raya = Rb3 = (Rb)3 = Rb.

(2) ⇒ (1) : Suppose the condition (2) holds. Let a, b ∈ S. Then clearly (a, a2) ∈
δ∗ and (ab, ba) ∈ δ∗. By the hypothesis,

Ra = Ra2 and Rab = Rba.

Thus Ra = Ra ∗ Ra and Ra ∗ Rb = Rb ∗ Ra. So S/R is a semilattice. Hence R ∈
IFSC(S). This completes the proof. �

5. Intuitionistic fuzzy normal congruences

Let S be an inverse semigroup. It is clear that if x ∈ S and e ∈ ES , then xx−1,
x−1x and x−1ex ∈ ES .

Definition 5.1. Let S be an inverse semigroup. Then an intuitionistic fuzzy con-
gruence R on ES is called an intuitionistic fuzzy normal congruence ( in short,
IFNC) if for any e, f ∈ ES and for each s ∈ S,

µR(s−1es, s−1fs) ≥ µR(e, f)

and
νR(s−1es, s−1fs) ≤ νR(e, f).

We will denote the set of all IFNCs on ES as IFNC(ES). Then it is clear that if
P,Q ∈ IFNC(ES), then P ∩Q ∈ IFNC(ES).

Definition 5.2. Let R be an IFC on an inverse semigroup S.
(1) The intuitionistic fuzzy kernel IFK(R) of R is an IFS in S defined as follows:
for each x ∈ S,

µIFK(R)(x) =
∨

e∈ES

µR(x, e)

and
νIFK(R)(x) =

∧
e∈ES

νR(x, e).
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(2) The intuitionistic fuzzy trace IFT(R) of R is an intuitionistic fuzzy relation on
ES defined as follows: for any e, f ∈ ES ,

IFT (K)(e, f) = R(e, f).

It is clear that IFT(R) ∈ IFNC(ES).

Proposition 5.3. Let S be an inverse semigroup. If P and Q are two IFNCs on
ES, then P ∨Q ∈ IFNC(ES).

Proof. Since P ∨Q =
⋃

n∈N(P ∪Q)n by Result 2.B, we first show that the following
holds:

µ(P∪Q)n(s−1es, s−1fs) ≥ µ(P∪Q)n(e, f)
and (∗)

ν(P∪Q)n(s−1es, s−1fs) ≤ ν(P∪Q)n(e, f)
for each n ∈ N , any e, f ∈ ES and each s ∈ S.

Suppose n = 1. Then

µP∪Q(s−1es, s−1fs) = µP (s−1es, s−1fs) ∨ µQ(s−1es, s−1fs)
≥ µP (e, f) ∨ µQ(e, f) = µP∪Q(e, f)

and

νP∪Q(s−1es, s−1fs) = νP (s−1es, s−1fs) ∨ νQ(s−1es, s−1fs)
≤ νP (e, f) ∧ νQ(e, f) = νP∪Q(e, f).

So (∗) holds for n = 1.
Suppose (∗) holds for n = k(> 1). Then

µ(P∪Q)k+1(s−1es, s−1fs) = µ(P∪Q)k◦(P∪Q)(s
−1es, s−1fs)

=
∨

g∈ES

[µ(P∪Q)k(s−1es, g) ∧ µP∪Q(g, s−1fs)]

≥
∨

g∈ES

[µ(P∪Q)k(s−1es, s−1hs) ∧ µP∪Q(s−1hs, s−1fs)]

≥
∨

g∈ES

[µ(P∪Q)k(e, h) ∧ µP∪Q(h, f)]

= µ(P∪Q)k◦(P∪Q)(e, f) = µ(P∪Q)k+1(e, f)

and

ν(P∪Q)k+1(s−1es, s−1fs) = ν(P∪Q)k◦(P∪Q)(s
−1es, s−1fs)

≤
∧

g∈ES

[ν(P∪Q)k(s−1es, g) ∨ νP∪Q(g, s−1fs)]

≤
∧

g∈ES

[ν(P∪Q)k(s−1es, s−1hs) ∨ νP∪Q(s−1hs, s−1fs)]

≤
∧

g∈ES

[ν(P∪Q)k(e, h) ∨ νP∪Q(h, f)]

= ν(P∪Q)k◦(P∪G)(e, f) = ν(P∪Q)k+1(e, f).
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So (∗) holds for n = k + 1. Hence (∗) holds for each n ∈ N. Therefore P ∨ Q ∈
IFNC(ES). �

The following is the immediate result of Definition 5.1 and Proposition 5.3.

Theorem 5.4. Let S be an inverse semigroup. Then (IFNC(ES),∩,∨) is a com-
plete lattice.

Proposition 5.5. Let S be an inverse semigroup and let R ∈ IFC(ES). We define
a complex mapping Q = (µQ, νQ) : ES ×ES → I× I as follows : for any e, f ∈ ES,

µQ(e, f) =
∧
a∈S

µR(a−1ea, a−1fa) and νQ(e, f) =
∨
a∈S

νR(a−1ea, a−1fa)

Then Q is the greatest IFNC on ES such that Q ⊂ R.

Proof. From the definition of Q, it is clear that Q ∈ IFR(ES). Moreover, Q is
intuitionistic fuzzy reflexive and intuitionistic fuzzy symmetric. Let a ∈ S and let
e, f, g ∈ ES . Since R is intuitionistic fuzzy transitive,

µR(a−1ea, a−1fa) ≥ µR(a−1ea, a−1ga) ∧ µR(a−1ga, a−1fa)

and
νR(a−1ea, a−1fa) ≤ νR(a−1ea, a−1ga) ∨ νR(a−1ga, a−1fa).

Then

µQ(e, f) ≥
∧
a∈S

[µR(a−1ea, a−1ga) ∧ µR(a−1ga, a−1fa)]

= (
∧
a∈S

µR(a−1ea, a−1ga)) ∧ (
∧
a∈S

µR(a−1ga, a−1fa))

= µQ(e, f) ∧ µQ(g, f)

and

νQ(e, f) ≤
∨
a∈S

[νR(a−1ea, a−1ga) ∨ νR(a−1ga, a−1fa)]

= (
∨
a∈S

νR(a−1ea, a−1ga)) ∨ (
∨
a∈S

νR(a−1ga, a−1fa))

= νQ(e, f) ∨ νQ(g, f).

Thus
µQ(e, f) ≥

∨
g∈ES

[(µQ(e, g) ∧ µQ(g, f)] = µQ◦Q(e, f)

and
νQ(e, f) ≤

∧
g∈ES

[(νQ(e, g) ∨ νQ(g, f)] = νQ◦Q(e, f).

So Q ◦Q ⊂ Q. Hence Q ∈ IFE(ES).
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Now let a ∈ S and let e, f ∈ ES . Then

µQ(a−1ea, a−1fa) =
∧
b∈S

µR(b−1(a−1ea)b, b−1(a−1fa)b)

=
∧
b∈S

µR((ab−1)e(ab)), (ab−1)f(ab))

≥ µQ(e, f)

νQ(a−1ea, a−1fa) =
∨
b∈S

νR(b−1(a−1ea)b, b−1(a−1fa)b)

=
∨
b∈S

νR((ab−1)e(ab)), (ab−1)f(ab))

≤ νQ(e, f).

Let e, f, g ∈ ES . Then

µQ(ge, gf) = µQ(eg, fg) = µQ(g−1eg, g−1fg) ≥ µQ(e, f)

and

νQ(ge, gf) = νQ(eg, fg) = νQ(g−1eg, g−1fg) ≤ νQ(e, f).

Thus Q is intuitionistic fuzzy left and right compatible. So Q ∈ IFNC(ES).
Now let e, f ∈ ES . Then

µR(e, f) ≥ µR(e, ef) ∧ µR(ef, f) ≥ µQ(e, f)

and

νR(e, f) ≤ νR(e, ef) ∨ νR(ef, f) ≤ νQ(e, f).

So Q ⊂ R. Let P ∈ IFNC(ES) such that P ⊂ R. Then

µP (e, f) ≤
∧
a∈S

µP (a−1ea, a−1fa) (Since P ∈ IFNC(ES))

≤ µQ(e, f)

and

νP (e, f) ≥
∨
a∈S

νP (a−1ea, a−1fa) ≥ νQ(e, f).

Thus P ⊂ Q. Therefore Q is the greatest IFNC onES such that Q ⊂ R. This
completes the proof. �
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