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ON IRRATIONALITY MEASURES OF THE VALUES
OF GAUSS HYPERGEOMETRIC FUNCTION

ARI HEIMONEN, TAPANI MATALA-AHO AND KEIIO VAANANEN

The paper gives irrationality measures for the values of some Gauss
hypergeometric functions both in the archimedean and p-adic case.
Further, an improvement of general results is obtained in the case of
logarithmic function.

Introduction

We shall consider the irrationality measures of the values of Gauss hypergeo-
metric function

o () S

n=0

where b,¢ # 0,~1,-2,... are rational parameters, and (b)o = 1, (b}, = b(b +
1)...{(b+n—-1),n=1,2,.... Theirrationality and linear independence measures
of the values of F' are considered in many works both in the general case and in
some interesting special cases, see [1] [2], [4], [6), [7], (8], [9], [10], {11}, [13], [14],
[15], [16], [17], [18], [19], [20] and [23]. Also the transcendence of the values of F'
at algebraic points is considered in the important papers [3], [5] and [24].

In the present work we first give using Padé type approximations an irrationality
measure for F(r/s) with certain values r/s € @, both in the archimedean and p-
adic case. In many special values of b and ¢ these general results can be sharpened
by the careful consideration of the arithmetic properties of the coefficients of the
approximation polynomials. This idea was first realised for the binomial function
by Chudnovsky (8], and then in some other cases in {10], {13], [14] and [20]. Here
we shall deduce a general criterion to find a common factor for the coefficients of
our approximation polynomials and then apply this criterion to the logarithmic
function to obtain a generalisation of the nice work of Rukhadze [20].
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Results and notations

We shall denote by @, the v-adic completion of @, where v € {00, primes p},
in particular Q. = IR. For an irrational number 6 € Q,, we shall call an irra-
tionality measure m, () of 8 the infimum of m satisfying the following condition:
for any € > 0 there exists an Hy = Hy(e) such that

P
|9— —| >H™™¢

Q

v

for all rationals P/Q satisfying H = max{|P},|@|} > Ho. In the following we
denote moo(8) = m(f). All our measures are effective in the sense that Hy can be
effectively determined.

Throughout this paper we shall assume that ¢ > b > 0, b = a/f, ¢ = g/h,
where a, f, g, h are natural numbers such that (a, f) = (¢,h) = 1. Let us denote
B=b—-1=E/F, C=c—b-1=G/HwithE,Ge€Z, FFHe N, (E,F)=
(G,H) = 1. Further, let L = l.c.m.(F, H), and use H* to denote the denominator
of A/H (therefore H* | H). We shall also need the notations

=
.|

; h
pr= 1] P77 MR = s
pl;[p ¢(h) o

1=

(i,h)=1

to state the following result.

Theorem 1. Ifr/s € (—1,1) is a non-zero rational number satisfying

(r,s) =1, LHurup-e® (Vs—+s— r)2 <1,

then

- (F(r)) <1 2ln(\/s+vs—7) + Mh) + In(LH*urpp-)
- 2In|ys—/s=r| + A(h) + In(LH*prpp-)

As a p-adic analogue of this result we state the following sharpening of [17].

Theorem 1p. Suppose that p is a prime such that p J fh. Ifr/s > 1 is a rational
number satisfying

Ir/slp <1, (r,8)=1, LH*uL;LH.e’\(h)ﬂrl: <1,

then

r 2ln|r|,
-} <
e (F (s)) T 2njrlp +lnr + A(h) + In(LH*prpn-)
(in writing my(f(...)) we always think of f as a corresponding p-adic series).

If b=1, ¢= 2, then Theorem 1p implies for the p-adic logarithm the following
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Corollary 1p. Ifr/s > 1 is a rational number satisfying
Ir/sl, <1, (r;s) =1, erlrlz, <1,

then

s (o8 (1- ) < s Ty

In particular, for all p' > e we have

2llnp
mp (log (1 - p’)) < mp_—_l

For the real logarithm we obtain, by Theorem 1, the well-known result

r In (/s s—r)+1
m(os (- 1)) 1~ S

if r/s € {-1,1) is a rational number satisfying
e(\/_—\/s—rt2 < 1

To get a sharpening of this result we define, for a rational a = u/v € (0,1}, u,v €
IN, (u,v) =1, the subsets I; and I of {1,...,v — 1} such that

ieh if [ail+1=aiv], i€k if [ai]=[ai+%].

Let then

w3 (E O () 5O 0)

where ¥ is the digamma function (see e.g. [12], pp. 15-20). Further with a given
rational 8 > a we define

z Zi — S nzﬂ
Ale, B,z) = min ((p+| D(p + |z| —sgnz) )

0<p<|z|+3(1—sgn 2) px

forallz>1orz<0, and

_ t(1—1t)?
R(aa ﬁ’z) - Onsllasxl (1 — Zt)a

for all z € [-1,1).
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Theorem 2. If

Qa) =@ P4 (a,1,2),  R(a) = %R (,1,7)
T 8

(e (-0)) <y -}

where inf* means that for a given non-zero rational r/s € {—1,1) the infimum is

o
taken over all rationals a € (0,1] satisfying R(a) < 1.

As numerical examples we give the following list, where u.b. means the obtained
upper bound for m(log(1 —r/s)).

5 a wb. wb.(a=1)
-1 8 3.891399 ... 4.6221 ...
-2 18 9.7551 ... 11.1449 ...
-3 2 53.8149 . .. 90.7656 ...
—3 1z 3.3317 ... 3.5474 ...
-3 1 3.1105 ... 3.2240 ...
- 160 619.5803 ... 1798.6314 ...

-5 818 2.3854 ... 2.3862 ...
is g 2.6411 ... 2.6535 ...

%5 g 5.7392 ... 5.7977 ...

In the first row of this list we have Rukhadze’s {20] measure for log 2. However
we note that in some other cases, e.g. if r/s = —1/2, —1/3, we are not able to
reach the measures announced in [20].

Padé type approximations

We use [, m and n to denote positive integer parameters satisfying [ < min{m,n}.
In the proof of our theorems 1 and 1p we shall use only the choice | = m = n,
but in some interesting cases like in Theorem 2 some other choices are better.
Therefore we give our next lemmas in the general form.

Let us define the polynomial A;m (2) by

1
(2)  Aima(2) = ;5(1—1:?)*5717 <:—Z) (z"+B(1 - z)™C),

=(-1)z"(1 - 2)"‘“';; (n : B) (nzlfl?) (%l)k

_Em=Chny ymetp (—n=B, ~1]|z-1
_—T!——-—Z (1—2) 2F] 1+m+C_l -_Z—— .
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Thus the polynomial A; 1, n is of degree < n+m—1 and has a zero of order > n—1.
By defining

Qim,a(2) = Zn+m"IA1»'"'" (£>
z

- ('-m_ C)l m—1 -n—B 5 —1
- TS A 8 TR P

_(=m-n-B-0C) el -n—B, -l
= i G-D"NA{ _ L _B_¢

)
we get a polynomial of degree < m, where the last equality is obtained using the
formula 2.10 (1) of [12].

The function F(z) has for all |z| < 1 an integral representation

® Fle) = T(c E(;))I‘(b) 1w_(t)t dt, w(t) =t (1 -t

Therefore, for all 0 < |z| < 1,

___TI(9) ' Qum n(2)w(t)
QuunlFE) = 5o prgy J, — 1-2 &
_ I{c) nt+m—1I—1 YA mn(l/z) - A ,m,n(t)
_———————F(C_b)r(b) (2+ ! /0 ! p— ! w(t)dt

+zn+m-—1 ! Al»m.n(t)w(t)
0 1 -2zt

dt) = z"+’""‘_1B(’m,n(1/z) + Ry n(2)

with obvious definitions of the polynomial By, » and the function Ry p n-
We next consider more closely the remainder function Ry m n. If

f(z) = "B (1 - 2)™*C,
then, by partial integration and our assumption ! < min{m,n},

D(c) et 1 flgy)
T(c-b)IkB) U o 1—=zt
_ (=1'T(e) grtm
v eEDRoN / a- zt)“’l dt
— Iznm (C)F(m—}_c'—b)r(n'*'b) l+1,n+bz
=(-1) * INCES b)F(b)I‘(n+m+c)2Fl< n+m+c )
n b) (C b)m l+1,n+b
—apern e (151, 053))

(n+m ntm+tc
Therefore the Taylor expansion of Ry » has rational coefficients and vanishes at
z = 0 at least to the order n 4+ m.
By the above considerations we now have the approximation formula

(5) Rl,m,n(z) = Ql,m,n(z)F(z) - PI,m,n(z):

(4) Rim,n(2) =
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where

- 1
(6) Piimon(2) = "™ Blmn()

is a polynomial of degree n + m — [ — 1. Thus (5) is an identity with rational
coefficients, and therefore we can use it also in other metrics if the series converge.

The estimation of the polynomials and the remainder term

Let us suppose that ! = [an], m = [fn], where & and § are rationals satisfying
0 < @ < min{1, 8}, and let us denote

Po(2) = Pimin(2)y  @n(2) = Qumn(2),  Rn(z) = Riym,n(2).

We shall first estimate the remainder term R,(z). Let § = §(v) be 1, if v = oo,
and 0, if v = p. By ¢1,¢2,... we shall denote positive constants independent of n.
We now obtain the following

Lemma 1. If |z|, < 1 and in the finite case v [ fh, then we have

|Ra(2)]y < ein? ™ (|25 TP R(a, 8, 2)°)"

for all n > c3. In the archimedean case the bound on the right-hand side of this
inequality is an asymptotic for |R,(z)} (n — o).

Remark 1. In the archimedean case the bound holds at the point z = —1, too.

Proof. In the archimedean case the result follows immediately from the integral
representation (4) of Ry m, a(2).
To prove the finite case we denote

Qn(z)=2quj, F(z)‘_‘zszj'
Jj=0

j=0

By (5) we then have

Ru(2)= Y (Z ‘ijk—j) =2 Y ey 2k,

k=m+n \ j=0 k=0
where

m
ek:Zijk+m+n—j, k=0,1,....

i=0

Because ¢; are v-integers (i.e.|gj|, < 1), it follows that

lexly < ogljasxm {|fetmtn—jlo}-

Here

Rktmtn-igla + f)...(a+ (k+m+n—j—1)f)
fetmin=iglg+h)...(9+(k+m+n—j—1)h)’

fk+m+n—-j =
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and therefore |ex|, < p"® (v = p), where

r(k)SorSI%xm Z ([————~——~—k+m+n_j}+1—[————k+m+n_j]>

" ©
p< nlelt(etmn)h) p p

inp
< Inh(lel + k + (1 + B)n)
- Inp

, k=0,1,....
Thus
|€k|v Sh(lcl+k+(1+ﬁ)n)s k=0111"'a

which implies the estimate
Iekzklv < k{le]+ k& + (14 B)n)l=z ﬁ <en

for all n > ¢;. This proves our lemma. O

The function f(¢) = t"*2(1—¢t)™*C is analytic in a complex domain D obtained
by cutting the plane from 0 to infinity and from 1 to infinity. We choose these
cuts in such a way that they avoid the point z. To estimate the polynomials P,(z)
and @n(z) we first consider the polynomial A,(2) = Aim,a(2) by using Cauchy’s
integral formula to get

1 1/d\' 1 1 f(t
0 A= e (7) 0= T b —(z>)'+1 “

where I is a simple closed curve in D.

Lemma 2. If|z] > 1 or 2= —1, then

A < e (Al B2 +omR (a8, 2) )

and if =1 < 2z <0, then

fn
|An(2)] < cq (A(a,ﬁ,z)"+(1——z)‘°’"R (%,%, 1 ) )

1—-2
In the case a = 3 = 1 we have
|An(z)| < csn?

forall 0 € 2 €1, if g = max{B,C} > -—%.

Proof. We divide our proof into four cases. Let first z > 1. Then we cut the
plane along the real line from 1 to —oo, and take I' = v; U 2 U y3 U 74, where
71|t~z =p < zand vz :|t — 1| = ¢ with some £ > 0 (see Picture 1). Then

1 £(¢) (p+2)"tB(p+2—1)m*C
by fn (t — z)1 dtl < ol

(p+2)B(p+2—1)° 1) ((p +2)(p+2— 1)")"

< P—{an} o
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o8
— e

Picture 1.

(this is all we need if p < z —1). In the case z — 1 < p < z we have (with small €)

%ﬁs(t_f_(gmdtk

edgo

27

1 /-" (1 + €)™t (eci®) ™€
. (1+ee’® — z)i+1
(1 + E)R+B€m+l+c
-1y

— 0, whene — 0.

Further it follows that
1 t 1)/ t
LRy NV Ry g U
2mi J,, (t—2) 21 | ), (= 2)

1 10| ce 1)"
< dt < R )
T 2mfe|H /0 (1= L)+ = lzlom s

These estimates give the truth of our lemma in this case.
The cases z < —1 and —1 < z < 0 are analogous.
In the case & = f = 1 our polynomial is connected with the Jacobi polynomial

P,(;B’c)(z) by the formula

An(z)=PBO(1-22), 0<2<1.

Therefore our result follows immediately from Theorem 7.32.1 of [22]. O
Lemma 3. If |z| <1 and R(e, 8,2) < |2|7*A (e, 8,1), then

max {|@n(2)], [Pn(2)|} < ¢z (|2|1+ﬂ—aA (a,ﬂ, %))n
Ifa=p=1andz>1, then

max {|Qa(2)], |Pa(2)]} < can*?|2]".

Fa=08=12z<-1,and = R(l,l —z—)<A(1,1,%),then

z=1 Y z—1

max Qa2 P2 < e (114 (11,2))
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Remark 2. Since (5) holds in the archimedean case at z = —1, the first part of our

lemma 1s true at z = —1.

Proof. Since
Qn(z) = 2" "4, (i) ’
z
the bounds for @Qn(z) follow from Lemma 2. By (5)
Qn(2)F(z) — Pr(z) = Rn(z)

for all |z| < 1. If |Pu(2)] > c10 (|2|' TP~ A(e, B, %))n with a suitable ¢;o we have
a contradiction with our hypothesis R(a,f,2) < |2|7*A4(a, 8, 1;) This proves
Lemma 3 in the case |z| < 1.

Next we assume that & = # = 1, z > 1. From the definition of P,(z) it follows
that

_n-ig (1 ___T@ ' An(u) — An(t)
Pp(z)=2"""B, (;) , Ba(u)= e bT) — w(t)dt.

If 0 < u < 1, we give the integral in the form (¥ < v < 13%)

Br(u) = l“(zfn“(b) (/ - / = / ) Bl Buma= b,

say. For |I1| and |I3| we have the upper bound 2c¢;1n?/v by Lemma 2. Further,
by the mean value theorem

I, = /“+‘Y Al (v)w(t) dt

-y
where v = v(t) is some point between u and ¢. Here
Al (v) = —d—P<B )1~ 20) = -2 (P,(,B'C))I (1-20),
and from Theorem 7.32.4 of [22] we obtain
[A:,(v)l < clznmnx{2+3,2+c,§} < Cl2nq+2_

The case 2 < —1 can be considered in an analogous way. Thus Lemma 3 is
true. 0O

On the properties of the coefficients of P, and @,

Let p be a prime and r € Q, r # 0. As usual we define v,(r) by r = p*»(VR/S,
where (R, S) = (R,p) = (S,p) = 1. In the following we shall also need the notation

¢ = [ 9.

piF
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Using this notation we see that the coefficients

(1))

4
A"(z) = Z("l)majz"_j(z - 1)m-—l+j

i=0

of the polynomial

satisfy

1
€ FH" ipur(ipu(l—34)

where L = l.c.m.(F, H). Since

(8)

1
Z and a, m

Qn(z) = 2"*"714, ( ) Z( 1)™aj(1 - z)™ 9,

it follows that

(T‘ __ S)m-—l
(9) Q (3) € L) 2
The polynomial A, (z) can also be given in the form
n+m—l1 ]
(10) Aq(z) = Z ci(l—2z),
j=m-—l

where
j—m+l

—j n+m—1I0—-7+1
S e ]

i=min{0,j-m}

v (8) we have

c; € ! y/4
Fi=m+tHlyp(j —m+ Duu(l)
j=m-1...,n+m—1L

(11)

and cj €

1
T,
Tz (D)

Next we investigate the polynomial

Py(z) = "*m171B, G) e b)g(cc)_ 5 / %__ 0

By (10)

n+m-[ j-1
/IA"(%) An(t )w(t)dt-— +z: 3 571 (L1 +c—b)

I'(i +¢)

j=m—1 =0

zv j=0,1,...

bl

w(t) dt.
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where we have used the notation # = 1 — 1/2z. Therefore we immediately obtain

n4m-{ j-1 .
— _ 7 m—I-1 ) 2]'_1_,‘ (C + 1)(0 +t)
Pn(Z)—‘ Paal Z CJZ c(c+1)...(c+i—1)'

j=m—l  i=0

By the Gauss formula (see {12], p. 104, and [15])

—i,a (b—a)
2h < b 1) RO
we get
o _(g/h—(g/h=1))
glg+h)...(¢+(E~-1)h) }(g/h)s

_ ! (1 g—h 1
=1+ 2 ()

where d;(g,h) = l.em.{g,g + h,...,g + (¢ = 1)h}. Since h and di(g, h) have no
common prime factors this implies

(C+1)...(C+1) Riun(i)
cle+1)...(c+i=1) " Hipp(i)di(g,h)

Combining these facts we are led to the result

@ n()e 1

Z
s"+m"1LlH*n+m_llJ:L(l)ﬂH‘ (n +m — l)dn+m-l(gv h)

where H* denotes the denominator of h/H.
We now use (9) and (12) to obtain the following

Lemma 4. If
Q‘n — sn+'m—lLIH*n+m——1uL(l)'uH. (TL +m— l)dn-f-m—l(g’ h),
then

Q2n0n (f) Qo Pn (f) cZ.

S

Approximation sequences

The above considerations are performed to find good approximation sequences
(Gn,Pn,7n) for F(r/s), i.e. to find integers gn, pn such that

r
g F (‘) — Pn =Tn,
s

where r,, tends to zero as n — oo.
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In considering the general case we note that

n— Inn
up " < pp(n) <
and, by [1], Lemma 1,
h
1 h 1
im - hy=—= 5 =)
Jim ~1Indn(g,h) oh) ;= Ah)

=1

(i,h)=1

We now use Lemma 4 to obtain the integers
r

gn = QnQn (;) s Pn=Qa Py (;) .
By denoting

w(a,f) = L"H‘I‘H’_"#L#i{‘tﬂ—ﬂe(l-(-ﬂ—a);\(h),
W@ 8) = I+ 4 (a8, %),

T
wa ) = Ir 25~ R (o8, 7).

Q(a, 8) = w(a,B)v(a, B), R(e,B) = w(a,Bu(a, B),
we get, by Lemmas 1, 3 and 4, the following

(13)

Lemma 5. Let € > 0 be given.
(i) If |r/s] < 1 and R(a,8) < min{l,@(«,B)}, then the above q,,p, and
Tn = qnF(r/3) — pn satisfy

max{|pal,|ga{} < Q(a’ﬂ)(l-f-e)n’
R(a, )" < |ry| < R(a, B)0 72"

for all n > c1a.
(ii) If p is a prime such that p ) fh and |r/s], < 1, then
Iralp < a1 M;Hﬂ_e)n
for all n > c14.
(iii) Suppose that a = 8 =1. Ifr/s > 1 then
max{|pal, lgn]} < (w(1, 1)}r)) ",

and if r/s < =1 and 25 R(1,1,r/(r — 38)) < A(1,1,8/r), then

r—s

max{|pal, lgn|} < Q(1,1)0F)",

for all n > ¢;5.

Some determinants

In the archimedean case we have an asymptotic formula for the remainder term
T in the lemmas above. On the other hand it seems difficult to obtain such a
result in the p-adic case. Therefore we need the nonvanishing of the determinant

_| @nl(2) Py(2)
Balz) = Qn+1(2)  Pnia(2)

in the p-adic considerations.
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Lemma 6. Ifa =8 =1or!=m =n, then we have

Anu)=(—4)"QL%S;b%t(;i;;)zﬁ'

Proof. Clearly Ay(2) is a polynomial in z of deg A,(2) < 2n. Since Qn(2)F(z) —
P,(z) = Rnp(z), we have

An(2) = Qnt1(2)Ra(2) — Qn(2) Rut1(2).

Thus ord,=gAn(z) > 2n and our lemma follows from (2) and (4). O

Proof of Theorem 1 and 1p

In the archimedean case we may use following well-known result (see e.g. [8],
Corollary 3.3). Let £ > 0 and y < 0 be given. Suppose that for each £ > 0 there
exists a constant ci¢ and rational integers pn,gn satisfying for all n > ¢16 the
inequalities

1
—Tzlnma’x“qnlv 1pn|} <zr+e,

1
y—e< ;ln{rn|<y+6,

where 7, = ¢o F(r/3) — pn. Then the number F(r/s) has an irrationality measure
m(F(r/s)) not greater than 1 — z/y.
If |z| < 1, then we have

RuL9) =0+ vImD7, 4(11,1) = EEA2T

|2|

Therefore, if 2 = r/s, then (13) implies

QLD =w(,1) (Vs +vs—7)°,
MLn=w@n<Viﬁﬁ??)=w@n0ﬁ—¢F3Y.

The assumption LH*uppp-e*® (/s — /s —7)? < 1 means that R(1,1) < 1.
Thus the use of Lemma 5 gives us an upper bound

In Q(1,1)
" InR(1,1)

for the irrationality measure of F(r/s). This proves our Theorem 1.
To give our p-adic results we prove the following simple lemma.
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Lemma 7. Let § € Q, be such that there exists a sequence (g,,pn) of integers
satisfying for all n > ¢q7

max{|gn|, [Pr|} £ Q(P)*) Pndnt1 — @nPnt1 #0, Iralp < c1tR(p)",

where r, = qnf — pn. If Q(p)R(p) < 1, then 6 has an irrationality measure

In R(p)
mp(f) € —r—r—t—,
"SRR + 0 Q)
Proof. We shall find a lower bound for |L|, = |Q8 — P|,, where (@, P) is a non-
trivial pair of integers with H = max{|Q|,|P|}. Since Q(p)R(p) < 1, the inequality

(14) 57 < (QORG)"

has only a finite number of solutions n € IN. Let 7@ denote the greatest of these.
We choose H large enough, say H > Hy, to satisfy @ > ¢)7. From the assumption
Prdn+1 — Gn+1Pn 7 0 it follows that there exists a natural number N either = 71
or = 7 + 2 such that

A =

anN ~p1vl_lq1v TN‘

Q -P|7T|Q L
is a non-zero integer. Hence
1< |AllAl, < 2HQ(P)N lgvL - Qral, -

By our choice of N we have

2HQ(p)" |Qrnl, < 2 HQ(P)R(P)Y <1,

and therefore, by (14),

> CISH—l-Hn Q(p)/In(Q(p)R(p))

1
> D
[LIP - |qNLIP = 2HQ(p)N -

This proves our lemma. O

By (ii) and (iii) of Lemma 5 we may use Lemma 7, where

Q) = (@1, )0 = (L e ®r) ™, R(p) = r2e,

Since € > 0 may be chosen arbitrarily small, our Theorem 1p follows immediately.
The assumption r/s > 1 is of course not necessary. To consider other cases we
only have to use part (i) or the second part of (iii) of Lemma 5.

A common factor of the coefficients of P, and Q,
It turns out that in many cases the coefficients of the polynomials P, and Q,

have a big common factor which must be eliminated to get sharp irrationality
measures. This kind of idea appears already in Siegel’s [21] paper, and it was used
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in an ingenious way by Chudnovsky [8] to consider certain binomial series, see also
(11]. Later this idea combined with Padé-type approximations is used e.g. in [13],
[14] and [20]. We shall now introduce a general criterion (see Lemma 10 below) to
find a common factor of the coefficients of P, and @, and then this criterion will
be applied to the consideration of the logarithms. Using (2) and the definition of
Qx(z) we see that each common factor of

(15) (”tB)(T’;fﬂ i=0,1,...,1,

is also a common factor for all the coefficients of @, and P,. Therefore we shall
find out which primes p > cj9+4/n divide the numbers (15). It was Chudnovsky’s
[8] observation that only these big primes are really important here. To find a
criterion for primes dividing the numbers (15) we first give two lemmas.

To state our lemmas we use for a rational number r the notations p|r orr =0
(mod p), if vp{r) > 1. Further, if vp(r) > 0, then there exists a unique ¥ €
{0,1,...,p — 1} satisfying ¥ = r (mod p).

Lemma 8. Let r = R/S € Q, (R,S)=1,5 > 0,1 € IN, and let p be a prime
satisfying p [S, p* > max{i,lrgaé(.“R-f- (j =1)S|}}. Let i = Ap+7. Then
<5<

vp((r)i)=A+1 ifandonlyif =r <.

)

Proof. First we suppose that 0 < i < Zr. Then

Further

if and only if 7 < 1.

vp ((r)i)) = vp (R(R+5)...(R+ (i - 1)5))
=v,(R(R+S)...(R+(4p —1)3))
+v, (R+ ApS)...(R+(Ap+i—-1)S)) =A+0=4

because R+ (—7)S = 0 (mod p). On the other hand we have
vp (R+ApS)...(R+ (Ap+1-1)S)) =1,
if =r < 7. Thus we have v, ((r);)) = A + 1 in this case. This proves the first part

of our lemma.
To prove the second part we note that

()

Then v, ((—7)i)) = A+1 if and only if 7 < 7 by the above consideration. Moreover
vp(3!) = A, which completes the proof. O
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Lemma 9. Let r; = R1/S), ry = Ry/S; denote rationals satisfying (R;, S1)

(Rg,52) =1, S > 0 and §; > 0, and let p be a prime satisfying vy(ry) >
0, vp(ry) > 0 and

p* > max {l, max {|{R; +(j — 1)Si|,|[Re + (§ — 1)52|}}.
1<5<1

If

(16) i+ + 1<,

(T_‘)( 2 ) i=0,1,... 1
i l—2

Proof. Let us suppose that | <7. Then we have, by our assumption (16),

then

TH1<T +T+1<1<0.

By Lemma 8 it follows that p | (.
We now consider the case I > 7+ 1. If 7; + 1 <1, then p|(7}), again by Lemma
8. If 7; > 1, then (16) implies

Fa+1<l—-F <l—-7=1—3.

We use once again Lemma 8 and obtain p ’ (,%,). This proves Lemma 9. O

Lemma 9 gives immediately the following,.

Lemma 10 (Divisibility criterion for the coefficients of Q). Let P(n,a, )
denote the set of all primes satisfyingp [FH,

p? >max{l, max{|E+(n—j)F{,IG+(n—j)H|}},
15
n+B+m+C+1<1.

( H d <"+.B>(n;+.c)’ i=0,1,...,L
pEP(n,a,p) ¢ -t

We now apply this criterion to the logarithmic function. In this case B = C' = 0,
and we further choose § = 1,i.e. m = n. To use Lemma 10 we have to characterize
the primes p > cq0\/n satisfying 27 + 1 < I. By denotingm=n— Np,I=1—Lp
this condition becomes

Then

(17) 0<2(n-Np)<l-Lp-1<p-2

or

(18) max{zn_l+1 l+1

) Spsl'
9N-L 'L+1 N



HEIMONEN ET AL. 199

Conversely, if p is in this interval for some L and N(> L), then p satisfies (17).
We now consider carefully the inequalities (18) assuming n > ¢9;. If

2n—1+1 1+1 n
< < —
2N~-L - L+1 N

or

@) aN—1<L§aN—1+%

then all primes in the interval
I+1 n
L+1U'N

[+1 2n—1+1 n

I+1 < 2N-L N

satisfy (17). Further, if

or

(i) aN—1+%<L<aM

2n-1+1 n
2N-L'N
also satisfy (17).

We assume that a = u/v, u,v € IN, (u,v) = 1, and set N = vK + ¢, where
1€ {0,1,...,v —1}. Then (i) is of the form

then all the primes in

uK+M—1<L§uK+m+%—L
Therefore, if
(19) [ai + a/2] = [ed] + 1,

then L = uK + [«i] satisfies (i) and all the primes p in the interval

[an] +1 n
uK + [ot] + 1" vK +1¢

satisfy our condition (17).
By the prime number theorem it follows (see [8]) that the product of all the
primes in above intervals is asymptotically equal to e"F*, where L, is equal to

ufv 1
Zz(vff+z_u1\+[az]+1> UZZ<K+"K+};}_’[‘0_1‘1>’

i€(19) K=0 €(19) K=




200 HEIMONEN ET AL.

and here ¢ € (19) means that ¢ satisfies (19). By the well-known properties of the
digamma function ¥ (see [12], 1.7, (3)) we obtain

v, u v
i€(19)
In the same way, if

(20) ai # [ai] = [ad + /2],

then L = uK + [ai] satisfies (ii) and this case gives an asymptotic e"¥2, where

oot 3 (o (3 o (1)

Combining the above considerations we obtain an asymptotic e®™(®)  where
71(a) = L1 + £2. The values of 71 () are given in the following graph (the interval
of the subsequent arguments in the graph is of length 1/1000):

0.5 0.6 0.7 0.8 0.9

Picture 2.

Proof of Theorem 2

Let us assume that B = C = 0, # = 1. From the above considerations it
follows that for a given rational a € (0, 1] there exists a common factor Dy, of the
coefficients of P, and Q, asymptotically equal to e®™(®), Thus the use of (13)
and Lemma 5 immediately gives us the following result concerning the integers

QnQn(r/s) pn = QnPn(r/s)

‘1n Dn ) n Dn k)
and the remainder term
r )
= | — Pn.
8

1,1
rn-——qnzFl( 2




HEIMONEN ET AL. 201

Lemma 11. Let € > 0 be given, and let

wy =w(a) =22 ) Oa) = wyv(a,1), R(a)=wp(ae,1).

If|r/s| < 1 and R(e&) < 1, then we have

max{|pnl, lga|} < Qo)1 +",
R(a)(l+5)n -<_ lrﬂl S R(a)(l—c)n

for all n 2 ¢35.

By using this lemma we now get the truth of Theorem 2 analogously to the

proof Theorem 1.

We note that Lemma 10 may be used to obtain improvements of Theorem 1 in

some other special cases, too. These will be considered in another work.

Remark §. All the numerical computations including Picture 2 are made using
MATHEMATICA programs.
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