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Abstract. Suppose that G is a finite, connected graph and X is a lazy random walk on G. The lamplighter chain X associated with
X is the random walk on the wreath product G® = Z; ¢ G, the graph whose vertices consist of pairs ( Jf,x) where f is a labeling of
the vertices of G by elements of Zy = {0, 1} and x is a vertex in G. There is an edge between (f, x) and (g, y) in G° if and only if
x is adjacent to y in G and f; = g; for all z  x, y. In each step, X® moves from a configuration (f, x) by updating x to y using
the transition rule of X and then sampling both fy and fy according to the uniform distribution on Zy; f; for 7 # x, y remains
unchanged. We give matching upper and lower bounds on the uniform mixing time of X provided G satisfies mild hypotheses.
In particular, when G is the hypercube Zg, we show that the uniform mixing time of X is ©(d24). More generally, we show that
when @ is a torus Zf{ for d > 3, the uniform mixing time of X°is @(dnd) uniformly in n and d. A critical ingredient for our proof
is a concentration estimate for the local time of the random walk in a subset of vertices.

Résumé. Soit G un graphe connexe fini et X une marche aléatoire fainéante sur G. La chaine de 1’allumeur de réverberes X°
associée a X est la marche aléatoire sur le groupe produit G® = Z, 1 G, le graphe dont les sites sont des paires (f,x) ou f est
un label des sites de G par des éléments de Zy = {0, 1} et x est un site de G. Il existe une aréte entre (f, x) et (g_y) dans G° si
et seulement si x est adjacent 4 y dans G et f, = g, pour tout 7 # x, y. A chaque pas, X se déplace d’une configuration ( J,x)
en mettant a jour x vers y par la régle de translation de X et ensuite en mettant a jour a la fois fy et fy selon la distribution
uniforme sur Z;; f, pour z # x, y restant inchangé. Nous prouvons des bornes supérieures et inférieures équivalentes sur le temps
de mélange uniforme de X sous des hypothéses faibles sur G. En particulier quand G est I’hypercube Zd nous montrons que
le temps de mélange uniforme de X est O(dZd) Plus généralement, nous montrons que quand G est le tore Zd avecd >3, le
temps de mélange uniforme de X est ©(dn?) uniformément en n et d. Un ingrédient crucial de notre preuve est une estimation
de concentration pour le temps local d’une marche aléatoire dans un sous ensemble de sites.

MSC: 60J10; 60D05; 37A25

Keywords: Random walk; Uncovered set; Lamplighter walk; Mixing time

1. Introduction

Suppose that G is a finite graph with vertices V (G) and edges E(G), respectively. Let X(G) = {f: V(G) — Z,} be
the set of markings of V (G) by elements of Z;. The wreath product Z; : G is the graph whose vertices are pairs (f, x)
where f € X(G) and x € V(G), see Fig. 1. There is an edge between (f x) and (g y) if and only if {x, y} € E(G)
and f, = g, for all z ¢ {x, y}. Suppose that P is a transition matrix for a Markov chain on G. The lamplighter walk
X© (with respect to the transition matrix P) is the Markov chain on G® which moves from a configuration (f, x) by

1Supported by Grant KTIA-OTKA # CNK 77778, funded by the Hungarian National Development Agency (NFU) from a source provided by
KTIA.
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Fig. 1. A typical configuration of the lamplighter over a 5 x 5 planar grid. The colors indicate the state of the lamps and the dashed circle gives the
position of the lamplighter.

1. picking y adjacent to x in G according to P, then
2. updating each of the values of f, and f) independently according to the uniform measure on Zj.

The lamp states at all other vertices in G remain fixed. It is easy to see that if P is ergodic and reversible with stationary
distribution 7 p then the unique stationary distribution of X° is the product measure

7 ((f. ) =mpx)2719,

and X¢ is itself reversible. In this article, we will be concerned with the special case that P is the transition matrix for
the lazy random walk on G in order to avoid issues of periodicity. That is, P is given by
1 .
3 ifx=y,

P(X,Y)={ 1

e i {x yhe E©) (1.1)

for x, y € V(G) and where d(x) is the degree of x.
1.1. Main results

Let P be the transition kernel for the lazy random walk on a finite, connected graph G with stationary distribution 7.
The e-uniform mixing time of G is given by

P'(x,y) —m(y)

t(G,e) = min{t >(0: max
(y)

x,yeV(G)

Sé}. (1.2)

Throughout, we let £,(G) = t,(G, %). The main result of this article is a general theorem which gives matching upper
and lower bounds of #,(G®) provided G satisfies several mild hypotheses. One important special case of this result is
the hypercube Zg and, more generally, tori Zﬁ for d > 3. These examples are sufficiently important that we state them
as our first theorem.

Theorem 1.1. There exists constants Cy, Ca > 0 such that

d\o
¢, < @)

=i <Cy foralld.
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More generally,

d\o
¢, < W@

_chz foralln >2andd > 3.
n

Prior to this work, the best known bound [11] for tu((Zg)O) was
C1d2? < 1,((29)°) < Calog(d)d2?

for Cy, C, > 0.
In order to state our general result, we first need to review some basic terminology from the theory of Markov
chains. The relaxation time of P is

1

tel(G) = 1——)»2’ (1.3)

where ), is the second largest eigenvalue of P. The maximal hitting time of P is

hit(G) = n;t‘l;zg) E,l1y], (1.4)
x.y

where 7, denotes the first time ¢ that X () = y and E, stands for the expectation under the law in which X (0) = x.
The Green’s function G (x, y) for P is

1w(9) 1w(G)
G(x,y) =E{Z 1{x(z)=y}:| = Pl(x,y), (15)
t=0 t=0

i.e. the expected amount of time X spends at y up to the uniform mixing time #, given X (0) = x. Foreach 1 <n < |G|,
we let

%
6" = o max 3 GGz ). a9
|S|=n yes
This is the maximal expected time X spends in a set S C V (G) of size n before the uniform mixing time. This quantity
is related to the hitting time of subsets of V (G).
Finally, recall that G is said to be vertex transitive if for every x, y € V(G) there exists an automorphism ¢ of G
with ¢(x) = y. Our main result requires the following hypothesis.

Assumption 1.2. G is a finite, connected, vertex transitive graph and X is a lazy random walk on G. There exists
constants K1, K, K3 > 0 such that

(A) mi(9) < K1lG|,
(B) 2K2(5/2)%2(max.y~y G (x, y))K2 < exp(—29)),

11 (G)
(©) G*(n*) < K3 (@) +log [GD/(logn™)
where n* = 4Kt,(G)/ miny.,~ G(x, y) for x, y € V(G) adjacent.

Remark 1.3. Note that such constants always exists for a given fixed graph G. However, to get the Theorem 1.5 to hold
for a given family of graphs, the constant K1, K>, K3 need to be uniform in the family of graphs under consideration.
Thus, to get Theorem 1.1, the constants need to be uniform in n and d.

Remark 1.4. We need to write maxy.y~x G(x, y) in (B) and miny.,~, G(x, y) in the definition of n* since the graph
G is only assumed to be vertex transitive and not edge-transitive, thus G(x,y) may vary along the neighbors of a
vertex x.
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These assumptions are rather technical: (B) and (C) express some sort of local transience criterion. The gap left
by Peres—Revelle in [11] is only there if #.](G) = o(tnix(G)) and log |G| = o(tmix (G)) both hold. Thus, the right hand
side of criterion (B) is tending to 0 as |G| — oo in cases of our main interest, and the criterion says that the Green
function should behave in a similar manner. The criterion connects two error terms later in the proofs. Assumption
(C) will serve to be able to establish a Binomial domination argument in the lemmas below for covering the last few
left-out vertices, and establishes that the extra time we will give for the Binomial domination is still less then the total
time in which we want to mix the chain.

The general theorem is:

Theorem 1.5. Let G be any graph satisfying Assumption 1.2. There exists constants Cy,Cy depending only on
K1, K», K3 such that

Cl < tu(go) <
~ 1G]t (9) + log|G]) —

Co. (1.7)

The lower bound is proved in [11], Theorem 1.4. The proof of the upper bound is based on the observation from
[11] that the uniform distance to stationarity can be related to E[2|M(’ ) where U (1) is the set of vertices in G which
have not been visited by X by time 7. Indeed, suppose that f is any initial configuration of lamps, let F'(¢) be the state
of the lamps at time 7, and let g be an arbitrary lamp configuration. Let W be the set of vertices where f # g. Let
C(t) = V(G) \U(t) be the set of vertices which have been visited by X by time 7. With P/, the probability under
which X°(0) = (f, x), we have that

P(o[E0) =gIC®] =27 yecq).
Since the probability of the configuration g under the uniform measure is 27191, we therefore have

P olE@) =gl
e =B 2" ween]: (1.8)

The right hand side is clearly bounded from above by E[2/®)I] (the initial lamp configuration and position of the
lamplighter no longer matters). On the other hand, we can bound (1.8) from below by

Pso[W SCO)] = P[|U)| =0]> 1 — (E[2MDI] —1).
Consequently, to bound #,(G°, ¢) it suffices to compute
min{r > 0: E[2M®1] <1 + ¢} (1.9)

since the amount of time it requires for X to subsequently uniformly mix after this time is negligible.

In order to establish (1.9), we will need to perform a rather careful analysis of the process by which U/(¢) is
decimated by X. The key idea is to break the process of coverage into two different regimes, depending on the size
of U(¢). The main ingredient to handle the case when I/ (¢) is large is the following concentration estimate of the local
time

t
Lst) =Y lix(ses)
s=0
for X in S C V(G).

Proposition 1.6. Assume that the second largest eigenvalue of P, Ly > % and fix S C V(G). Then for Cy = 1/50, we
have that

s s
P, [Ls(z) §t¥i| gexp<—C0ttzl((g))>. (1.10)




1144 J. Komjdthy, J. Miller and Y. Peres

Proposition 1.6 is a corollary of [8], Theorem 1; we consider this sufficiently important that we state it here. By
invoking Green’s function estimates, we are then able to show that the local time is not concentrated on a small subset
of S. Since the total time of ours is limited by C|G|(#.1(G) + log |G|), these estimates give us a small error probability
only as long as the set which is not yet covered is large enough. Thus, we will handle the case when U/(¢) is small
separately, via an estimate (Lemma 3.5) of the hitting time tg = min{r > 0: X(¢) € S} of S.

1.2. Previous work

Suppose that p, v are probability measures on a finite measure space. Recall that the toral variation distance between
W, v is given by

1
Il = viiry = max|u(4) = v(4)| = 3 ;m(x) —v(0)]. (L11)

The e-total variation mixing time of P is

fmix (G, €) =min{f > 0: max |P'(x,)—= <e}. 1.12
mlx(g ) { - er(g)” ( ) ”TV— ( )

Let tmix (G) = tmix (G, zie). It was proved [11], Theorem 1.4, by Peres and Revelle that if G is a regular graph such that
tit(G) < K |G|, there exists constants C1, C, depending only on K such that

C11G1(1e1(G) +1og1G1) < 1u(G°) < C21G | (tmix (G) + 10g|G]).

These bounds fail to match in general. For example, for the hypercube Zg, trel(Zg) = O () [9], Example 12.15, while
tmix (Zg) = O (dlogd) [9], Theorem 18.3. Theorem 1.5 says that the lower from [11], Theorem 1.4, is sharp.

Before we proceed to the proof of Theorem 1.5, we will mention some other work on mixing times for lamplighter
chains. The mixing time of G® was first studied by Héggstrom and Jonasson in [6] in the case of the complete graph
K, and the one-dimensional cycle Z,. Their work implies a total variation cutoff with threshold %tcov(Kn) in the
former case and that there is no cutoff in the latter. Here, .oy (G) for a graph G denotes the expected number of steps
required by the lazy random walk to visit every site in G. The connection between t,ix (G®) and t.ov(G) is explored
further in [11], in addition to developing the relationship between the relaxation time of G° and #,;(G), and E[ZW o
and #,(G°®). The results of [11] include a proof of total variation cutoff for Z,zz with threshold #.oy (Zﬁ). In [10], it is
shown that tmix((Zz)o) ~ %tcov(Zz) when d > 3 and more generally that fpix (Gy) ~ %tcov(gn) whenever (G,,) is a
sequence of graphs satisfying some uniform local transience assumptions.

The mixing time of X¢ = (F, X) is typically dominated by the first coordinate F since the amount of time it takes
for X to mix is negligible compared to that required by X°. We can sample from F(¢) by:

1. sampling the range C(¢) of the lazy random walk run for time #, then
2. marking the vertices of C(¢) by i.i.d. fair coin flips.

Determining the mixing time of X is thus typically equivalent to computing the threshold ¢ where the corresponding
marking becomes indistinguishable from a uniform marking of V (G) by i.i.d. fair coin flips. This in turn can be viewed
as a statistical test for the uniformity of the uncovered set U/ (¢) of X —if U/ (¢) exhibits any sort of non-trivial systematic
geometric structure then X°(z) is not mixed. This connects this work to the literature on the geometric structure of the
last visited points by the random walk [1-3,10].

1.3. Outline

The remainder of this article is structured as follows. In Section 2, we will give the proof of Theorem 1.1 by checking
the hypotheses of Theorem 1.5. Next, in Section 3 we will collect a number of estimates regarding the amount of X
spends in and requires to cover sets of vertices in G of various sizes. Finally, in Section 4, we will complete the proof
of Theorem 1.5.
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2. Proof of Theorem 1.1

We are going to prove Theorem 1.1 by checking the hypotheses of Theorem 1.5. We begin by noting that by [9],
Corollary 12.12, and [9], Section 12.3.1, we have that

trei (Z0) = ©(dn?). @.1)
By [4], Example 2, p. 2155, we know that #,(Z,) = O(nz). Hence by [5], Theorem 2.10, we have that
ta(Z%3) = O((d logd)n?). (2.2)

The key to checking parts (A)—(C) of Assumption 1.2 are the Green’s function estimates which are stated in
Proposition 2.2 (low dimension) and Proposition 2.6 (high dimension). In order to establish these we will need to
prove several intermediate technical estimates. We begin by recording the following facts about the transition kernel
P for the lazy random walk on a vertex transitive graph G. First, we have that

P'(x,y) < P'(x,x) forallx,y. (2.3)

To see this, we note that for ¢ even, the Cauchy—Schwarz inequality and the semigroup property imply
Pl(x,y) =Y P, )P (2, y) < P (x,x) P (y, y) = P' (x, x).
Z

The inequality and final equality use the vertex transitivity of G so that P(x,z) = P(z,x) and P(x,x) = P(y,y). To
get the same result for # odd, one just applies the same trick used in the proof of [9], Proposition 10.18(ii). Moreover,
by [9], Proposition 10.18, we have that

P'(x,x) < P’(x,x) foralls<t. (2.4)

The main ingredient in the proof of Proposition 2.2, our low dimension Green’s function estimate, is the following
bound for the return probability of the lazy random walk on Z<.

Lemma 2.1. Let P(x, y; Z%) denote the transition kernel for the lazy random walk on Z%. For all t > 1, we have that

4d\* 1
P’(x,x;Zd)S«/z( ) +e'/8 2.5)

) 12

Proof. To prove the lemma we first give an upper bound on the transition probabilities for a (non-lazy) simple random
walk Y on Z¢. One can easily give an exact formula for the return probability of ¥ to the origin of Z¢ in 2 steps
by counting all of the possible paths from 0 back to 0 of length 27 (here and hereafter, Pnp (x, y; Z%) denotes the
transition kernel of Y):

@n! 1
Pi(xx2) = ) '
NL(x * ) ny+-tng=t (n !)2(712!)2 T (”d!)2 (2d)2t

1 (2 1! 2
=(2d>2f(t> 2 <n1!n2!~-~nd_!>'

ny+-+ng=t

We can bound the sum above as follows, using the multinomial theorem in the second step:

1 2t t! t!
2t Lgd) - -
PNL(x7x7Z )_ (2d)2t(t)<n1+m-?-§d=1nl'”d') Z n]|nd'

ny+-+ng=t

_ ! (Zt) 1! "
T\t JIe/apnd
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Applying Stirling’s formula to each term above, we consequently arrive at

ﬁ dd/l

2t . gd
PNL(x,x,Z ) < W L

(2.6)

We are now going to deduce from (2.6) a bound on the return probability for the lazy random walk X on Z%. We
note that we can couple X and Y so that X is a random time change of Y: X () = Y (N;) where N; = Z§=0 & and
the (&) are i.i.d. with P[§; =0]=P[§ =1] = % and are independent of Y. Note that N; is distributed as a binomial
random variable with parameters ¢ and 1/2. Thus,

t/2
P'(x,x;2%) =) PRL(x, x: ZY)P(N, =2i)
i=0
4d\* 1
sP(N,<t/4>+~/§<;) et

where in the second term we used the monotonicity of the upper bound in (2.6) in . The first term can be bounded
from above by using the Hoeffding inequality. This yields the term e~*/8 in (2.5). ]

Throughout the rest of this section, we let [x — y| denote the L' distance between x, y € fo.

Proposition 2.2. Let G(x, y) denote the Green’s function for the lazy random walk on Zg. For each 6 € (0, 1), there
exists constants C1, Ca, C3 > 0 independent of n, d for d > 3 such that

C 4d /2 4d dj2
Glry) = = (—) x = y['72 + Cod logd)<—> 2-d(1-5/2)
d\m -
+C3(dlogd)n?e ™2
forallx,y e Zz distinct.

Proof. Fix 6 € (0, 1). We first observe that the probability that there is a coordinate in which the random walk wraps
around the torus within ¢ < n? steps can be estimated by using Hoeffding’s inequality and a union bound by

d-P(Z(t) > n) =de™ /@,

where Z(¢) is a one dimensional simple random walk on Z. Let k = |x — y|. Applying (2.3) and (2.4) in the second
step, and estimating the probability of wrapping around in time n>~? in the third term, we see that

f 23
G, N=Y P,y <Y Px.xZ) +1,P" " (x,x: 2% + dre ™ /% @.7)
t=k t=k

We can estimate the first term on the right hand side above using Lemma 2.1, yielding the first term in the assertion
of the lemma. Applying Lemma 2.1 again, we see that there exists a constant C» which does not depend on n, d such
that the second term in the right side of (2.7) is bounded by

4d\?
Cz(dlogd)< ) n?=d1-8/2) (2.8)

L

Indeed, the factor (d log d)n? comes from (2.2) and the other factor comes from Lemma 2.1. Combining proves the
lemma. O
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Proposition 2.2 is applicable when n is much larger than d. We now turn to state some preliminary estimates for
Proposition 2.6. This proposition will give us an estimate for the Green’s function that we will use when d is large.
Here comes the first ingredient:

Lemma 2.3. Suppose that X is a lazy random walk on ij ford > 8 and that | X (0)| =k < %. For each j >0, let 7
be the first time t that | X (t)| = j. There exists a constant Cy > 0 depending only on k such that Pty < 1o ] < Crd*.
If, instead, | X (0)| = 1, then there exists a universal constant p > 0 such that P[tg < 1] > p.

Proof. It clearly suffices to prove the result when X is non-lazy. Assume that | X (¢)| = j € {k, ..., 2k}. It is obvious
that the probability that | X| moves to j + 1 in its next step is at least 1 — %. The reason is that the probability that
the next coordinate to change is one of the coordinates of X () whose value is O is at least 1 — 2d—k. Similarly, the
probability that | X| next moves to j — 1 is at most %. Consequently, the first result of the lemma follows from the
Gambler’s ruin problem (see, for example, [9], Section 17.3.1). The second assertion of the lemma follows from the
same argument. (]

Lemma 2.4. Assume that k € N and that d = 2k v 3. Suppose that X is a lazy random walk on Z% and that | X (0)| =
2k. Let ty. be the first time t that | X (t)| = k. There exists pr > 0 depending only on k such that P[ty = oo] > pr > 0.

Proof. This is an easy corollary of the transience of the random walk on Z¢ for d > 3. (]
The next lemma is the corresponding version for the torus.

Lemma 2.5. Assume thatk € N and d > 2k 3. Suppose that X is a lazy random walk on Z‘,f and that | X (0)| = 2k. Let
Ty be the first time t that | X (t)| = k. There exists pi, cx > 0 depending only on k such that Pty > ckdnz] > px > 0.

Proof. We first assume that d = 2k Vv 3. It follows from Lemma 2.4 that there exists a constant pi,; > 0 depending
only on k such that P[tx > 7,/4] > pi,1. The central limit theorem (see [7], Chapter 2) implies that there exists
constants ¢k 1, pk,2 > 0 such that the probability that a random walk on Zg moves more than distance % in time ¢y 1 n?
is at most 1 — pg 2. Combining implies the result for d = 2k v 3.

Now we suppose that d > 2k v 3. Let (X1(?), ..., X4(¢)) be the coordinates of X (#). By re-ordering if necessary,
we may assume without loss of generality that Xo44+1(0), ..., Xg(0) =0.Let Y (#) = (X1(¢), ..., X2k(¢)). Then Y is a
random walk on Zﬁk. Clearly, |Y (0)| = 2k because X (0) cannot have more than 2k non-zero coordinates. For each j,
let T jY be the first time ¢ that |Y(¢)| = j. Then tky < 1%. For each ¢, let N; denote the number of steps that X takes
in the time interval {1, ..., ¢} in which one of its first 2k coordinates is changed (in other words, N; is the number of
steps taken by Y). The previous paragraph implies that P[NTky > ¢y, n?] > pk.3 > 0 for a constant pi 3 > 0 depending
only on k. Since the probability that the first 2k coordinates are changed in any step is k/d (recall that X is lazy), the
final result holds from a simple large deviations estimate. ([

Now we are ready to state and prove our estimate of G (x, y) when d is large.

Proposition 2.6. Suppose that d > 8. Let G(x, y) denote the Green’s function for the lazy random walk on Zfl. For
each k e Nwithk < %, there exists a constant C, > O which does not depend on n, d such that

C
G(x,y) = d—llz forall x,y € Z4 with |x — y| > k.

Proof. See Fig. 2 for an illustration of the proof. By translation, we may assume without loss of generality that y = 0;
let k = |x|. Let 7o be the first time ¢ that | X (#)| = 0. The strong Markov property implies that

G(x,y) =Plro <tu])G(x, x).
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B(D,4k)

Fig. 2. Assume that d > 8 and that k € N with d > 8k. Let X be a lazy random walk on Zﬂ and that X (0) = x with |x — y| = k. In Proposition 2.6,
we show that G(x,y) < Crd —k where Cy > 0 is a constant depending only on k. By translation, we may assume without loss of generality that

|x| =k and y = 0. The idea of the proof is to first invoke Lemma 2.3 to show that X escapes to d B(0, 4k) with probability at least 1 — Cy 1d -k we
then decompose the path of X into successive excursions {X(ozjk), e X(rik), A X(UzjkJrl )} between 9 B(0, 2k) back to itself through 9 B(0, 4k).

By Lemma 2.3, we know that each excursion hits 0 with probability bounded by Co 1d —2k and Lemma 2.5 implies that each excursion takes length
ckdn2 with probability at least p; > 0. Consequently, the result follows from a simple stochastic domination argument.

Consequently, it suffices to show that for each k € N, there exists constants Cy, Co > 0 such that

c
Plto <] < d—,’j and (2.9

G(x,x) < Co. (2.10)

We will first prove (2.9); the proof of (2.10) will be similar.

Let N be a geometric random variable with success probability Cord —2k where Cy is the constant from
Lemma 2.3. Let (&) be a sequence of independent random variables with P[&; = copdn?] = p2k and P[§; =0] =
1 — pox where ¢, pox are the constants from Lemma 2.5 independent of N. We claim that 7y is stochastically dom-
inated from below by Zyifl &; where ¢ is independent of N and (§;) with P[{ =0] = Cd*=1-P[z =1].
Indeed, to see this we will decompose the trajectory of the walk to excursions between the boundaries of the L;-balls
B(0, 2k) and B(0, 4k) as follows: let o,? =0 and let rfk be the first time ¢ that | X (¢)| = 4k. For each j > 1, we induc-
tively let azjk be the first time ¢ after r;{k_l that | X (¢)| = 2k and let ré'(k be the first time ¢ after crzjk that | X (¢)| = 4k. Let
F: be the filtration generated by X. Lemma 2.3 implies that the probability that X hits 0 in {azjk, e TZ(k} given F i
is at most Cprd~%* for each j > 1 where Cy; > 0 only depends on 2k. This leads to the success probability in the
definition of N above. The factor ¢ is to take into account the probability that X reaches distance 2k before hitting 0.
Moreover, Lemma 2.5 implies that P[azjk - rik_l > Cden2|.7:T A{k] > pok. This leads to the definition of the (§;) above.

This implies our claim.
To see (2.9) from our claim, an elementary calculation yields that

P[N¢ < Cyld*] <P[N < C;'d* or ¢ =0] <2d7* + Cd7*.
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We also note that

m 2
P2kc2pmn —
P E < | <eTOm
[' 1%‘] - 2 :| N
j=

for some constant ¢ > 0. Combining these two observations along with a union bound implies (2.9) (with a larger
constant Cy than in the one in Lemma 2.3). To see (2.10), we apply a similar argument using the second assertion of
Lemma 2.3. 0

Now that we have proved both Proposition 2.2 and Proposition 2.6, we are ready to check the criteria of Assump-
tion 1.2.

2.1. Part (A)

By [9], Proposition 1.14, with 'L';_ =min{r > 1: X(r) = x}, we have that E,[t;"] = |ZZ|. Applying Proposition 2.6,
we see that there exists constants dy, r > 0 such that if d > d, then

G(x,y)<1/2 forall [x —y|>r. .11

Proposition 2.2 implies that there exists no such that if n > ng and 3 < d < dy then (2.11) likewise holds, possibly
by increasing r (clearly, part (A) holds when d < dy and n < ng; note also that we may assume without loss of
generality that dy, ng are large enough so that the diameter of the graph is at least 2r). Let 7, be the first time ¢ that
| X (t) — X (0)] = r. We observe that there exists p9 = pg(r) > 0 such that

Pt <tf] =00 (2.12)

uniform in 7, d since in each time step there are d directions in which X (¢) increases its distance from X (0). By
combining (2.11) with (2.12), we see that Px[rx+ > tu(G)] = p1 > O uniform d > dy. Let F; be the filtration generated
by X. We consequently have that

Ex[fj] z EX[le{rjzzu(g)}] =E, [EX[T;_|ftﬂ(g)]1{fx+ztu(g)}]

1
> Ex [EX(tu(Q))[fx]l{rjztu(c)}] = p1 (1 - 2—e>En[Tx]~

That is, with pp := p1(1 — zie) > (0, there exists a pp uniform in d > dy such that |Z,‘f| = Ex[rj] > ;mE;[1:]. Com-
bining this fact with [9], Lemma 10.2, stating that #,;;(G) < 2 max,, E; (7)) holds for any irreducible Markov chain,
we arrive at thit(Z,d, ) < K |Zz| where K1 =2/ p> is a uniform constant.

Remark 2.7. There is another proof of Part (A) which is based on eigenfunctions. In particular, we know that

1
1=

tit(Zg) < 2B [1]=4)
i

where the A; are the eigenvalues of the simple random walk on Zg distinct from 1; the extra factor of 2 in the final
equality accounts for the laziness of the chain. The A; can be computed explicitly using [9], Lemma 12.11, and the
form of the A; when d = 1 which are given in [9], Section 12.3. The assertion follows by performing the summation
which can be accomplished by approximating it by an appropriate integral.

2.2. Part (B)

It follows from Proposition 2.6 that there exist constants C > 0 and dy > 3 such that

C
G(x,y)fg forx,yEZZ with |[x —y| =1 (2.13)
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provided d > dy. Consequently, there exists K € N which does not depend on d > dy such that

5/2
2K(5/2)%GK(x,y)=0 (21(( c/l > ) (2.14)
It follows by combining (2.1) and (2.2) that we have that
tu(Zs)
= O(logd). (2.15)
trel(Zg) g

Combining (2.14) with (2.15) shows that part (B) of Assumption 1.2 is satisfied provided we take K, = K large
enough. Moreover, (2.15) clearly holds if 3 < d < dy by Proposition 2.2.

2.3. Part (C)

We first note that it follows from (2.1), (2.2), Proposition 2.2, and Proposition 2.6 that there exists constants C > 0
such that n* for ZZ is at most Cd?n? logd for all d > 3. Thus, to check Assumption (C), we need to show that there
exists K3 > 0 such that

dn® +d1
G*(n*) < K P A08M) (2.16)
logd +logn

We are going to prove the result by considering the regimes of d < /logn and d > +/logn separately.
Case 1: d < /logn.

From (2.16) it is enough to show that G*(n*) < Kdn?/logn. We can bound G*(n*) in this case as follows. Let
= (dlogdlogn)'/((1/24=1) By Proposition 2.2, we can bound from above the expected amount of time that X
starting at O in ij spends in the L' ball of radius D by summing radially as follows:

Z > G, y)<Z (4:) K142 242k !

k=1y:|y|l=k

164 \* & 16d
§C1(—) Z k4% < ( > D'*/? < C3n(dlogdlogn)’
T

for constants Cy, C», C3 > 0, where we used that di/? < n. We also note that 2d(2k)d_l is the size of the L° ball of
radius k. The exponent 5 comes from the inequality

1/2
MfS for all d > 3.
(1/2)d — 1

We can estimate G*(n*) by dividing between the set of points which have distance at most D to 0 and those whose
distance to 0 exceeds D, and then using the previous estimate on the first set and Proposition 2.2 on the latter:

G*(n*) < Can(d logdlogn)® 4+ C4D'~(1/2dpy*

Cy-Cd*n’logd

< Csn(dlogdlogn)’ + JTTogdIogn

where C4 > 0 is a constant and we recall that C > 0 is the constant from the definition of n*. This implies the desired
result.

Case 2: d > /logn.
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In this case, we are going to employ Proposition 2.6 to bound G*(n*). The number of points which have distance
at most k to 0 is clearly 1 4 (2d)*. Consequently, by Proposition 2.6, we have that

3
G*(n*) < (Co +> de_k(Zd)k) + Cad™*n*
k=1
Cs(logd)n?

<Cs+ B

for some constants Cs, Cg > 0. Since d? > logn, this is clearly dominated by the right hand side of (2.16) (with a
large enough constant), which completes the proof in this case. (]

3. Coverage estimates

Now we turn to collect some preliminary lemmas for the proof of the general Theorem 1.5.

Throughout, we assume that G is a finite, connected, vertex transitive graph and X is a lazy random walk on G
with transition matrix P and stationary measure 7. For § C V(G), we let C5(¢) be the set of vertices in S visited
by X by time 7 and let Us(t) = S \ Cs(r) be the subset of S which X has not visited by time ¢. Recall the notation
C(t) =Cy(g)(t) and U(t) = Uy ) (). As before, we will use P, E, to denote the probability measure and expectation
under which X (0) = x. Likewise, we let P, E; correspond to the case that X is initialized at stationarity. The purpose
of this section is to develop a number of estimates which will be useful for determining the amount of time required
by X in order to cover subsets S of V (G). We consider two different regimes depending on the size of S. If S is large,
we will estimate the amount of time it takes for X to visit #,(G) distinct vertices in S. If S is small, we will estimate
the amount of time it takes for X to visit 1/2 of the vertices in S.

3.1. Large sets

In this subsection, we will prove that the amount of time it takes for X to visit t* = £,,(G) distinct elements of a large
set of vertices S € V(G) by time ¢ = constantt* /7 (S) is stochastically dominated by a geometric random variable
whose parameter depends on #* /] (G). The main result is:

Proposition 3.1. Assume X satisfies part (B) of Assumption 1.2 with constants K,. Let S C V(G) consist of at least
2K>t4(G)/ miny.y~x G(x, y) elements for x, y € V(G) adjacent and let

_ 2(K2+2)1(9)
- 7(S)

There exists a universal constant C > 0 such that for every x € V(G), we have that

P, [Cs(l‘) = fu(g)] = exp<_cti:1((gg)) ) ‘

Recall that Lg(¢) = Zi:o 1{x(s)es) is the amount of time that X spends in S up to time ¢. The proof of Propo-
sition 3.1 consists of several steps. First we show that Lg () is large with high probability. This is done in Proposi-
tion 1.6, which we will deduce from [8], Theorem 1, shortly, and states that the probability that Lg(¢) is less than 1/2
its mean is exponentially small in ¢. Then, in order to show that X visits many vertices in S, we need to rule out the
possibility of X concentrating most of its local time in a small subset of S. This is accomplished in Lemma 3.2. We
now proceed to the proof of Proposition 1.6.

Proof of Proposition 1.6. We rewrite the event

S ! S
{ES(I)SI¥} _ igﬂxs)w(l—n(sw?)}, 3.1)
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where f(x) = 1gc(x). Let € = m(S)/2 and u = E;[f(X(¢#))] = 1 — 2¢. The case € > 1/4 follows immediately
from [8], Equation 3, in the statement of [8], Theorem 1, so we will only consider the case € € (0, 1/4) here. Let
w=1—u=2¢€.Forxe(0,1),]let

I(x):—xlog( Lt o ) —flog( ot 1o )
1—2x/(VA+1) 1—2x/(WA+1))

where x =1 — x and
4 oxx
pur(l — ro)?

Forx e [u,u+€]=[1—2¢,1—¢€],e €(0,1/4), and A9 > 1/2, we note that

A=1+ (3.2)

1/2 20

A—70? ~ 25U 5-3)

By [8], Theorem 1, and using the representation (3.1), we have that
P, [ﬁs(t) < te] < exp(—l(u + e)t).

Since I () =1I'(n) =0 and 1”(x) = (+/Axx)~" (see [8], Appendix B), we can write

1(u+e)—/”+6/x U dydx (3.4)
n u NAyYy ’ .

where y = 1 — y. Inserting the bounds from (3.3), we thus see that the right side of (3.4) admits the lower bound

1—xo [17€ _ (=2

X
1
= —dydyr > ——F—
/20 Ji-2¢ /1—25 2e ]6\/§
for all € € (0, 1/4) and Ao > 3. O

As in the proof of Lemma 2.1, we couple X with a non-lazy random walk Y so that X (r) = Y (N;) where N; =
Z§=0 & and the (&) are i.i.d. with P[§; = 0] =P[§ = 1] = % and are independent of Y. We let Eg(t) denote the
amount of time that Y[(_y,] spends in S (note that this differs slightly from the definition of £ (t) which appeared in
Section 2). In other words, L'§ is the amount of that X spends in S by time 7, not including those times where X does
not move. The next lemma gives a lower bound on the probability that the number Cg(¢) of distinct vertices X visits
in a given set § € V(G) by time ¢ is proportional to E}S/ (). The lower bound for this probability will be given in terms
of the Green’s function G (x, y) for X. Recall its definition from (1.5). Since X is a lazy random walk, we also have
that

G(x,y)<G(x,x) forallx,ye V(). 3.5)
This is a consequence of (2.3).

Lemma 3.2. Fix S C V(G). For each positive integer k and t*, we have that

(3.6)

= -

Y 4%k k
p. [Cs(t)< Es(t])c t ]< 7 ($)g" (0

where

4(0) = max Gry) +(1+ (%)‘U#l{wg)}. 37
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Proof. We want to show that the number of distinct vertices covered is large, thus, we have to exclude cases where the
random walk is concentrated on a small fraction of the set S. Thus, we will exclude all the points from our counting
which are visited more than k times and see that the number of these is still small in expectation.

For t > t,(G), we have P'(x,y) < (1 4+ (2¢)"")7(y) by the definition of #,(G). Thus by a union bound, to return
to x more than once (since the chain Y is non-lazy)

P.[LY () >1]<q@).

Hence by the strong Markov property, the probability that a vertex x is visited more than k times can be bounded from
below by

P [LY (1) > k] <q" ).
Observe
Prlty =s] < Pr[Yy =x] <m(x). (3.8)

Let

LY 0 =LY Oy y=p

xes§

be the total time that ¥ spends at points in S which it visits more than k times by time N;. By (3.8), we have that

2 [L51 )] ZZP s1g* () <t (S)g* (o).

xeS s=0

Applying Markov’s inequality we have that

E[L§, (D] _ () 1)

P [L5, (1) > 1] <

r* - r*
Observe
LY — LY @)
Cs =) Nzra=n = ) Nerozn —ra=n) = ————
xeS xeS

Thus, if the non-lazy chain has visited less than ¢* points at least k times, then the total number of points visited must

LY ()y—r* .
be at least S(Q ! Ji.e.

LE(t) —1*
=0t

{Ls) <1t} c {Cs(l) >

We arrive at

t(S)gk (1)
t* ’

LY @t) —r*
Py I:CS(t) = %] >1- Pﬁ[ﬁg,k(t) > [*] >1-—
which completes the proof of the lemma. 0

Proposition 1.6 gives a lower bound on the probability Lg(¢) is proportionally lower than its expectation,
Lemma 3.2 gives a lower bound on the probability X visits less than a positive fraction of CIS/ (t) — t* vertices in
S by time ¢, and standard large deviations estimates bound the probability that £§ () is proportionally smaller than
Ls(t). By combining these two lemmas, we obtain the following result, which gives a lower bound on the rate at
which X covers vertices in S.
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Lemma 3.3. Fix S C V(G). Then for any positive integer t* and k we have

P, [Cs(l) < %]
7(S) 1 tm(S)g* (1)
< exp(—Cottrel(g)> + exp(—1—6tn(S)) + — 3.9

where the constant C is as in Proposition 1.6 and the function q is as in (3.7).

% Yoy _s%
Proof. On the event {L} (1) > ”Tés)} we have {Cg(t) < %} C{Cs(t) < Es(%
following union bound:

P, [cs(t) < W] <P, [ﬁg(t) < més)}

}. Thus, we can write the

Y L
+ P, [Cs(t) < LSU%}

We can bound the second term from above by Lemma 3.2. For the first term we move back to the lazy chain to get the
following bound from above

P, [ﬁg(z) < @} <P [ﬁs(t) <

t(S)

5 LY <

t(S)
2

] +P, [Es(t) > més) }

We can bound the first term using Proposition 1.6. Conditionally on {Lg(z) > %n(S)}, we note that {Eg(r) < %n(S)}
occurs if X stays in place for at least %H(S ) time steps. Consequently, standard large deviations estimates imply that
the second term above is bounded by exp(— %m(S)). U

We can now easily complete the proof of Proposition 3.1 by ignoring the first #,(G) units of time in order to reduce
to the stationary case, then apply Assumption 1.2 in order to match the error terms in Lemma 3.3.

Proof of Proposition 3.1. Now we set t* = 1,(G). We first observe that
P.[Cs(t) <] < (1+ Q2e))Px[Cs(t — (D)) <1*].

With 7 = 2K,t*/7(S) and using |S| > 2K>t*/miny.y~y G(x,y) for x, y € V(G) adjacent, we see that
~ 5
max G(x,y) <q(f) < - max G(x,y).
yiy~x 2 yiy~x

Combining this with part (B) of Assumption 1.2 implies

1 (8)g 2 (1)
t*

K = )
<2K»q 2(t)§exp< trel(g)). (3.10)

Applying Lemma 3.3 gives the result. Note that we only needed to set t* = £,(G) to match the error terms, i.e. if
part (B) of Assumption 1.2 holds with a better rate than we can increase the size of the set #*. (|

3.2. Small sets

We will now give an upper bound on the rate at which X covers 1/2 the elements of a set of vertices S € V(G),
provided |S| is sufficiently small.
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Proposition 3.4. Fix S C V(G), let s = |S|, and assume that

|G
t(G) < 15

There exists constants Cy, C3 > 0 such that

P, [Cs(CzlglG*(S)) = } < exp(—=Css)

s
2
for all x € V(G).

The main step in the proof of Proposition 3.4 is the next lemma, which gives an upper bound on the hitting time
for S. Its proof is based on the following observation. Suppose that S C V(G) and g = min{r > 0: X (¢) € S}. Let Z
be a non-negative random variable with Z1{;.~;; =0 and Ex[Z1{;;<;}] > 0. Then we have that

Px[rg<t]=%. (3.11)
- Ex[Z|ts <1]
We will take Z to be the amount of time X spends in S.
Lemma 3.5. Fix S C V(G) and let s = |S|. Assume that
14

7 <—.

u(@) < o
There exists a universal constant pg > 0 such that x € V(G) we have

14 £0
P <—|=> .
x[” =% |76
Proof. Let us introduce E = {15 < %}. Observe that
E.[L
P.E]> x[Ls(1G1/s)] .
E:[Ls(1G]/9)|E]
We can bound the numerator from below as follows:
4 _ 1G]
Ex |:£S(T = (1 - (26) I)En ES T - tu(g)
1 4 1
> (1= Qe) )m(S) ——w@)z7 (3.12)

Let Ls(u,t) = L5(t) — Ls(u — 1) be the number of times in the set {u, ..., #} that X spends in S. Then we can express
the denominator as the sum

N

Ex[ﬁs(TS» s + tu(g))|E] +E, |:ES <TS +t (@) +1, |—g|> |Ei|
=: D1+ Dy.

‘We have

Dy < (14 (2e) " )E, [&('%)] <2.
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We will now bound D;. By the strong Markov property, we have that

1(9)
Dy < I?QSXEZ [Ls(0(@)] = I?Ea;iEz ; Lixnesy

= G(z,y) < G*(s).
r?g% (z,y) < G*(s)

Note that G*(s) > 1/2 always holds since the chain is lazy and G (x, x) is an element of the summation, thus with a
smaller constant py we can omit the estimate for D; in the denominator. Putting everything together completes the
proof. O

The remainder of the proof of Proposition 3.4 is based on a simple stochastic domination argument, and goes as
follows.

Proof of Proposition 3.4. Let C, > 0; we will fix its precise value at the end of the proof. That X visits at least
s/2 points in S by the time C>|G|G*(s/2) with probability exponentially close to 1 in s follows from a simple large
deviation estimate of a binomial random variable. Namely, we run the chain for C;G*(s)s/2 rounds, each of length
2|G|/s. We let Sy = S and inductively let S; = S;_; \ {x} if X hits x in the ith round for i > 1. If |S;| > 5/2, the
hypotheses of Lemma 3.5 hold. In this case, the probability that X hits a point in S; in the ith round is at least
p0/G*(si) > po/ G*(s) > 0 for every i. Thus by stochastic domination, we have that

P[Cs(C21GIG*(5)) < s5/2] <P[Z <5/2],

where Z ~ BIN(%G*(S)S, 0o/ G*(s)). By picking C; large enough (C, > 2/pp will do, say) and applying the Cher-
noff bound, we see that

P[Cs(C2IGIG*(5)) < 5/2] < exp(—C3s) (3.13)

for some constant C3 (one can check that C3 = % suffices). This estimate also holds if s = 1. In this case we cover the
point with constant probability in C3|G| steps. (]

4. Proof of Theorem 1.5

We will now work towards completing the proof of Theorem 1.5 by applying the results of the previous section to
describe the process by which X covers V(G). Recall that I/(¢) is the set of vertices of G which X has not visited
by time . We will study the process of coverage in two different regimes: before and after Z/(f) contains at least n*
vertices (recall the definition of n* from part (C) of Assumption 1.2).

To this end, we let

r=max{i: |G| —it(G) = n*},
7= [log, (1G] = rta(9)) ]
and

si=G] —it(@), i=0,...,r1,

Sr . ~
Spi = ik i=1,....,r—1,

sr47=0.
We also define the stopping times

Ty =min{t > 1: U@)| <si}, i=1,....r+7.
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Lemma 4.1. There exists constants Cy4, Cs such that for each 1 <i <r and all x € V(G), we have that

i C
P[] > 5i] < exp(t f(g) <c4log|g| - ﬁr)) @.1)

Proof. Foreachi e {1,...,r}, welet

- 2Kt Dt (99|

i

Si

Proposition 3.1 implies that

P [|U + )| < sivil U] € (i1, 5] = 1 - exp(—cli:l((gg)).

Consequently, it follows that there exists independent variables Z; ~ GEO(1 — exp(—Ct(G)/#e1(G))) such that
T; — T is stochastically dominated by ¢; Z; forall j € {1,...,r}.

Remark 4.2. It becomes clear at this point why the uncovered set needs to be decimated in lengths t,(G): from the
definition of t;,i = 1 and from the proof of Proposition 3.1 we know that t; > t,(G) is needed to re-mix sufficiently
after each trial of collecting the given number of new points.

For 6; > 0, we have that

P.[[U@)| > si] =P:IT; > 1] =P, {Z T;—Tj_1 > z]
j=1

i
< e [ E[e"5%]. 42)
j=1

Note that for every B € (0, 1) there exists « = «(8) > 0 such the moment generating function of a GEO(p) random
variable satisfies

X

ﬁ <e* provided (1 — p)e* <B. 4.3)
Choosing
)
' 2titrel(g)

we have that
P Cty(9) ) t_J _ Cty(G) ) Si
o tet(G)  t 2te1(9) Sj

Hence as s; <sj foralli, j € {1,...,r} with j <i, we have

( Ctu(g) N Ctu(g)) ( Cry (g)
X <e

P\ @ 5 @ ) =T\ 20@)

) <exp(—C/2).

Let @ = a(e~€/?) as in (4.3). Consequently, we can bound the product of exponential moments in (4.2) by

l' " aCry(G)si o 1
| | OitiZ; _ u i

lOg Ex[e tj ./]5(}4 E Qil‘j—T(g) E S_
=1 =1 rel =17
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_ aCs; lz 1 - aCs; log |G
26a(@ S 1G/W@ =] ~ 2@

Inserting this expression into (4.2) gives (4.1). ]
Now we turn to the estimates corresponding to covering of small sets as follows:

Lemma 4.3. There exists constants Cg, C7 such that for all 1 <i <7 and x € V(G), we have that
P[|U@®)] > sr4i]

c
<P.[[U@/2)|> 5]+ exp(sr+i_1 <C6i - mt» (4.4)

Proof. Let
gr+j = C21GIG*(sr4),
where C» is as in Proposition 3.4. Proposition 3.4 implies that
P [[UC + gri )| < srjr1l[UD] € (g js1s sr471] = 1 — exp(—C3s,4.)

for j e {1,...,7}. Consequently, there exists independent random variables Z,; ~ GEO(1 — exp(—C3s,4;)) such
that 7, j — T,4 j—1 is stochastically dominated by g, ; Z, ;. We have that

P.[[U@)| > sr4i] =PulTrqi > 1]
t
fo|: :|+P |:ZTr+J r+/ 1>2:| =5L+D. 4.5)

Using that I} =P[|U(t/2)| > s,] gives the first term in (4.4). We now turn to bound /5. Fixing 6,4; > 0, we have
i
I < e Ortit/2 l_[ E, [eﬁr+iqr+_/ Zm], (4.6)
j=1
We see from (4.3) that here
expOr+iqr+j — Casr4j) <exp(—C3/2) =1 <1
must hold for all j <i. This is satisfied with the particular choice

0 ._Q—S"H
T2, 161G (n)

since j <i then G*(s;) < G*(s;) < G*(n*). Thus by (4.3) there exists « = «(8) > 0 such that we can bound the
exponential moments in (4.6) by

OlC3

log l—[ E eOr+idrj r+/] < abpyi Z qr+j = 2

j=1

iSr_;,_l'.

Inserting this bound into (4.6) gives the second term in (4.4). O
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Lemma 4.4. There are constants Cg, Cg, C19 > 0 such that for
1= (14 a)Cs|G|(1re1(G) + log|G])
and every x € V(G) we have
E.[2Y®1] <1+ Cgexp(—aCiplog(n*)). 4.7)

Proof. We can write

r+7
E [2HO <14+ 25 P[U()] > i)

i=1

For i <r, we have that s;_| =s; + #,(G). By Lemma 4.1, we have that

2Si+tu(g)P[|u(l‘)‘ > t] < exp((si + tu(g)) log2 + tr;(ig) <C4 log |G| — %'t))

By taking Cg (in the definition of ¢) large enough, this is in turn bounded from above by

, log |9
exp<—as, <1 + 1) >> 4.8)

Forr +ie{r+1,...,r +7} we have from (4.4) that

2P [U@)] > sp4i]
< 2P |U@/2)| > 5]+ exp(s,+,~_1 <(C6 +1log?2)i — %t))

The first term admits the same bound as (4.8) with i = r, possibly by increasing Cy if necessary. Using that
i <log, |n*|, by increasing Cg if necessary, from condition (C) it is easy to see that the second term admits the bound

e 01+ 10)) “9)

exp<—asr+i G

Applying condition (C) again, we see that (4.9) is bounded from above by
exp(—asy i log(n*)).
Putting together the estimates we get that for i € {1, ...,7}
2P [U@)| > sr44]

< exp(—asr (1 + ltog(|gg)| )) + exp(—as,4 log(n*)). (4.10)
rel

Summing (4.8) and (4.10) gives (4.7) (the dominant term in the summation comes from when s,; = 1) which proves
the lemma. O

Proof of Theorem 1.5. This is a consequence of Lemma 4.4 and the relationship between #,(G°) and E[24ON given
in (1.9). O
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