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Abstract
Let C and Q be nonempty closed convex sets in RN and RM , respectively, and
A an M by N real matrix. The split feasibility problem (SFP) is to find x ∈ C
with Ax ∈ Q, if such x exist. An iterative method for solving the SFP, called
the CQ algorithm, has the following iterative step:

xk+1 = PC(xk + γ AT (PQ − I )Axk),

where γ ∈ (0, 2/L) with L the largest eigenvalue of the matrix AT A and PC

and PQ denote the orthogonal projections onto C and Q, respectively; that is,
PC x minimizes ‖c − x‖, over all c ∈ C . The CQ algorithm converges to a
solution of the SFP, or, more generally, to a minimizer of ‖PQ Ac − Ac‖ over
c in C , whenever such exist.

The CQ algorithm involves only the orthogonal projections onto C and Q,
which we shall assume are easily calculated, and involves no matrix inverses.
If A is normalized so that each row has length one, then L does not exceed the
maximum number of nonzero entries in any column of A, which provides a
helpful estimate of L for sparse matrices.

Particular cases of the CQ algorithm are the Landweber and projected
Landweber methods for obtaining exact or approximate solutions of the linear
equations Ax = b; the algebraic reconstruction technique of Gordon, Bender
and Herman is a particular case of a block-iterative version of the CQ algorithm.

One application of the CQ algorithm that is the subject of ongoing work
is dynamic emission tomographic image reconstruction, in which the vector
x is the concatenation of several images corresponding to successive discrete
times. The matrix A and the set Q can then be selected to impose constraints on
the behaviour over time of the intensities at fixed voxels, as well as to require
consistency (or near consistency) with measured data.
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1. Introduction

Let C and Q be nonempty closed convex sets in RN and RM , respectively, and A an M by
N real matrix. Let A−1(Q) = {x |Ax ∈ Q} and F = C ∩ A−1(Q). The problem, to find
x ∈ C with Ax ∈ Q, if such x exist, was called the split feasibility problem (SFP) by Censor
and Elfving [9], where they used their multidistance method to obtain iterative algorithms for
solving the SFP. Their algorithms, as well as others obtained later (see [8]) involve matrix
inverses at each step. In this paper we present a new iterative method for solving the SFP,
called the CQ algorithm, that does not involve matrix inverses. A block-iterative CQ algorithm,
the BICQ method, is also given here. Particular cases of the CQ algorithm are the Landweber
and projected Landweber methods for obtaining exact or approximate solutions of the linear
equations Ax = b; the algebraic reconstruction technique (ART) of Gordon et al [14] is a
particular case of the BICQ.

A number of image reconstruction problems can be formulated as split feasibility
problems. The vector x represents a vectorized image, with the entries of x the intensity
levels at each voxel or pixel. The set C can be selected to incorporate such features as non-
negativity of the entries of x , while the matrix A can describe linear functional or projection
measurements we have made, as well as other linear combinations of entries of x on which we
wish to impose constraints. The set Q then can be the product of the vector of measured data
with other convex sets, such as non-negative cones, that serve to describe the constraints to be
imposed.

One particular application that is the subject of ongoing work is dynamic emission
tomographic image reconstruction, in which the vector x is the concatenation of several images
corresponding to successive discrete times. The matrix A and the set Q can then be selected
to impose constraints on the behaviour over time of the intensities at fixed voxels, as well as
to require consistency (or near consistency) with measured data.

Denote by PC and PQ the orthogonal projection (sometimes called the proximity map)
onto C and Q, respectively; that is, PC x minimizes ‖c − x‖, over all c ∈ C . The CQ algorithm
to solve the SFP is the following.

Algorithm 1.1. Let x0 be arbitrary. For k = 0, 1, . . . , let

The CQ algorithm

xk+1 = PC(xk + γ AT (PQ − I )Axk), (1.1)

where γ ∈ (0, 2/L) and L denotes the largest eigenvalue of the matrix AT A.
Note that the CQ algorithm involves only the orthogonal projections onto C and Q, which

we shall assume are easily calculated, and involves no matrix inverses. Later we show that if
A is normalized so that each row has length one, then L does not exceed the maximum number
of nonzero entries in any column of A.

Let K j , j = 1, . . . , J , be nonempty closed convex subsets of RM , with nonempty
intersection K . The convex feasibility problem (CFP) is to find an element of K . Solving
the SFP is equivalent to finding a member of the intersection of the two sets Q and
A(C) = {Ac|c ∈ C}, or of the intersection of the two sets A−1(Q) and C , and so the SFP can
be viewed as a particular case of the CFP.

In [11] Cheney and Goldstein considered the case of two nonempty closed convex sets K1

and K2 in Hilbert space. With Pj denoting the orthogonal projection (proximity map) onto K j ,
for j = 1, 2, respectively, and T = P1 P2, they show that the sequence xk = T k x0 obtained by
alternating distance minimization converges to a fixed point of T if either (a) one of the two
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sets is compact, or (b) one set is finite dimensional and the distance between the two sets is
attained. In particular, when the intersection of the two convex sets is nonempty, the sequence
{xk} converges to a member of that intersection, in either of the two cases above. This result
can be extended in several directions, to include finitely many convex sets with nonempty
intersection and projections involving generalized distances; for details see the survey papers
by Deutsch [12] and Bauschke and Borwein [2] and the recent books by Censor and Zenios [10]
and Stark and Yang [21].

If we try to use the Cheney–Goldstein approach to solve the SFP, we encounter the difficulty
of calculating the orthogonal projection onto the set A(C) or onto A−1(Q). In this paper we
shall assume that the orthogonal projections PC and PQ are easily calculated; the main virtue
of the CQ algorithm is that it involves only the maps PC and PQ at each step.

For the case in which M = N and A is invertible, the map P AT A
A−1(Q)

= A−1 PQ A is

an oblique projection onto the set A−1(Q); that is, A−1 PQ(Ax) minimizes the function
f (z) = (z − x)T AT A(z − x) over all z in A−1(Q). This suggests the possibility of modifying
the Cheney–Goldstein method to include one orthogonal and one oblique projection. But the
following counterexample shows us that the iterative sequence

xk+1 = PC P AT A
A−1(Q)

(xk) (1.2)

need not converge to a solution. Let M = N = 2, with C the horizontal axis, Q the vertical
axis and A the matrix

A =
[

1 −1
−1 0

]
.

Let x0 = (1, 0)T . Then Ax0 = (1,−1)T , PQ(Ax0) = (0,−1)T , A−1 PQ(Ax0) = (1, 1)T

and PC A−1 PQ(Ax0) = (1, 0)T = x0. The solution to the SFP in this case is (0, 0), to which
the iterative sequence given by (1.2) fails to converge.

It is possible, however, to formulate convergent iterative algorithms using projections
based on distinct generalized distances, provided a form of generalized relaxation is included
at each step. Such an algorithm, called the multidistance successive generalized projection
(MSGP) method, is the main topic of the papers [7] and [8]. The CQ algorithm involves a
relaxation parameter γ in the set (0, 2/L), where L is the largest eigenvalue of the matrix
AT A; for γ ∈ (0, 1/L] the CQ algorithm is a particular case of the MSGP and earlier versions
of this paper derived the CQ algorithm and established its convergence by relating it to the
MSGP method. Here, however, we prove convergence of the CQ algorithm directly and for
the wider bounds on the parameter γ .

In a later section we shall consider the CFP in more detail and describe the connection
between the CQ algorithm and the MSGP method for solving the CFP.

2. Convergence of the CQ algorithm

Let F be the (possibly empty) set of all c ∈ C at which the function ‖PQ Ac − Ac‖ attains its
minimum value over C . We have the following theorem concerning the CQ algorithm.

Theorem 2.1. Let F be nonempty. Then the sequence {xk} defined by equation (1.1) converges
to a member of F, for any starting vector x0.

Corollary 2.1. The sequence {xk} defined by equation (1.1) converges to a solution of the SFP,
whenever such solutions exist.

Unlike previously published iterative algorithms for the SFP in [8] and [9], this algorithm
involves no nested matrix inverses. Each step is easily performed, assuming, as we do here,
that the maps PC and PQ are themselves easy to implement.
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The orthogonal projection PC x of x onto C is characterized by the following useful
inequality: for all c ∈ C and all x we have

〈c − PC x, PC x − x〉 � 0. (2.1)

2.1. Some preliminary results

In this section we establish some facts concerning the CQ algorithm that we shall need in the
proof of convergence. We show that ĉ is a fixed point of the CQ iteration step if and only if ĉ
minimizes the function ‖PQ(Ac) − Ac‖ over c ∈ C . Such fixed points need not exist, as the
following example shows. Let C be the subset of R2 consisting of all points (x, y)T with x > 0
and y � 1/x . Then C is closed. Let A(x, y)T = x . Then A(C) is not closed; the origin is in
the closure of A(C). Let Q = {0}; then, for each c = (x, y)T we have ‖PQ(Ac)− Ac‖ = ‖x‖,
which can be made arbitrarily close to zero, but not equal to zero. Our main theorem is that the
CQ algorithm converges to a fixed point of the CQ iteration, for all starting vectors, whenever
such fixed points exist.

For each x let

Sx = x + γ AT (PQ − I )Ax (2.2)

and T x = PC(Sx); then the CQ iterative step is xk+1 = T xk . We begin with the following
proposition.

Proposition 2.1. The vector ĉ in C is a fixed point of the map T , that is, T ĉ = ĉ, if and only
if ĉ minimizes the function ‖PQ(Ac) − Ac‖ over c ∈ C.

Proof of the proposition. Assume that ĉ minimizes the function ‖PQ(Ac)− Ac‖ over c ∈ C .
Then

‖PQ(Aĉ) − Aĉ‖ � ‖PQ(Ac) − Ac‖ � ‖q − Ac‖
for all c ∈ C and q ∈ Q. Choosing q = PQ(Aĉ) we find that

‖PQ(Aĉ) − Aĉ‖ � ‖Ac − PQ(Aĉ)‖
for all c ∈ C , which tells us that Aĉ = PA(C)(PQ(Aĉ)). The inequality (2.1) then gives us that

〈Ac − Aĉ, Aĉ − PQ(Aĉ)〉 � 0,

for all c ∈ C . From

‖c − Sĉ‖2 = ‖c − ĉ‖2 + 2γ 〈Ac − Aĉ, Aĉ − PQ(Aĉ)〉 + terms without c

it follows that ĉ minimizes the function ‖c − Sĉ‖ over c ∈ C , or that ĉ = PC(Sĉ) = T ĉ.
Now assume that T ĉ = ĉ. Then, ĉ = PC(Sĉ), so that, by inequality (2.1), we have

〈c − ĉ, ĉ − Sĉ〉 � 0,

for all c ∈ C . Therefore,

〈Ac − Aĉ, Aĉ − PQ(Aĉ)〉 � 0,

for all c ∈ C . We also have

〈PQ(Aĉ) − PQ(Ac), Aĉ − PQ(Aĉ)〉 � 0.

Adding, we obtain

〈PQ(Ac) − Ac, PQ(Aĉ) − Aĉ〉 � ‖PQ(Aĉ) − Aĉ‖2.
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Applying the Cauchy inequality, we have

‖PQ(Ac) − Ac‖ � ‖PQ(Aĉ) − Aĉ‖.
This completes the proof. �

The inequality (2.1) tells us that, for any C , x and z, we have

〈PC z − PC x, PC x − x〉 � 0 and 〈PC z − PC x, z − PC z〉 � 0.

Adding, we obtain

〈PC z − PC x, PC x − PC z − x + z〉 � 0,

or

〈PC z − PC x, z − x〉 � ‖PC z − PC x‖2; (2.3)

therefore the operator PC is firmly nonexpansive [22]. From the Cauchy inequality we conclude
that

‖PC x − PC z‖ � ‖x − z‖; (2.4)

that is, the operator PC is non-expansive. In fact, we can say somewhat more (see [11]).

Lemma 2.1. For any closed nonempty convex set C in RN the inequality (2.4) holds, with
equality only if ‖PC x − x‖ = ‖PC z − z‖.

2.2. Proof of the convergence theorem for the CQ algorithm

Let F be nonempty and ĉ a member of F . Then ĉ = PC(Sĉ) and

‖ĉ − xk+1‖ = ‖PC(Sĉ) − PC(Sxk)‖ � ‖Sĉ − Sxk‖.
We shall show that

‖Sĉ − Sxk‖ � ‖ĉ − xk‖.
From the definition of Sx we have

‖Sĉ − Sxk‖2 = ‖ĉ − xk + γ AT (PQ − I )Aĉ − γ AT (PQ − I )Axk‖2.

Expanding the term on the right side we get

‖Sĉ − Sxk‖2 = ‖ĉ − xk‖2 + 2γ 〈Aĉ − Axk, PQ Aĉ − PQ Axk + Axk − Aĉ〉
+ γ 2‖AT (PQ − I )Aĉ − AT (PQ − I )Axk‖2 � ‖ĉ − xk‖2 − 2γ ‖Aĉ − Axk‖2

+ 2γ 〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 + γ 2 L‖(PQ − I )Aĉ − (PQ − I )Axk‖2.

Using

‖(PQ − I )Aĉ − (PQ − I )Axk‖2 = ‖PQ Aĉ − PQ Axk‖2

− 2〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 + ‖Aĉ − Axk‖2

in the line above, we find that

‖Sĉ − Sxk‖2 � ‖ĉ − xk‖2 − (2γ − γ 2 L)‖Aĉ − Axk‖2 + γ 2 L(‖PQ Aĉ − PQ Axk‖2

− 〈Aĉ − Axk, PQ Aĉ − PQ Axk〉)
+ (2γ − γ 2 L)〈Aĉ − Axk, PQ Aĉ − PQ Axk〉.

From equation (2.3) we have

‖PQ Aĉ − PQ Axk‖2 − 〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 � 0
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and from Cauchy’s inequality and the nonexpansiveness of the projection PQ we obtain

〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 � ‖Aĉ − Axk‖2.

Since 2γ − γ 2 L � 0, it follows that

‖Sĉ − Sxk‖2 � ‖ĉ − xk‖2.

More precisely, we have

‖ĉ − xk‖2 − ‖ĉ − xk+1‖2 � γ 2 L(〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 − ‖PQ Aĉ − PQ Axk‖2)

+ (2γ − γ 2 L)(‖Aĉ − Axk‖2 − 〈Aĉ − Axk, PQ Aĉ − PQ Axk〉). (2.5)

Therefore, the sequence {‖ĉ − xk‖2} is decreasing (so the sequence {xk} is bounded). Also

{〈Aĉ − Axk, PQ Aĉ − PQ Axk〉 − ‖PQ Aĉ − PQ Axk‖2} → 0

and

{‖Aĉ − Axk‖2 − 〈Aĉ − Axk, PQ Aĉ − PQ Axk〉} → 0,

since both sequences are non-negative.
Let x∗ be an arbitrary cluster point of the sequence {xk}. Then we have

〈Aĉ − Ax∗, PQ Aĉ − PQ Ax∗〉 = ‖PQ Aĉ − PQ Ax∗‖2

and

〈Aĉ − Ax∗, PQ Aĉ − PQ Ax∗〉 = ‖Aĉ − Ax∗‖2,

so that

‖Aĉ − Ax∗‖ = ‖PQ Aĉ − PQ Ax∗‖.
From lemma 2.1 it follows that

‖PQ Aĉ − Aĉ‖ = ‖PQ Ax∗ − Ax∗‖,
so that x∗ is in the set F . Replacing the generic ĉ ∈ F with x∗, we see that the sequence
{‖x∗−xk‖} is decreasing; but a subsequence converges to zero,so the entire sequence converges
to zero. This completes the proof of the theorem.

We turn now to two particular cases of the CQ algorithm, the Landweber and projected
Landweber methods for solving Ax = b.

3. The Landweber methods

As particular cases of the CQ algorithm we obtain the Landweber [17] and projected
Landweber methods. These algorithms are discussed in some detail in the book by Bertero
and Boccacci [3], primarily in the context of image restoration within infinite-dimensional
spaces of functions (see also [18]). With C = RN and Q = {b} the CQ algorithm becomes
the Landweber iterative method for solving the linear equations Ax = b.

The Landweber algorithm

With x0 arbitrary and k = 0, 1, . . . , let

xk+1 = xk + γ AT (b − Axk). (3.1)

For general nonempty closed convex C we obtain the projected Landweber method for finding
a solution of Ax = b in C .
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The projected Landweber algorithm

For x0 arbitrary and k = 0, 1, . . . , let

xk+1 = PC(xk + γ AT (b − Axk)). (3.2)

From the proof of convergence of the CQalgorithm it follows that the Landweber algorithm
converges to a least-squares solution of Ax = b and the projected Landweber algorithm
converges to a minimizer of ‖Ac − b‖ over all c ∈ C , whenever such solutions exist.

3.1. An example: the SART

The simultaneous algebraic reconstruction technique (SART) of Anderson and Kak [1] is an
iterative method for solving Ax = b for the case in which A is a non-negative matrix. We
prove convergence by showing SART to be a particular case of the Landweber method and
determining the largest eigenvalue of AT A.

Let A be an M by N matrix with non-negative entries. Let Ai+ > 0 be the sum of the
entries in the i th row of A and A+ j > 0 be the sum of the entries in the j th column of A.
Consider the (possibly inconsistent) system Ax = b. The SART algorithm has the following
iterative step:

xk+1
j = xk

j +
1

A+ j

M∑
i=1

(bi − (Axk)i )/Ai+.

We make the following changes of variables:

Bi j = Ai j/(Ai+)
1/2(A+ j)

1/2, z j = x j(A+ j)
1/2, and ci = bi/(Ai+)

1/2.

Then the SART iterative step can be written as

zk+1 = zk + BT (c − Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The convergence of SART
will follow from theorem 2.1, once we have shown that the largest eigenvalue of BT B is less
than two; in fact, we show it is one.

If BT B had an eigenvalue greater than one and some of the entries of A are zero, then,
replacing these zero entries with very small positive entries, we could obtain a new A whose
associated BT B also had an eigenvalue greater than one. Therefore, we assume, without loss
of generality, that A has all positive entries. Since the new BT B also has only positive entries,
this matrix is irreducible and the Perron–Frobenius theorem applies. We shall use this to
complete the proof.

Let u = (u1, . . . , uN )T with u j = (A+ j)
1/2 and v = (v1, . . . , vM )T , with vi = (Ai+)

1/2.
Then we have Bu = v and BT v = u; that is, u is an eigenvector of BT B with associated
eigenvalue equal to one, and all the entries of u are positive, by assumption. The Perron–
Frobenius theorem applies and tells us that the eigenvector associated with the largest
eigenvalue has all positive entries. Since the matrix BT B is symmetric its eigenvectors are
orthogonal; therefore u is an eigenvector associated with the largest eigenvalue of BT B . The
convergence of SART follows.

4. A helpful eigenvalue inequality

The CQ algorithm employs the relaxation parameter γ in the interval (0, 2/L), where L is the
largest eigenvalue of the matrix AT A. Choosing the best relaxation parameter in any algorithm
is a nontrivial procedure. The inequality (2.5) in the proof of convergence of the CQ algorithm,
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as well as experience with related algorithms, suggests that, generally speaking, we want to
select γ nearer to its upper bound 2/L than to zero. In practice, it would be helpful to have a
quick method for estimating L. In this section we present such a method, particularly useful
for sparse matrices.

Let A be an M by N matrix. For each n = 1, . . . , N , let sn > 0 be the number of nonzero
entries in the nth column of A and let s be the maximum of the sn . Let G be the M by N
matrix with entries

Gmn = Amn

/( N∑
l=1

sl A2
ml

)1/2

.

Lent has shown that the eigenvalues of the matrix GT G do not exceed one [19]. The following
proposition and its proof are straightforward extensions of Lent’s work.

Proposition 4.1. Let A be an M by N matrix. For each m = 1, . . . , M let νm = ∑N
n=1 A2

mn >

0. For each n = 1, . . . , N let σn = ∑M
m=1 emnνm, where emn = 1 if Amn �= 0 and emn = 0

otherwise. Let σ denote the maximum of the σn. Then the eigenvalues of the matrix AT A do
not exceed σ . If A is normalized so that the Euclidean length of each of its rows is one, then
the eigenvalues of AT A do not exceed s, the maximum number of nonzero elements in any
column of A.

Proof. Let AT Av = cv for some nonzero vector v. We show that c � σ . We have
AAT Av = cAv and so wT AAT w = vT AT AAT Av = cvT AT Av = cwT w, for w = Av.
Then ( M∑

m=1

Amnwm

)2

=
( M∑

m=1

Amnemnwm

)2

�
( M∑

m=1

A2
mnw

2
m/νm

)( M∑
m=1

νme2
mn

)

=
( M∑

m=1

A2
mnw

2
m/νm

)
σn �

( M∑
m=1

A2
mnw

2
m/νm

)
σ.

Therefore,

wT AT Aw =
N∑

n=1

( M∑
m=1

Amnwm

)2

�
N∑

n=1

( M∑
m=1

A2
mnw

2
m/νm

)
σ.

We also have

wT AT Aw = c
M∑

m=1

w2
m = c

M∑
m=1

w2
m

( N∑
n=1

A2
mn

)/
νm = c

M∑
m=1

N∑
n=1

w2
m A2

mn

/
νm .

The result follows immediately. �
If we normalize A so that its rows have length one, then the trace of the matrix AAT is

tr(AAT ) = M , which is also the sum of the eigenvalues of AT A. Consequently, the maximum
eigenvalue of AT A does not exceed M; the result above improves that considerably, if A is
sparse and so s � M .

5. The CFP and the MSFP algorithm

For j = 1, . . . , J , let Pj denote the orthogonal projection onto the nonempty closed convex
set K j ⊆ RN and T = PJ PJ−1 · · · P1. If the intersection K of the K j is nonempty then, for
any starting vector x0, the sequence {T k x0} converges to a member of K . This follows from
the results on the method of successive orthogonal projections (SOP) in [15]. In [4] Bregman
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presents the method of successive generalized projections (SGP); he shows that convergence
holds if the orthogonal projections Pj are replaced by projections defined with respect to a
single fixed Bregman generalized distance. Counterexamples demonstrate that convergence
may be lost if T is composed of projections associated with different Bregman distances. Little
is known about the case of empty K , beyond the Cheney–Goldstein theorem for the case of
orthogonal projections and J = 2.

The MSGP algorithm extends Bregman’s iterative SGP procedure to include Bregman
projections corresponding to multiple Bregman distances. We discuss the MSGP briefly,
and ask the reader to consult the book by Censor and Zenios [10] for details and definitions
regarding Bregman functions, distances and projections.

Let h and f be Bregman functions with zones Sh, S f , respectively. Assume that their
associated Bregman distances, Dh and D f satisfy Dh(x, z) � D f (x, z) for all x ∈ Sh ∩S f , z ∈
Sh ∩ S f . For x ∈ Sh ∩ S f , y ∈ S f , z ∈ Sh ∩ S f let G(x; y, z, f, h) be the function of x defined
as follows:

G(x; y, z, f, h) = D f (x, y) + Dh(x, z) − D f (x, z). (5.1)

Let f j , j = 1, . . . , J , be a family of Bregman functions and let h be a Bregman function that
‘dominates’ the family, that is, for which Dh(x, z) � D f j (x, z), for all j and all x ∈ Sh ∩ S f j

and z ∈ Sh ∩ S f j . Let S = Sh ∩ (∩J
j=1Sj ). Denote by P

f j

K j
x the minimizer of D f j (z, x), over

z ∈ K j . The MSGP algorithm is the following.

Algorithm 5.1 (the MSGP algorithm). For k = 0, 1, . . . , and having calculated xk, we
obtain xk+1 as follows: with j = k(mod J ) + 1, let Gk(x) := G(x; P

f j

K j
(xk), xk, f j , h).

We assume that Gk(x) has a unique minimizer, which we take as xk+1. We assume also that
xk+1 ∈ Sh, so that

∇h(xk+1) = ∇h(xk) − ∇ f j (xk) + ∇ f j (P
f j

K j
(xk)). (5.2)

Finally, we assume that we have cyclic zone consistency; that is, for each k, the vector xk+1

defined by (5.2) is in S fm , m = (k + 1)(mod J ) + 1.

We have the following convergence theorem.

Theorem 5.1. Let K ∩ S be nonempty. Any sequence xk obtained from the iterative scheme
given by algorithm 5.1 converges to a member of K ∩ S.

As we noted earlier, when A is invertible the oblique projection P AT A
A−1(Q)

is A−1 PQ A, so can

be calculated easily, if PQ can be. Using the MSGP algorithm, with K1 = C and K2 = A−1(Q),
and with distances and projections defined using the Bregman functions h(x) = f1(x) = x T x
and f2(x) = x T AT Ax , we obtain the CQ algorithm, provided that γ ∈ (0, 1/L]. As shown
above, the CQ algorithm is valid even for γ ∈ (0, 2/L) and for arbitrary matrix A.

6. Regularization and the CQ algorithm

Many of the problems in image reconstruction and remote sensing for which we might use the
CQ algorithm are ill conditioned; the data are noisy and some form of regularization is required
to avoid noisy reconstructions. We wish to point out that regularization can be included within
the CQ algorithm, although other methods, such as using Bayesian techniques or penalty
functions, or simply stopping the iteration early, may prove superior. For example, if we wish
to solve Ax = b we can use the Landweber method, which is the CQ algorithm with C = RN

and Q = {b}. But, if the data vector b is noisy and AT A has some small eigenvalues, an exact
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or least-squares solution may be useless. Instead, we might let Q = {y| ‖y−b‖ � ε}, for some
small ε > 0. Another choice for Q could be Q = {y||ym − bm| � ε|bm|, m = 1, . . . , M}. If
we are using the projected Landweber method, with, say, C the non-negative cone in RN , we
could enlarge C to permit slightly negative entries in x . If we are performing Fourier band-
limited extrapolation via the Gerchberg method (see [3]), which is another particular case of
the Landweber algorithm, we could expand the frequency band to permit out-of-band noise
in the data. To illustrate the sort of difficulty that can arise, we present a result concerning
the behaviour of the projected Landweber algorithm for the case in which the set C is the
non-negative cone.

For concreteness, imagine that the vector x represents a vectorization of a two-dimensional
image, with each of the N entries of x equal to the non-negative image intensity at the
corresponding pixel; ultimately, these intensities will be quantized to grey-levels, with zero
denoting (say) black, but we view them as continuous for now. Suppose that our data consist
of linear functional values, so that we wish to solve Ax = b, a system of M linear equations
in N unknowns, for x � 0.

It is natural to suppose that a coarse image can be made finer by using a greater number
of pixels in the image. The result below shows that, counter to our intuition, the use of more
pixels can make the image worse.

Suppose that the system Ax = b has no non-negative solution. Let F denote the set of all
x̂ � 0 that minimize the function ‖Ax − b‖ over all non-negative x ; although x̂ need not be
unique, the vector Ax̂ is unique, by the strict convexity of Euclidean space. We know from the
Kuhn–Tucker theorem (see [20]) that (AT (b − Ax̂))n = 0 for all n for which there is x̂ ∈ F
whose nth entry is positive.

Let

D = {n| n ∈ {1, 2, . . . , N} and x̂n > 0, for some x̂ ∈ F}.
Let B be the matrix formed from A by removing those columns of A whose index is not a
member of D. Then we have BT (b − Ax̂) = 0. If the number of rows of B does not exceed
the number of columns and B has full rank, then the mapping induced by BT is one-to-one.
Consequently b = Ax̂ , which contradicts our assumption. Therefore, if we assume that A and
any matrix obtained from A by deleting columns have full rank, then the cardinality of the set
D cannot exceed M − 1. In that case all the vectors x̂ in F are supported on the entries in set
D, so x̂ is unique and has fewer than M nonzero entries, regardless of how large we make N .
A similar result was obtained in [5] for likelihood maximization.

7. Applications of the CQ algorithm in tomography

To illustrate how an image reconstruction problem can be formulated as an SFP, we consider
briefly single-photon emission computed tomography (SPECT) image reconstruction. The
objective in SPECT is to reconstruct the internal spatial distribution of intensity of a
radionuclide from counts of photons detected outside the patient. In static SPECT the intensity
distribution is assumed constant over the scanning time. Our data are photon counts at the
detectors, forming the positive vector b and we have a matrix B of detection probabilities; our
model is Bx = b, for x a non-negative vector. We could then take A = B , Q = {b} and
C = RN

+ , the non-negative cone in RN .
In dynamic SPECT [13] the intensity levels at each voxel may vary with time. The

observation time is subdivided into, say, T intervals and one static image,call it x t , is associated
with the time interval denoted by t , for t = 1, . . . , T . The vector x is the concatenation of
these T image vectors x t . The discrete time interval at which each data value is collected
is also recorded and the problem is to reconstruct this succession of images. Because the
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data associated with a single time interval are insufficient, by themselves, to generate a useful
image, one often uses prior information concerning the time history at each fixed voxel to
devise a model of the behaviour of the intensity levels at each voxel, as functions of time.
One may, for example, assume that the radionuclide intensities at a fixed voxel are increasing
with time, or are concave (or convex) with time. The problem then is to find x � 0 with
Bx = b and Dx � 0, where D is a matrix chosen to describe this additional prior information.
For example, we may wish to require that, for each fixed voxel, the intensity is an increasing
function of (discrete) time; then we want

x t+1
j − x t

j � 0,

for each t and each voxel index j . Or, we may wish to require that the intensity at each voxel
describes a concave function of time, in which case non-negative second differences would be
imposed:

(x t+1
j − x t

j) − (x t+2
j − x t+1

j ) � 0.

In either case, the matrix D can be selected to include the left sides of these inequalities, while
the set Q can include the non-negative cone as one factor.

Application of the CQ algorithm to dynamic SPECT is the subject of ongoing work and
will not be discussed further here.

8. The SFP and the block-iterative CQ algorithm

Experience with algorithms such as the expectation maximization maximum likelihood
(EMML) method suggests strongly that significant acceleration of convergence of the CQ
algorithm can be had through the use of block-iterative variants (see [6]). We present such a
block-iterative version of the CQ algorithm now.

For j = 1, . . . , J let A j be an M j by N matrix and Q j a nonempty closed convex subset
of RM j . We wish to find x ∈ RN with x ∈ C and A j x ∈ Q j , for j = 1, . . . , J . We could, of
course, apply the CQ algorithm, once we concatenate the matrices A j to form a single matrix
A and take Q to be the product of the sets Q j . Instead, we consider a block-iterative extension
of the CQ algorithm.

We operate under the assumption that the orthogonal projections onto the sets Q j are
easily calculated. The iterative algorithm we obtain we call the block-iterative CQ, or BICQ,
algorithm.

The BICQ algorithm

Let x0 be arbitrary. For k = 0, 1, . . . , and j (k) = k (mod J ) + 1 let

xk+1 = PC(xk + γ j (k) AT
j (k)(PQ j (k)

− I )(A j (k)x
k)), (8.1)

with γ j ∈ (0, 2/L j ), where L j denotes the largest eigenvalue of the matrix AT
j A j .

Essentially the same proof as for the CQ algorithm establishes that the BICQ algorithm
converges to a vector ĉ ∈ C with A j ĉ ∈ Q j , for all j , whenever such vectors ĉexist. Experience
with similar algorithms suggests that convergence is accelerated most when J , the number of
blocks, is large and the relaxation parameters γ j are chosen near their upper bounds, rather
than near to zero.

The BICQ becomes the ART of Gordon et al [14] (see also [16]) for solving Ax = b if
we select each block to contain exactly one row index and the corresponding matrix to be that
row of A.



452 C Byrne

If the system of equation Ax = b is inconsistent, the ART will not converge to a single
vector, but to a limit cycle, consisting of (usually) as many separate vectors as there are rows
in A. We can obtain the least-squares approximate solution of Ax = b using a modification
of ART that we call the double ART (DART). The DART involves two applications of ART,
both to consistent systems of equations. First, use ART to solve AT w = 0, starting at b = w0.
The limit, w∗, is then the orthogonal projection of b onto the null space of AT . Now apply
ART again to the consistent system Ax = b − w∗; the limit is the least-squares approximate
solution of Ax = b closest to x0. If we normalize A so that its rows have length one, then x∗
is the geometric least-squares approximate solution closest to x0.

9. Summary

An image reconstruction problem can often be formulated as a CFP, in which we seek a
(vectorized) image x in the intersection of finitely many convex sets. The SFP is a special
case of the CFP of interest to us here. Let C ⊂ RN and Q ⊂ RM be convex sets and A an
M by N matrix. The SFP is to find x ∈ C with Ax ∈ Q, if such x exist. We often find that
it is easy to calculate the orthogonal projections PC and PQ onto C and Q, respectively, but
not the orthogonal projections onto A(C) = {z| z = Ax, x ∈ C} or A−1(Q) = {x | Ax ∈ Q}.
The sequence {xk} generated by our CQ algorithm converges to a solution of the SFP, or, more
generally, to a minimizer of the function ‖PQ Ac − Ac‖ over c ∈ C , whenever such exist, for
any scalar γ in the interval (0, 2/L), where L is the largest eigenvalue of AT A.

The main points to note about the CQ algorithm are that it involves only easily calculated
orthogonal projections and it requires no matrix inversions. When the matrix A is sparse, the
upper bound L is easily estimated from the number of nonzero entries of A; this not only makes
the CQ algorithm easier to implement, but it also accelerates the convergence by permitting γ

to take on larger values.
The CQ algorithm can be extended to a block-iterative version, the BICQ, which may also

provide further acceleration.
The application of the CQ algorithm to dynamic tomographic image reconstruction is the

subject of ongoing work.
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