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This paper presents a variant of Vogel’s approximation method (VAM) for transportation
problems. The importance of determining efficient solutions for large sized transporta-
tion problems is borne out by many practical problems in industries, the military, etc.
With this motivation, a few variants of VAM incorporating the total opportunity cost
(TOC) concept were investigated to obtain fast and efficient solutions. Computational
experiments were carried out to evaluate these variants of VAM. The quality of solu-
tions indicates that the basic version of the VAM coupled with total opportunity cost
(called the VAM-TOQC) yields a very efficient initial solution. In these experiments, on
an average, about 20% of the time the VAM-TOC approach yielded the optimal solu-
tion and about 80% of the time it yielded a solution very close to optimal (0.5% loss of
optimality). The CPU time required for the problem instances tested was very small (on
an average, less than 10s on a 200 MHz Pentium machine with 64 MB RAM).

Keywords: Transportation problem; heuristic; Vogel’s approximation method; total
opportunity cost; computational experiments.

1. Introduction

The transportation problem constitutes an important part of logistics management.
In addition, logistics problems without shipment of commodities may be formulated
as transportation problems. For instance, the decision problem of minimizing dead
kilometers (Raghavendra and Mathirajan, 1987) can be formulated as a transporta-
tion problem (Vasudevan et al., 1993; Sridharan, 1991). The problem is important
in urban transport undertakings, as dead kilometers mean additional losses. It is
also possible to approximate certain additional linear programming problems by
using a transportation formulation (e.g., see Dhose and Morrison, 1996).

Various methods are available to solve the transportation problem to obtain an
optimal solution. Typical/well-known transportation methods include the stepping
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stone method (Charnes and Cooper, 1954), the modified distribution method
(Dantzig, 1963), the modified stepping-stone method (Shih, 1987), the simplex-type
algorithm (Arsham and Kahn, 1989) and the dual-matrix approach (Ji and
Chu, 2002). Glover et al. (1974) presented a detailed computational comparison
of basic solution algorithms for solving the transportation problems. Shafaat and
Goyal (1988) proposed a systematic approach for handling the situation of degen-
eracy encountered in the stepping stone method. Since our intention in this paper
is not to attempt to obtain an optimal solution of the transportation problem, a
detailed literature review on the basic solution methods is not presented.

All the optimal solution algorithms for solving transportation problems need
an initial basic feasible solution to obtain the optimal solution. There are vari-
ous heuristic methods available to get an initial basic feasible solution, such as
“North West Corner” rule, “Best Cell Method,” “VAM — Vogel’s Approximation
Method” (Reinfeld and Vogel, 1958), Shimshak et al.’s version of VAM (Shimshak
et al., 1981), Goyal’s version of VAM (Goyal, 1984), Ramakrishnan’s version of VAM
(Ramakrishnan, 1988) etc. Further, Kirca and Satir (1990) developed a heuristic,
called TOM (Total Opportunity-cost Method), for obtaining an initial basic feasible
solution for the transportation problem. Gass (1990) detailed the practical issues
for solving transportation problems and offered comments on various aspects of
transportation problem methodologies along with discussions on the computational
results, by the respective researchers. Recently, Sharma and Sharma (2000) pro-
posed a new heuristic approach for getting good starting solutions for dual based
approaches used for solving transportation problems. In this paper, the basic idea
of Kirca and Satir (1990) is extended using the VAM procedure.

The paper is organized as follows: In Section 2, Kirca and Satir’s heuristic
(TOM) and the variants of VAM are briefly discussed. A computational experi-
ment carried out to evaluate the variants of VAM and its results are described in
Section 3. Important observations are summarized in the last section.

2. Variants of Vogel’s Approximation Method

Since the basic idea of TOM is extended along with the VAM procedure, TOM
is first briefly discussed here. The TOM is an effective application of the “best
cell method” along with some tie-breaking features on the total opportunity cost
(TOC) matrix. The TOC matrix is obtained by adding the “row opportunity cost
matrix” (row opportunity cost matrix: for each row, the smallest cost of that row is
subtracted from each element of the same row) and the “column opportunity cost
matrix” (column opportunity cost matrix: for each column of the original trans-
portation cost matrix the smallest cost of that column is subtracted from each
element of the same column). When we apply the “best cell method” (least cost
method) on the TOC matrix, if more than one “TOC cell” is competing for alloca-
tion, tie-breakers are used in the following sequence:
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1. Make the allocation to the cell with the smallest cost.

2. In the case of a tie in (1), make allocation to the cell with the largest possible
allocation.

3. In the case of a tie in (2), make allocation to that cell with first occurrence.

Kirca and Satir (1990) claimed that TOM performed as well as, or better than,
VAM for 372 out of 480 problem instances tried out by them. Further, they claimed
that TOM provided optimal solutions to 134 out of 480 problems and VAM did not
result in an optimal solution even once.

As VAM usually yields a better initial solution than the other initial basic feasi-
ble solution methods, the reasoning behind the TOM and the note of Goyal (1991)
motivated us to couple VAM principles and the basis of the TOM to derive two vari-
ants of VAM. These variants are (1) VAM, applied on the TOC matrix [VAM-TOC]
and (2) VAM with tie-breakers applied on the TOC matrix [VAMT-TOC]. Further,
the basic version of VAM and VAM with tie-breakers applied on the original trans-
portation cost matrix (VAM-TC and VAMT-TC, respectively) is also included in
the computational analysis mainly to study the effect of tie-breakers introduced by
Kirca and Satir (1990). Thus, the VAM and three variants of VAM are considered
in this study along with TOM.

The algorithms VAM-TOC and VAMT-TOC follow the steps of Kirca and
Satir (1990) with the exception of allocations, which are done using VAM instead
of the “best cell method” in the TOC matrix. Further, systematic details of these
algorithms are given in Appendix A. The next section deals with the computational
experiments, and the variants of VAM are proposed.

3. Computational Experiments

For evaluating the performance of the VAM and its variants and TOM, compu-
tational experiments were carried out. The experiments and the analysis of the
experimental data are presented in this section. The main goal of the experiment
was to evaluate the quality of the solutions obtained by VAM and its variants and
TOM by comparing them with optimal solutions. An experimental approach of this
sort relies on two elements: a measure of effectiveness and a set of test problems.

3.1. Measure of effectiveness

Since the performance of the algorithms may vary over a range of problem instances,
the performances of the proposed heuristic algorithms are compared using the fol-
lowing measures.

Average relative percentage deviation (ARPD): The ARPD, which indicates the
average performance of the variants of VAM and TOM with respect to the optimal
solution over the number of problem instances, is computed using the following
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equations:

N
ARPD(H) = > RPD(H, ),

=1
RPD(H, i) = {(HHS; — 0S;)/0S;} x 100,

where ARPD(H) is the ARPD of heuristic “H,” where H indicates VAM-TC or
VAMT-TC, or VAM-TOC, or VAMT-TOC; RPD(H,:) is the relative percent-
age deviation between the solution obtained using heuristic “H” and the optimal
solution of the instance “i”; HHS; the heuristic “H” solution (total transportation
cost) of the instance “i”; OS; the optimal solution (total transportation cost) of the

Wy

instance “4,” and N the number of problem instances.

Number of best solutions (NBS): a frequency which indicates the number of instances
the TOM, VAM and its variants yielded a solution within 0-3% loss of optimality
over the number of problem instances.

3.2. Experimental design

The performance of the VAM and its variants, and TOM are compared over 640
problem instances. The problems are randomly generated as per the experimental
design framework presented in Kirca and Satir (1990) but are restricted to “full
dense” transportation problems (the transportation problem is fully dense, if there
exists a route from each origin to each destination). The details of the experimental
design used are as follows:

e Problem size (m supply points X n demand points): The sizes of the trans-
portation problems experimented with are (10 x 20), (10 x 40), (10 x 60), and
(10 x 100).

o Cost structure (Cy;: i =supply point 1, 2,...,m and j =demand point 1,2,...,n):
Problems with four cost ranges (R) are tested. The mean cost is taken to be equal
to 500. The ranges used are

R = (20,100, 500, 1000).

For each range, the costs are randomly generated from the following uniform
distribution:

U (Cy; : [mean cost — R/2, mean cost + R/2]).

e Supply and demand structure (S; and D;): The mean demand is equal to 100.
Given the mean demand, the mean supply is expressed as

Mean supply = K{(n x mean demand)/m},

where K indicates the degree of imbalance between total supply and total
demand. The mean supply values are generated for four imbalance coefficients,
namely K = (1,2,5,10)
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Table 1. Summary of experimental design.

No. Problem factor Levels # Levels

1 Problem size (m x n) {10 x 20; 10 x 40; 10 x 60, 10 x 100} 4

2 Degree of imbalance (K) {1, 2, 5, 10} 4

3 Cost structure — range (R) {20, 100, 500, 1000} 4
Number of problem configurations 4x4x4=064
Problem instances per configuration 10
Total problem instances 64 x 10 = 640

Cost structure (Cj;): U(Cy;: [mean cost — R/2, mean cost + R/2]), where mean cost = 500

Supply (S:): U(S;:[0.75 x mean supply, 1.25 x mean supply]),
where mean supply = [(K X n X mean demand)/m] and mean demand = 100

Demand (Dj): U(Dj:[75,125])

The S; and D; are then generated from the uniform distributions of
U (S;:[0.75 x mean supply, 1.25 x mean supply])
U (D;:[75,125])

The experimental design for generating test problems using the above three
parameters is summarized in Table 1. The experimental design adopted in this
paper is implemented in C++. For each combination of values for [(m x n), K, R],
10 problem instances are randomly generated, yielding a total of 640[ = 10 x (4 x
4 x 4)] problem instances. All the 640 problem instances are unbalanced. For 76 of
these problem instances, the total demand is greater than the total supply. For the
remaining 564 problem instances, the total supply is greater than the total demand.

3.3. Evaluation of VAM and its variants and TOM
against the optimal solution

There are many procedures available in the literature for getting an optimal solu-
tion to the transportation problem. Briefly, the procedure used in this research is as
follows. For each problem instance, a linear programming model is developed and
solved using the optimization package, LINDO (Schrage, 1991). In order to get a
linear programming model for each problem instance, a matrix generator program
was developed and implemented using Turbo C++. The matrix generator program
will convert the problem data, viz. transportation costs, supply as well as demand,
into the required linear programming model of the transportation problem. The
matrix generator program and a sample data file for generating a linear program-
ming model are given in Appendix B.

VAM and each of its variants and TOM were implemented using Turbo C++.
For each problem instance, the heuristic solutions were obtained using VAM and
each of its variants and TOM. The performance of the VAM and its variants and
TOM in comparison with the optimal solution is presented below.
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Performance measures — ARPD: First, for each problem instance, the value
of the “RPD” of each variants of VAM and TOM with respect to the optimal
solution were computed using the equation given in Section 3.1. Secondly, for each
level of [(m x n), K, R], the values of average RPD (ARPD) was computed over
10 problem instances. Further, for each level of [(m x n), K], the average {ARPD}
was computed over 40 problem instances (that is, over the number of cost ranges
“R” and 10 problem instances within each cost range “R”). They are presented in
Table 2.

From Table 2, it is clear that for each variant of VAM and TOM, the values
of average {ARPD} significantly vary over the parameters considered. Therefore,
changes in problem parameters have an influence on the performance of all the
variants of VAM and TOM.

Table 2. Average performance of the variants of VAM and TOM.

Problem factor Average {ARPD} over “R”
Size Degree of Cost structure, Basic variants Proposed variants Kirca and
(m xn) imbalance . Range (R) of VAM of VAM Satir
(k)
VAM- VAMT- VAM- VAMT- TOM
TC TC TOC TOC
10 x 20 1 {20, 100, 500, 1000} 4418 4.42 3.74 3.7 6.44
2 {20, 100, 500, 1000}  10.70 10.70 1.53 1.53 41.06
5 {20, 100, 500, 1000} 12.04 12.04 2.10 2.10 55.07
10 {20, 100, 500, 1000}  18.09 18.09 1.35 1.35 118.10
Overall average 11.31 11.31 2.18 2.18 55.17
10 x 40 1 {20, 100, 500, 1000} 2.73 2.72 2.40 2.40 8.62
2 {20, 100, 500, 1000} 3.78 3.81 0.13 0.13 48.32
5 {20, 100, 500, 1000} 10.13 10.15 0.16 0.16 86.10
10 {20, 100, 500, 1000} 14.81 15.45 0.40 0.40 142.90
Overall average 7.86 8.03 0.77 0.77 71.49
10 x 60 1 {20, 100, 500, 1000} 4.71 7.51 4.01 4.01 8.46
2 {20, 100, 500, 1000} 2.77 18.22 0.35 0.35 31.66
5 {20, 100, 500, 1000} 1.71 31.19 0.12 0.12 81.43
10 {20, 100, 500, 1000} 1.73 8.88 0.18 0.18 95.79
Overall average 2.73 16.45 1.17 1.17 54.33
10 x 100 1 {20, 100, 500, 1000}  2.67 7.26 218 2.19 8.22
2 {20, 100, 500, 1000} 2.09 20.65 0.16 0.16 29.10
5 {20, 100, 500, 1000} 2.44 29.39 0.23 0.23 71.87
10 {20, 100, 500, 1000} 3.62 15.16 0.29 0.30 109.59
Overall average 2.70 18.12 0.72 0.72 54.69

2Each “cell” value indicates the average of “ARPD” over the 40 problem instances (that is, 10
problem instances for each “R”).
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Table 2 indicates that irrespective of the problem parameters considered in this
study, on an average, the variants VAM-TOC and VAMT-TOC yielded more effi-
cient results as compared with VAM-TC, VAMT-TC, and TOM. This indicates
that coupling TOC with VAM yields consistently better starting solutions than
obtainable with either the basic version of VAM or TOM. Also, the “tie-breakers”
used in this study do not have any influence on the solution yielded by VAM cou-
pled with TOC (see Figure 1). However, the “tie-breakers” have some influence (see,
Figure 2) in the solutions of the basic version of VAM. That is, on an average, it
appears that the “tie-breakers” along with VAM progressively increase the “average
of {ARPD with respect to optimal solution}” as the size (m x n) increases! Thus,
it appears from both Figures 1 and 2 that “tie-breakers” do not have any positive
influence on the performance of VAM.

Incidentally, it is observed that our results have shown that all the variants of
VAM (including the basic version of VAM) outperform TOM, much against the
claims of its author. This, however, was not our objective in this study.

The behavior of the performance measure shown in Table 2 for each problem size
(m x n), considered would lead us to the conclusion that inferences are applicable
to any problem size.
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Fig. 1. Effect of tie-breakers on VAM, when applied on the TOC matrix.
Note: VAM with or without “tie-breakers” applied on TOC yielded the same ARPD.
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Fig. 2. Effect of tie-breakers on VAM, when applied on the TC matrix.
Note: VAM with or without “tie-breakers” applied on T'C yielded different ARPD.
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Similar inferences could be made with respect to the worst-case analysis, car-
ried out using the performance measure: maximum relative percentage deviation.
However, in this paper, these results are not presented.

Performance measure — Number of best solutions (NBS): From the detailed
results obtained, the number of times the VAM and its variants and TOM yielded
0%, 0.5%, 1%, 2%, and 3% loss of optimality were observed over the 640 prob-
lem instances. These are presented in Table 3. The performance measure NBS
also provides the same indications as those of ARPD that the variant VAM-TOC
and VAMT-TOC are better options for obtaining an initial basic feasible solution.
(VAM-TOC and VAMT-TOC, yielded the optimal solution 20% of the times and
about 80% of the times yielded very efficient solutions with 0.5% loss of optimality.)
Further, the basic version of the VAM appears to be better than TOM in all cases
(0-3% loss of optimality).

Table 3. Number of best solutions w.r.t. loss of optimality in %.

Loss of optimality Number of problem instances w.r.t. loss of optimality in %
(%)
Basic variants of VAM Proposed variants of VAM Kirca and Satir
VAM-TC VAMT-TC VAM-TOC VAMT-TOC TOM
0 1 0 1288 113 0
0.5 153 130 465 466 79
1 200 183 510 509 132
2 325 277 549 547 212
3 391 314 569 569 234

2Indicates 128 times the solution yielded by VAM-TOC matched with the optimal solution.

Table 4. Performance of VAM-TOC w.r.t. “0% loss of optimality vs. cost range.

Problem Number of problem instances with 0% loss of optimality in the Total
size cost range: problem
instances
R =20: R = 100: R = 500: R = 1000:
[490-510} [450-550] [250-750] [0-1000]
10 x 20 19 —_ 10 - 29
10 x 40 30 — — — 30
10 x 60 302 — — — 30
10 x 100 31 8 — — 39
Total 110 8 10 — 128
problem
instances

2Indicates, 30 times the solution yielded by VAM-TOC matched with the optimal solution for the
cost range R = 20.
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Using the detailed results, Table 4 was developed to study the impact of cost
range “R,” with 0% loss of optimality solution. It appears from Table 4 that, the
chances of getting 0% loss of optimality is high when the cost range is small.

The last, by no means insignificant, observation is that the CPU time required
for the large size transportation problems tested in this study [that is (10 x 100)]
is very small (less than 10s on a Pentium 200 MHz machine with 64 MB RAM).

4. Conclusions

Two variants of Vogel’s approximation method are proposed in this paper by cou-
pling the basic idea of Kirca and Satir (1990) with VAM. In order to empirically
evaluate the VAM and its variants and TOM, 640 problem instances were gener-
ated. The performance analyses of these methods were carried out with the optimal
solution.

Based on the test problems generated and used in this study, the method: VAM-
TOC optimally solved 128 out of 640 instances. Further, if the user is interested in
getting a very fast and good movement strategy on their transportation problem
without undue concern for the “best solution,” they may prefer to implement the
heuristic VAM-TOC and this is expected to provide, on an average, a very nearly
optimal solution.

The CPU time required for the transportation problems tested {that is (10x 100)]
is on the average less than 10s on a Pentium machine (200 MHz with 64 MB RAM).
Thus, with today’s computational power, any large-scale problem can be solved
using more than one efficient variant of VAM without any computational difficulty
in the decision support systems environment to obtain a near optimal solution.

Further, this study has unwittingly shown a result contrary to earlier research
findings. That is, all the variants of VAM (including the basic version of VAM)
outperform TOM. Lastly, from the computational analysis, it appears that the “tie
breaker” does not have any influence on the performance of VAM-TOC (the best
variant).

Generally, it appears from this study that the VAM is expected to yield a very
efficient starting solution when applied in conjunction with TOC instead of with
the original transportation cost. This inference indicates that studies using some
form of non-dimensionalized transportation costs along with VAM and its variants
may be a fruitful research direction.
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Appendix A
A Systematic Procedure for VAMT-TOC

Step 1: Balance the given transportation problem if either (totalsupply >
total_-demand) OR (total_supply < total_demand).

Step 2: Obtain the “Total Opportunity Cost (TOC)” matrix.

Step 8: Apply VAM with Tie-breakers on TOC and obtain feasible allocations.
That is, when we apply the VAM on the TOC matrix, if more than one
“TOC cell” is competing for allocation, the following tie-breakers are used
in sequence:

1. Make the allocation to the cell with the smallest cost.

2. In the case of a tie in (1), make allocation to the cell with the largest
possible allocation.

3. In the case of a tie in (2), make allocation to that cell with first occur-
rence.

Step 4: Compute total transportation cost for the feasible allocations obtained in
Step 3 using the original balanced-transportation cost matrix.

A Systematic Procedure for VAM-TOC

Heuristic “VAM-TOC” that follows is identical to Heuristic “VAMT-TOC” except
in Step 3. So, only the modified Step 3 is given below:

Step 3: Apply VAM on TOC and obtain feasible allocations.

Appendix B

Matrix Generator Program for generating ILP model in MPS (Mathematical Pro-
gramming Structure) format of Transportation Problem PLUS sample data files

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<stdlib.h>
#include<iomanip.h>
#include "TRANCON.h"

void main ()

{

clrscr();




458 M. Mathirajan and B. Meenakshi

int i,j;
int cost[S][D];
int ns,nd,count,flag=0;
long demand[D],supplyl[S];
long totdem=0,totsup=0;
ifstream ndbfile,deadfile;
ofstream mpsfile;
ndbfile.open("NSD.dat",ios::in);
ndbfile>>ns>>nd;
cout<<ns<<endl;

for(int d=1; d<=nd; d++)
{
ndbfile>>demand [d] ;
totdem = totdem + demand[d];

for (int b=1; b<=ns; b++)
{
ndbfile>>supply[b];
totsup = totsup + supply(b];
}
ndbfile.close();

deadfile.open("TCOST.dat",ios::in);
for (i=1; i<=ns; i++)

{
for (j=1; j<=nd; j++)
{
deadfile>>cost([i] [j];
}
}

deadfile.close();

//Balancing the transportation problemkkkkikkkx*xBeginkrskikkk
if (totdem > totsup)

{

flag = 1;
ns++;

supply[ns] = totdem - totsup;

totsup = totdem;

// cout<<"Dummy Supply :"<<supply[ns]<<endl;

// getch();
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for(d=1; d<=nd; d++)

{
cost[ns] [dl = 0;
}

}

else

{

if (totdem < totsup)
{
flag = 2;
nd++;

demand[nd]} = totsup - totdem;
//  cout<<"Dummy Demand : "<<supply[nd]<<endl;
totdem = totsup;
for(b=1; b<=ns; b++)
{
cost[b] [nd] = 0;
}
}
}//Balancing the transportation problem#skiskkikixkEndkickskik
mpsfile.open("DATA.mps",ios: :out);
mpsfile<<"NAME"<<setw(12)<<"TP"<<endl;
mpsfile<<"ROWS"<<endl;
mpsfile<<" N"<<setw(4)<<"0BJ"<<endl;
for (i=1; i<=ns; i++)

{
if (i==1)
{
for(j=1; j<=nd; j++)
{
if (j==1)
{

// mpsfile<<" L"<<" S"<<getfill(‘0’)<<setw(3)<<i<<endl;
mpsfile<<" E"<<" 8"<<sgetfill(‘0’)<<setw(3)<<i<<endl;
mpsfile<<" E"<<" D"<<getfill(‘0’)<<setw(2)<<j<<endl;

}
else
{
mpsfile<<" E"<<" D"<<setfill(‘0’)<<setw(2)<<j<<endl;
}
}
}

else

459
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{
mpsfile<<" E"<<" S"<<setfill(*‘0’)<<setw(3)<<i<<endl;
}
}
mpsfile<<"COLUMNS"<<endl;
for(i=1; i<=ns; i++)

{
for(j=1; j<=nd; j++)
{
mpsfile<<”
S"<<setfill(‘0’)<<setw(3)<<ic<"D"<<setfill(‘0’)<<setw (2)<<j
<<"  §"<<zetfill(‘0’)<<setw(3)<<ik" 1"<<endl;
mpsfile<<"
S"<<setfill(‘0’)<<setw(3)<<i<<"D"<<setfill(‘0’)<<setw (2)<<j
<<" D"<<setfill(‘0’)<<setw (2)<<j<<" 1"<<endl;
mpsfile<<"

S"<<setfill(‘0’)<<setw(3)<<i<<"D"<<setfill(‘0’)<<setw(2)<<]j
<<" 0BJ"<<" "<<cost[i] [j]<<endl;
}
}
mpsfile<<"RHS"<<endl;
for (i=1; i<=ns; i++)

{
mpsfile<<" RHS"<<" S"<<setfill(°0’)<<setw(3)<<ic"
"<<supply[i]<<endl;
}
for(j=1; j<=nd; j++)
{
mpsfile<<"  RHS"<<" D"<<setfill(‘0’)<<setw(2)<<j<k"
"<<demand[j] <<endl;
}

mpsfile<<"ENDATA";
mpsfile.close();

}

Content of ‘‘TRANCON.h"

#define S 50

#define D 120

#define NUM_FILES 50
#define FILE_NAME_SIZE 10
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Sample data on “NSD.dat”

10 20

105 93 114 83 99 76 107 115 108 85 77 84 116
83 92 100 110 114 1156 77

241 187 250 205 179 249 169 215 227 205

Sample data on “T'COST.dat”

501 501 501 491 510 506 494 508 509 490 496 509
498 490 502 503 499 502 493 491
494 491 500 492 492 507 495 495 496 499 506 491
493 503 505 493 504 498 505 494
506 499 500 508 504 503 509 503 506 496 508 496
501 502 494 501 509 506 508 502
509 498 505 506 490 495 501 491 509 490 492 509
505 495 492 503 505 497 494 500
493 493 500 497 490 505 491 509 497 505 502 508
503 507 493 494 493 491 507 500
500 501 491 493 495 494 499 500 509 503 509 490
507 506 491 502 498 502 500 501
501 500 494 507 494 506 506 495 503 491 508 490
508 510 491 505 503 499 502 508
499 496 503 508 505 509 495 505 499 509 496 493
504 501 497 496 503 507 507 490
505 496 493 505 499 501 500 505 494 503 490 490
504 503 509 501 504 491 496 501
503 490 498 499 499 490 490 499 502 494 498 507
502 508 500 494 510 510 510 498
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