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Abstract We consider a stochastic control problem which is composed of a controlled

stochastic differential equation, and whose associated cost functional is defined through a

controlled backward stochastic differential equation. Under appropriate convexity assump-

tions on the coefficients of the forward and the backward equations we prove the existence

of an optimal control on a suitable reference stochastic system. The proof is based on an

approximation of the stochastic control problem by a sequence of control problems with

smooth coefficients, admitting an optimal feedback control. The quadruplet formed by this

optimal feedback control and the associated solution of the forward and the backward equa-

tions is shown to converge in law, at least along a subsequence. The convexity assumptions

on the coefficients then allow to construct from this limit an admissible control process

which, on an appropriate reference stochastic system, is optimal for our stochastic control

problem.
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1 Introduction

In this paper we consider a controlled decoupled forward-backward stochastic differential

system of the type
dXu

s = b(Xu
s , us)ds + σ(Xu

s , us)dWs,

dY u
s = −f(Xu

s , Y u
s , Zu

s , us)ds + Zu
s dWs + dMu

s , s ∈ [t, T ],

〈Mu,W 〉s = 0, s ∈ [t, T ],

Xu
t = x, Y u

T = Φ(Xu
T ),Mu

t = 0,

(1)

where, on a given filtered probability space (Ω,F , P, F), W is a d-dimensional Brownian

motion with respect to the not necessarily Brownian filtration F, Xu, Y u, Zu are square

integrable adapted processes and Mu a square integrable martingale that is orthogonal to

W . The control problem consists in minimizing the cost functional Y u
t over all adapted

control processes u taking their values in a fixed compact metric space U :

V (t, x) = essinfuY u
t . (2)

If the driver f of the backward stochastic differential equation (BSDE) doesn’t depend on

(y, z) the cost functional takes the particular form

Y u
t = E

[
Φ(Xu

T ) +
∫ T

t
f(Xu

s , us)ds | Ft

]
, (3)

reducing the above control problem to the classical one, which has been well studied by a lot

of authors; the reader is referred, for instance, to the book [7] of Fleming and Soner and the

references therein. This classical stochastic control problem and its relation with Hamilton-

Jacobi-Bellman equations has been generalized by Peng in [11]: He characterizes the value

function V (t, x) of the stochastic control problem (2) as the unique viscosity solution of

the associated Hamilton-Jacobi-Bellman equation (the reader is also referred to [13] for an

approach based on BSDE methods). Moreover, in [12] he derives a necessary condition for

the optimality of a stochastic control for (2), given in form of a maximum principle. At the

same period, motivated by applications in econometrics and mathematical finance, Duffie

and Epstein have introduced in [3] a similar cost function called “recursive utility”; their

cost functional Y u
t corresponds to the solution of the above BSDE in (1) if the driver f is

supposed not to depend on z. For further contributions concerning this stochastic control

problem and its applications the reader is referred to [6], [4], [13], [1] and the references

cited therein.

The objective of our present work is to investigate the question of the existence of an

optimal control for the problem (2). In the case of a usual stochastic control problem with
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classical cost functionals (3) it is well known that, in general, the existence of an optimal

control can be got only in the larger class of relaxed controls. However, by El Karoui,

Nguyen and Jeanblanc [5] and by Haussmann and Lepeltier [8] it has been proved that

an optimal control in the original “strong” sense exists under some convexity assumptions.

We prove an analogous result for the more general case of the controlled forward-backward

system of type (1). For this, we approximate (1) by a sequence of stochastic control systems

(δ) with smooth coefficients. Since the Hamilton-Jacobi-Bellman equation associated with

a stochastic control system with smooth coefficients and strictly elliptic diffusion coefficient

admits a smooth solution, it is possible to determine explicitly an optimal feedback control

uδ by applying a verification theorem. We prove that the value functions V δ of these ap-

proximating systems converge to the value function V of the original problem (2). Further,

the solution (Xδ, Y δ, Zδ) of the approximating control system with the optimal feedback

control uδ can be approached by a sequence of simple forward equations satisfied by some

couple (X̄δ, Ȳ δ) and depending on a couple of bounded controls (Z̄δ, ūδ). This point of

view enables us to apply the well known theory of stochastic controlled forward-systems:

We claim that the sequence (Xδ, Y δ) converges in law to some couple (X̄, Ȳ ), at least along

a subsequence, and that this couple satisfies a stochastic differential equation depending on

a relaxed control, that is optimal for (2). Finally, under a suitable convexity assumption

generalizing that of El Karoui, Nguyen and Jeanblanc [5], we deduce that this optimum is

also attaint by a control in the “strong sense”, i.e., an admissible control process u defined

on an appropriate reference stochastic system (Ω,F , P, F,W ). Moreover, we discuss our

convexity condition and compare it with that of [5].

Our paper is organized as follows: In Section 2, we state the problem and give the main

result. Moreover we introduce necessary notations and recall known results which will be

used in what follows. Section 3 is devoted to the study of the approximating control problem

and the associated Hamilton-Jacobi-Bellman equation: we prove that for the approximating

control problem (δ) the essential infimum of the cost functionals is attained by a feedback

control uδ, and that the value function V δ(t, x) converges to V (t, x). Finally, in Section 4,

we prove our main result concerning the convergence in law of the couples (Xδ, Y δ) along

some subsequence δ ↘ 0, and the existence of an optimal control of (2) under an appropriate

convexity assumption. Finally, our convexity condition is compared with that of [5].

3



2 Notations, preliminaries and main theorem

Let T > 0 be a finite time horizon and U a compact metric space. We call a reference

stochastic system ν0 a complete probability space (Ω0,F0, P 0) endowed with a filtration

F0 satisfying the usual assumptions (i.e. F0 is right-continuous and F0
0 contains all P 0-null

sets in F) and, according to our needs, with one or two independent d-dimensional Brow-

nian motions: ν0 = (Ω0,F0, P 0, F0,W 0) or ν0 = (Ω0,F0, P 0, F0,W 0, B0). This reference

stochastic system will vary all along this work. On ν0, we now introduce the following

spaces of processes:

For all dimension m ∈ N∗ and any t ∈ [0, T ],

• S2
ν0(t, T ; Rm) will denote the set of Rm-valued, F0-adapted, continuous processes

(Ψs, s ∈ [t, T ]) that satisfy E[supt≤s≤T |Ψs|2] < ∞,

• H2
ν0(t, T ; Rm) is the set of Rm-valued, F0-predictable processes (Ψs, s ∈ [t, T ]) that

satisfy E[
∫ T
t |Ψs|2ds] < ∞,

• M2
ν0(t, T ; Rm) denotes the set of all Rm-valued, square integrable càdlàg martingales

M = (Ms)s∈[t,T ] with respect to F0, with Mt = 0,

• Uν0(t) denotes the set of admissible controls, i.e. the set of F0-progressively measurable

processes (us, s ∈ [t, T ]) with values in U .

Let us now fix some initial reference stochastic system ν = (Ω,F , P, F,W ). For any initial

condition (t, x) ∈ [0, T ] × Rd and any admissible control u := (us, s ∈ [t, T ]) ∈ Uν(t), we

consider the following decoupled forward-backward stochastic differential system:
dXs = b(Xs, us)ds + σ(Xs, us)dWs,

dYs = −f(Xs, Ys, Zs, us)ds + ZsdWs + dMs, s ∈ [t, T ],

Xt = x, YT = Φ(XT ),Mt = 0, 〈M,W 〉 = 0,

(X, Y, Z,M) ∈ Sν(t, T ; Rd)× Sν(t, T ; R)×Hν(t, T ; Rd)×M2
ν(t, T ; Rd),

(4)

where

b : Rd × U → Rd, σ : Rd × U → Rd×d, f : Rd × R× Rd × U → R and Φ : Rd → R
satisfy the following assumptions (see, e.g., [1] or [2]):

1. • b and σ are bounded by some constant M > 0,

• for all x ∈ Rd, b(x, ·) and σ(x, ·) are continuous in v ∈ U ,
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• there exists some C > 0, such that, for all x, x′ ∈ Rd and v ∈ U ,

|b(x, v)− b(x′, v)|+ |σ(x, v)− σ(x′, v)| ≤ C|x− x′|.

2. • f and Φ are bounded,

• for all (x, y, z) ∈ Rd × R× Rd, f(x, y, z, ·) is continuous in v ∈ U ,

• for all x, x′ ∈ Rd, y, y′ ∈ R, z, z′ ∈ Rd and v ∈ U ,

|Φ(x)− Φ(x′)|+ |f(x, y, z, v)− f(x′, y′, z′, v)| ≤ C(|x− x′|+ |y − y′|+ |z − z′|).

Under the assumptions 1.-2., the system (4) has an unique solution (Xt,x,u, Y t,x,u, Zt,x,u,M t,x,u) ∈
Sν(t, T ; Rd)× Sν(t, T ; R)×Hν(t, T ; Rd)×M2

ν(t, T ; Rd), and

J(t, x, u) := Y t,x,u
t

is well defined for all (t, x) ∈ [0, T ]× Rd and u ∈ Uν(t) (see, for instance, [1]). We set

V (t, x) = essinfu∈Uν(t)J(t, x, u).

Further it is known (see, e.g., [1], [2]) that the a priorily random field V (t, x) possesses a

continuous, deterministic version (with which we identify it) and solves in viscosity sense

the following Hamilton-Jacobi-Bellman equation:
∂

∂t
V (t, x) + inf

v∈U
H(x, V (t, x), DV (t, x), D2V (t, x), v) = 0, (t, x) ∈ [0, T ]× Rd,

V (T, x) = Φ(x), x ∈ Rd,
(5)

with, for all (x, y, p,A, v) ∈ Rd × R× Rd × Sd × U ,

H(x, y, p,A, v) =
{

1
2
tr ((σσ∗)(x, v)A) + b(x, v)p + f(x, y, pσ(x, v), v)

}
,

where Sd is the space of the symmetric matrices in Rd×d, and DV and D2V represent,

respectively, the gradient and the Hessian matrix of V .

Further we consider the following assumption:

(H)


For all (x, y) ∈ Rd × R, there exists a compact set A in Rd × Rd × U , with

A ⊃
{

(σ∗(x, v)w, 0, v)|v ∈ U,w ∈ Rd s.t. |σ∗(x, v)w| ≤ K
}

and such that the following set is convex:

{((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v))|(z, θ, v) ∈ A} ,
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where, for all (x, y, z, θ, v) ∈ Rd × R× Rd × Rd × U , we have set

Σ(x, y, z, θ, v) =

(
σ(x, v) 0

z∗ θ∗

)
and β(x, y, z, θ, v) =

(
b(x, v)

−f(x, y, z, v)

)
.

The main result of this paper can now be stated:

Theorem 1 Under assumption (H), for all (t, x) ∈ [0, T ] × Rd, there existe a reference

stochastic system ν̄ and an admissible control ū ∈ Uν̄(t) that is optimal for (2), i.e. if

(X̄t,x,ū, Ȳ t,x,ū, Z̄t,x,ū, M̄ t,x,ū) ∈ Sν̄(t, T ; Rd)×Sν̄(t, T ; R)×Hν̄(t, T ; Rd)×M2
ν̄(t, T ; Rd) is the

solution of (1) on ν̄, we have

Ȳ t,x,ū
t = V (t, x) = essinfu∈Uν̄

(t, x, u).

We prove this theorem in chapter 4. It is included in Theorem 3. Chapter 3 prepares this

proof by the introduction of an approximating control problem.

3 An Approximating Control problem

The purpose of this section is to study a sequence of stochastic control problems for which

we can explicitly determine an optimal feedback control process and whose value functions

converge to that of our original problem. For this end we have to approximate the coefficients

of our original control problem by smooth coefficients.

For an arbitrary dimension m ≥ 1 we let ϕ : Rm→ R be a non-negative smooth function

on the Euclidean space Rm such that its support is included in the unit ball of Rm and∫
Rm ϕ (ξ) dξ = 1. For Lipschitz functions l : Rm → R we set

lδ (ξ) = δ−m

∫
Rm

l
(
ξ − ξ

′
)

ϕ
(
δ−1ξ

′
)

dξ
′
, ξ ∈ Rm, δ > 0.

Then we can easily show that

|lδ (ξ)− l (ξ)| ≤ Clδ, |lδ (ξ)− lδ′ (ξ)| ≤ Cl|δ − δ′|, for all ξ ∈ Rm, δ, δ′ > 0, (6)

where Cl denotes the Lipschitz constant of l.

For each δ ∈ (0, 1] we denote by bδ, σδ, fδ and Φδ the mollifications of the functions b, σ, f

and Φ, respectively, introduced in Section 2, with l = b (., v) , σ (., v) , f (., v) and Φ (.) . We

emphasize that the estimate (6) with l = b (., v) , σ (., v) , f (., v) does not depend on v ∈ U.

6



Let us now fix an arbitrary δ ∈ (0, 1] and consider the following Hamilton-Jacobi-

Bellman equation
∂

∂t
V δ (t, x) + inf

v∈U
Hδ
(
x, (V δ, DV δ, D2V δ)(t, x), v

)
= 0, (t, x) ∈ [0, T ]× Rd,

V δ (T, x) = Φδ(x), x ∈ Rd,
(7)

with the Hamiltonian

Hδ (x, y, p,A, v) =
1
2
(
tr
(
(σδσ

∗
δ ) (x, v) + δ2IRd

)
A
)

+ bδ (x, v) p + fδ (x, y, pσδ (x, v) , v) ,

for (x, y, p,A, v) ∈ Rd×R×Rd×Sd×U. Since the Hamiltonian is smooth and (σδσ
∗
δ ) (x, v)+

δ2IRd is strictly elliptic, we can conclude that the unique bounded continuous viscosity

solution V δ of the above equation belongs to C1,2
b ([0, T ] × Rd). For this we can apply the

regularity results by Krylov [9] (see the Theorems 6.4.3 and 6.4.4 in [9]). This regularity

properties of the solution V δ and the compactness of the control state space U allow to find

a measurable function vδ : [0, T ]× Rd → U such that, for all (t, x) ∈ [0, T ]× Rd,

Hδ
(
x, (V δ, DV δ, D2V δ)(t, x), vδ(t, x)

)
= inf

v∈U
Hδ
(
x, (V δ, DV δ, D2V δ)(t, x), v

)
.

Let us fix now an arbitrary initial datum (t, x) ∈ [0, T ] × Rd and consider the stochastic

equation{
dXδ

s = bδ

(
Xδ

s , vδ
(
s,Xδ

s

))
ds + σδ

(
Xδ

s , vδ
(
s,Xδ

s

))
dWs + δdBs, s ∈ [t, T ],

Xδ
t = x.

(8)

Since the coefficients bδ

(
x′, vδ (s, x′)

)
and σδ

(
x′, vδ (s, x′)

)
are measurable and bounded in

(s, x′) and the matrix (σδσ
∗
δ )
(
x′, vδ(s, x′)

)
+δ2IRd is strictly elliptic, uniformly with respect

to (s, x′) ∈ [t, T ]×Rd, we get from Theorem 1 of Section 2.6 in [10] the existence of a weak

solution, i.e., there exists some reference stochastic system (Ωδ,Fδ, P δ, Fδ,W δ, Bδ) and an

Fδ-adapted continuous process Xδ = (Xδ
s )s∈[t,T ] such that, P δ-a.s.,{

dXδ
s = bδ

(
Xδ

s , vδ
(
s,Xδ

s

))
ds + σδ

(
Xδ

s , vδ
(
s,Xδ

s

))
dW δ

s + δdBδ
s , s ∈ [t, T ],

Xδ
t = x.

For an arbitrarily given admissible control u ∈ Uνδ(t), let Xδ,u denote the unique Fδ-adapted

continuous solution of the equation dXδ,u
s = bδ

(
Xδ,u

s , us

)
dt + σδ

(
Xδ,u

s , us

)
dW δ

s + δdBδ
s , s ∈ [t, T ],

Xδ,u
t = x.
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We associate the backward equation
dY δ,u

s = −fδ(X
δ,u
s , Y δ,u

s , Zδ,u
s , us)ds + Zδ,u

s dW δ
s + U δ,u

s dBδ
s + dM δ,u

s , s ∈ [t, T ],

Y δ,u
T = Φδ(X

δ,u
T ),

(Y δ,u, Zδ,u, U δ,u) ∈ S2
νδ(t, T ; R)×H2

νδ(t, T ; Rd)×H2
νδ(t, T ; Rd),

M δ,u ∈M2
νδ(t, T ; Rd) is orthogonal to W δ and to Bδ.

(9)

In analogy to our original stochastic control problem we define the cost functionals for our

approximating control problem with the help of the solution of (9):

Jδ(u) := Y δ,u
t , u ∈ Uνδ(t).

We shall now identify the solution V δ of the Hamilton-Jacobi-Bellman equation (7) as the

value function of our approximating control problem and give an estimate of the distance

between the value function V δ and that of our original control problem:

Proposition 2 1) Under our standard assumptions we have

Jδ(uδ) = V δ(t, x) = essinfu∈U
νδ (t)J

δ(u),

where uδ
s := vδ(s,Xδ

s ), s ∈ [0, T ], is an admissible control from Uνδ(t).

2) Again under our standard assumptions, there is some constant C only depending on the

Lipschitz constants of the functions σ, b, f and Φ such that,

|V δ(t, x)− V (t, x)| ≤ Cδ1/2, for all (t, x) ∈ [0, T ]× Rd and for all δ > 0.

Moreover, again for some constant C which only depends on the Lipschitz constants and

the bounds of the functions σ, b, f and Φ but is independent of δ > 0, the following holds

true for all t, t′ ∈ [0, T ] and x ∈ Rd:

|V δ(t, x)|+ |DV δ(t, x)| ≤ C,

|V δ(t, x)− V δ(t′, x)| ≤ C(1 + |x|)|t− t′|.
(10)

Proof: 1) As it is well known that V δ(t, x) = essinfu∈U
νδ (t)J

δ(u) (see, e.g., [1]) it only

remains to show that Jδ(uδ) = V δ(t, x). For this end we observe that from the uniqueness

of the solution of the controlled forward equation with control process uδ it follows that

Xδ,uδ
= Xδ. Moreover, let

Y δ
s = V δ(s,Xδ

s ), Zδ
s = DV δ(s,Xδ

s )σδ(Xδ
s , uδ

s), U δ
s = δDV δ(s,Xδ

s ), s ∈ [t, T ],

and notice that the triplet (Y δ, Zδ, U δ) belongs to S2
νδ(t, T ; R)×H2

νδ(t, T ; Rd)×H2
νδ(t, T ; Rd).

Then we obtain from Itô’s formula (recall that V δ ∈ C1,2
b ([0, T ] × Rd)), combined with
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the Hamilton-Jacobi-Bellman equation satisfied by V δ and the definition of the feedback

control vδ(s, x′), that (Y δ, Zδ, U δ) satisfies BSDE (9) for u = uδ. From the uniqueness of the

solution of BSDE(9) it then follows that (Y δ,uδ
, Zδ,uδ

, U δ,uδ
) = (Y δ, Zδ, U δ) and M δ,uδ

= 0.

Thus, from the definition of Y δ we get, in particular, that

Y δ,uδ

t = Y δ
t = V δ(t, x).

2) Let δ′ ∈ (0, T ] and (t′, x′) ∈ [0, T ]× Rd. Working on the reference stochastic system

we have introduced for our arbitrarily fixed δ > 0 and (t, x) ∈ [0, T ]× Rd at the beginning

of this section, we let Xδ′,t′,x′,uδ ∈ S2
νδ(t′, T ; Rd) denote the unique solution of the forward

equation dXδ′,t′,x′,uδ

s = bδ′

(
Xδ′,t′,x′,uδ

s , uδ
s

)
ds + σδ′

(
Xδ′,t′,x′,uδ

s , uδ
s

)
dW δ

s + δ′dBδ
s , s ∈ [t′, T ],

Xδ′,t′,x′,uδ

t′ = x′.

We extend this solution process onto the whole interval [0, T ] by setting Xδ′,t′,x′,uδ

s = x′, for

s < t′. Then, by putting

f̃ δ′,t′,x′,uδ

s = −
(

∂

∂s
V δ′(s,Xδ′,t′,x′,uδ

s ) +
1
2
tr
((

(σδ′σ
∗
δ′) (Xδ′,t′,x′,uδ

s , uδ
s) + δ′

2
IRd

)
×

×D2V δ(s,Xδ′,t′,x′,uδ

s )
)

+ bδ(Xδ′,t′,x′,uδ

s , uδ
s)DV δ′(s,Xδ′,t′,x′,uδ

s )
)

, s ∈ [t′, T ],

we define a stochastic process inH2
νδ(t′, T ; R), and by applying Itô’s formula to V δ′(s,Xδ,t′,x′,uδ

s )

we show that

Y δ′,t′,x′
s = V δ′(s,Xδ′,t′,x′,uδ

s ), Zδ′,t′,x′
s = DV δ′(s,Xδ′,t′,x′,uδ

s )σδ′(X
δ′,t′,x′,uδ

s , uδ
s),

U δ′,t′,x′
s = δ′DV δ′(s,Xδ′,t′,x′,uδ

s ), M δ′,t′,x′
s = 0, s ∈ [t′, T ],

is the unique solution of the BSDE
dY δ′,t′,x′

s = −f̃ δ′,t′,x′,uδ

s ds + Zδ′,t′,x′
s dW δ

s + U δ′,t′,x′
s dBδ

s + dM δ′,t′,x′
s , s ∈ [t′, T ],

Y δ′,t′,x′

T = Φδ′(X
δ′,t′,x′

T ),

(Y δ′,t′,x′
, Zδ′,t′,x′

, U δ′,t′,x′
) ∈ S2

νδ(t′, T ; R)×H2
νδ(t′, T ; Rd)×H2

νδ(t′, T ; Rd),

M δ′,t′,x′ ∈M2
νδ(t′, T ; Rd) is orthogonal to W δ and to Bδ.

(11)

We want to compare the first component of the solution of (11) with that of the BSDE

dY δ′,t′,x′,uδ

s = −fδ′

(
Xδ′,t′,x′,uδ

s , Y δ′,t′,x′,uδ

s , Zδ′,t′,x′,uδ

s , uδ
s

)
ds

+Zδ′,t′,x′,uδ

s dW δ
s + U δ′,t′,x′,uδ

s dBδ
s + dM δ′,t′,x′,uδ

s , s ∈ [t′, T ],

Y δ′,t′,x′,uδ

T = Φδ(X
δ,t′,x′,uδ

T ),

(Y δ′,t′,x′,uδ
, Zδ′,t′,x′,uδ

, U δ,t′,x′
, uδ) ∈ S2

νδ(t′, T ; R)×H2
νδ(t′, T ; Rd)×H2

νδ(t′, T ; Rd),

M δ′,t′,x′,uδ ∈M2
νδ(t′, T ; Rd) is orthogonal to W δ and to Bδ.
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For this we observe that from the Hamilton-Jacobi-Bellman equation with the classical

solution V δ′ it follows that

f̃ δ′,t′,x′,uδ

s ≤ fδ′

(
Xδ′,t′,x′,uδ

s , Y δ′,t′,x′
s , Zδ′,t′,x′

s , uδ
s

)
, s ∈ [t′, T ].

Then the Comparison Theorem for BSDEs yields Y δ′,t′,x′
s ≤ Y δ′,t′,x′,uδ

s , s ∈ [t′, T ], P -a.s.,

and, consequently, due to 1),

V δ′(t′, x′)− V δ(t, x) = Y δ′,t′,x′

t′ − Y δ,uδ

t ≤ Y δ′,t′,x′,uδ

t′ − Y δ,uδ

t , P -a.s.

On the other hand, SDE and BSDE standard estimates show that there is some generic

constant C which depends only on the Lipschitz and the growth constants of the involved

functions b(., v), σ(., v), f(., ., ., v) and Φ(.) but neither on δ, δ′ ∈ (0, 1] nor on (t′, x′), (t, x),

such that, with the usual convention Y δ′,t′,x′,uδ

s = Y δ′,t′,x′,uδ

t′ , Zδ′,t′,x′,uδ

s = 0, U δ′,t′,x′,uδ

s = 0,

and M δ′,t′,x′,uδ

s = 0, for all s < t′,

E

[
sup

s∈[0,T ]
|Y δ′,t′,x′,uδ

s − Y δ,uδ

s |2

+
∫ T

0

(
|Zδ′,t′,x′,uδ

s − Zδ,uδ

s |2 + |U δ′,t′,x′,uδ

s − U δ,uδ

s |2
)

ds + 〈M δ,t′,x′,uδ〉T
∣∣Fδ

t

]
≤ C

(
(δ − δ′)2 + E

[
sups∈[0,T ] |X

δ′,t′,x′,uδ

s −Xδ,uδ

s |2|Fδ
t

])
≤ C(δ − δ′)2 + C(1 + |x|2 + |x′|2)|t− t′|+ C|x− x′|2

(Recall that M δ,vδ
= 0). Consequently,

V δ′(t′, x′)− V δ(t, x) = Y δ,t′,x′

t′ − Y δ,uδ

t ≤ Y δ′,t′,x′,uδ

t′ − Y δ,uδ

t

≤ C|δ − δ′|+ C(1 + |x|+ |x′|)|t′ − t|1/2 + C|x− x′|,

and from the symmetry of the argument we get

|V δ′(t′, x′)− V δ(t, x)| ≤ C|δ − δ′|+ C(1 + |x|+ |x′|)|t′ − t|1/2 + C|x− x′|.

It follows that, in particular,

|V δ(t, x′)− V δ(t, x)| ≤ C|x− x′|,
|V δ(t′, x)− V δ(t, x)| ≤ C(1 + |x|)|t′ − t|1/2,

and

|V δ′(t, x)− V δ(t, x)| ≤ C|δ − δ′|.

Moreover, a standard estimate for the BSDE satisfied by (Y δ,uδ
, Zδ,uδ

, U δ,uδ
,M δ,uδ

) yields

the boundedness of V δ, uniformly with respect to δ > 0.

Therefore, the function V δ converges uniformly towards a function Ṽ ∈ Cb([0, T ]× Rd), as

10



δ tends to zero. Since the Hamiltonian Hδ converges uniformly on compacts to the Hamil-

tonian of the equation for V it follows from the stability principle for viscosity solutions

that Ṽ is a viscosity solution of the same equation as V . Thus, from the uniqueness of the

viscosity solution within the class of continuous function with at most polynomial growth

we get that Ṽ and V coincide. Consequently, V δ′ converges uniformly to V , as δ′ → 0, and

from the above estimate of the distance between V δ′ and V δ it then follows that

|V δ(t, x)− V (t, x)| ≤ Cδ, for all δ ∈ (0, 1] and (t, x) ∈ [0, T ]× Rd. •

4 Convergence of the Approximating Control Problems

After we have shown that the value function of the approximating problem converges to

the value function of the initial problem, we will prove in this section that there exists a

sequence of approximating stochastic controlled systems (Xδn , Y δn , Zδn , uδn) that converges

in law to some controlled system, provided that the couple (Zδn , uδn) is interpreted as a

relaxed control. Then, under some additional convexity condition, we shall find on a suit-

able reference stochastic system some admissible control - now in the strong sense-, that is

optimal for the initial problem (2).

We begin this section with the introduction of this additional assumption, then we prove

the main result of existence of an optimal control for (2) and after we discuss the additional

assumption, in particular we compare it with that of [5].

For all k > 0, let us denote by B̄k(0) the closed ball in Rd of center 0 and radius k.

We also introduce the constant K=CM, where C > 0 stands here for the constant of the

estimates (10) and M for an upper bound of {|σ(x, v)|, (x, v) ∈ Rd × U}.
We recall the definition of (Σ, β) : Rd × R × Rd × Rd × U → R(d+1)×(d+1) × Rd+1 already

introduced in chapter 2:

For all (x, y, z, θ, v) ∈ Rd × R× Rd × Rd × U , we set

Σ(x, y, z, θ, v) =

(
σ(x, v) 0

z∗ θ∗

)
and β(x, y, z, θ, v) =

(
b(x, v)

−f(x, y, z, v)

)
.

We also recall the assumption (H):

(H)


For all (x, y) ∈ Rd × R, there exists a compact set A in Rd × Rd × U , with

A ⊃
{

(σ∗(x, v)w, 0, v)|v ∈ U,w ∈ Rd s.t. |σ∗(x, v)w| ≤ K
}

and such that the following set is convex:

{((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v))|(z, θ, v) ∈ A} .

11



Theorem 3 Suppose that assumption (H) holds and let (t, x) ∈ [0, T ]×Rd and (δn)n∈N ⊂
(0,+∞) with limn→+∞ δn = 0. Then there exists a reference stochastic system

ν̄ = (Ω̄, F̄ , P̄ , F̄, W̄ ), a quadruple (X̄, Ȳ , Z̄, M̄) ∈ S2
ν̄ (t, T ; Rd)× S2

ν̄ (t, T ; R)× S2
ν̄ (t, T ; Rd)×

M2
ν̄(t, T ; Rd), with M orthogonal to W , and an admissible control ū ∈ Uν̄(t), such that

1) There is a subsequence of (Xδn , Y δn)n∈N that converges in distribution to (X̄, Ȳ ),

2) (X̄, Ȳ , Z̄, M̄) is the solution of the following system:
dX̄s = b(X̄s, ūs)ds + σ(X̄s, ūs)dW̄s,

dȲs = −f(X̄s, Ȳs, Z̄s, ūs)ds + Z̄sdW̄s + dM̄s, s ∈ [t, T ]

X̄t = x, ȲT = Φ(X̄T ),

(12)

3) For all (t, x) ∈ [0, T ]× Rd, it holds that

Ȳt = V (t, x) = essinfu∈Uν̄(t)J(t, x, u) ,

i.e. the admissible control ū ∈ Uν̄(t) is optimal for (12).

Proof: We shall first introduce an auxiliary sequence of forward-systems, for which the

convexity assumption (H) appears as the natural argument to guarantee the existence of

a subsequence whose solutions converge in law to a couple (X̄, Ȳ ) associated to a control

that is optimal for the original control problem. Then we will show that the initial sequence

(Xδn , Y δn)n∈N and the auxiliary one have the same limits.

1) For all n ∈ N, let (Xn, Y n) be the solution on νδn of the following controlled forward

system:
dXn

s = b
(
Xn

s , uδn
s

)
ds + σ

(
Xn

s , uδn
s

)
dW δn

s , s ∈ [t, T ],

dY n
s = −f

(
Xn

s , Y n
s , wn

s σ
(
Xn

s , uδn
s

)
, uδn

s

)
ds + wn

s σ
(
Xn

s , uδn
s

)
dW δn

s s ∈ [t, T ],

Xn
t = x, Y n

t = V (t, x),

(13)

with wn
s = DV δn(s,Xδn

s ).

We can rewrite the system (13) as follows:
dχn

s = β(χn
s , rn

s )ds + Σ(χn
s , rn

s )dWn
s , s ∈ [t, T ],

χn
t =

(
x

V (t, x)

)
,

(14)

with

χn
s =

(
Xn

s

Y n
s

)
, rn

s = (wn
s σ(Xδn

s ), 0, uδn
s ) and Wn =

(
W δn

Bδn

)
.

12



Since wn
s = DV δn(s,Xδn

s ) and DV δ is bounded by C, uniformly in δ (Proposition 2), we

can interpret (rn
s , s ∈ [t, T ]) as a control with values in the compact set A of assumption

(H).

Now, in order to pass to the limit in n, we shall as usual embed the controls rn in the set of

relaxed controls, i.e. consider rn as random variable with values in the space V of all Borel

measures q on [0, T ] × A, whose projection q(· × A) concides with the Lebesgue measure.

For this, we identify the control process rn with the random measure

qn(ω, ds, da) = δrn
s (ω)(da)ds, (s, a) ∈ [0, T ]×A,ω ∈ Ω.

From the boundedness of {(Σ(x, y, z, θ, v), β(x, y, z, θ, v)) , (x, y, z, θ, v) ∈ Rd × R × A} and

the compactness of V with respect to the topology induced by the weak convergence of

measures, we get the tightness of the laws of (χn, qn), n ≥ 1, on C([0, T ]; Rd × R) × V .

Therefore we can find a probability measure Q on C([0, T ]; Rd × R) × V and extract a

subsequence -still denoted by (χn, qn)- that converges in law to the canonical process (χ, q)

on the space C([0, T ]; Rd × R)× V endowed with the measure Q.

Now, by assumption (H) on the coefficients of system (14), we can apply the result of [5],

that claims that there exists a stochastic reference system ν̄ = (Ω̄, F̄ , P̄ , F̄, W̄) enlarging

(C([0, T ]; Rd × R) × V ;Q) and an F̄-adapted process r̄ with values in A, such that the

process χ is a solution of
dχs = β(χs, r̄s)ds + Σ(χs, r̄s)dW̄s, s ∈ [t, T ],

χt =

(
x

V (t, x)

)
,

and has the same law under P̄ as under Q. Replacing Σ and β by their definition and

setting χ =

(
X̄

Ȳ

)
, W̄ =

(
W̄

B̄

)
and r̄ = (Z̄, θ̄, ū), this system is equivalent to


dX̄s = b(X̄s, ūs)ds + σ(X̄s, ūs)dW̄s,

dȲs = −f(X̄s, Ȳs, Z̄s, ūs)ds + Z̄sdW̄s + θ̄sdB̄s, s ∈ [t, T ]

X̄t = x, Ȳt = V (t, x).

2) It follows from standard estimations that for some constant K > 0 and for all n ∈ N,

E[sups∈[t,T ] |Xδn
s −Xn

s |2] ≤ Kδn,

E[sups∈[t,T ] |Y δn
s − Y n

s |2] ≤ Kδn.
(15)

This implies that if some subsequence of (Xn, Y n)n∈N converges in law, the same holds

true for (Xδn , Y δn)n∈N, and the limits have same law. Further we deduce from (15) and

13



Proposition 2, that Ȳs = V (s, X̄s) for all s ∈ [t, T ] P̄ -a.s.. In particular ȲT = Φ(X̄T ) P̄ -a.s. .

Thus, if we set M̄s =
∫ s
t θ̄rdB̄r, then 〈M̄, W̄ 〉s =

∫ s
t θ̄rd〈B̄, W̄ 〉r = 0 and (Ȳ , Z̄, M̄) satisfies

(12).

3) We have already seen that Ȳs = V (s, X̄s) for all s ∈ [t, T ] P̄ -a.s. On the other hand,

it is well known that, for the unique bounded viscosity solution V of the Hamilton-Jacobi-

Bellman equation (5),

V (t, x) = essinfu∈Uν̄(t)J(t, x, u), P̄ -a.s.

(see e.g. [1]). Thus assertion 3) of the theorem follows. •

We state now a proposition that relays assumption (H) to some convexity assumptions

concerning the parameters of the initial system (4).

Proposition 4 1) We suppose that the following assumption holds:

(H1)


For all (x, y) ∈ Rd × R, the set{
((σσ∗)(x, v), (σσ∗)(x, v)w, b(x, v), f(x, y, σ∗(x, v)w, v)) |v ∈ U,w ∈ Rd s.t. |σ∗(x, v)w| ≤ K

}
is convex.

Then (H) is satisfied.

2) We suppose that f doesn’t depend on z, i.e., for all (x, y, z, v) ∈ Rd × R × Rd × U ,

f(x, y, z, v) = f(x, y, 0, v) := f(x, y, v).

Moreover, we assume that the following assumption is satisfied:

(H2)

{
For all (x, y) ∈ Rd × R, the set

{((σσ∗)(x, v), b(x, v), f(x, y, v))|v ∈ U} is convex.

Then we have (H).

Remark 5 For the case of classical stochastic control problems with f independent of (y, z),

we find in (H2) the standard assumption which guaranties the existence of an optimal control

on a suitable reference stochastic system (see [5]).

Proof: 1) Let us fix (x, y) ∈ Rd × R. We will show that, under assumption (H1), there

exists a set A ⊂ Rd × Rd × U such that

co{((ΣΣ∗)(x, σ∗(x, v)w, 0, v), β(x, y, σ∗(x, v)w, v)) |(v, w) ∈ U × Rd s.t. |σ∗(x, v)w| ≤ K}
= {((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v)) |(z, θ, v) ∈ A},
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(where, for any set E, coE stands for the convex hull of E) and that we can choose A

compact.

For this end, we consider an arbitrarily chosen probability measure µ on the set Γ =

{(v, w) ∈ U × Rd| |σ∗(x, v)w| ≤ K}.
The first step consists in finding a triplet (z̄, θ̄, v̄) ∈ Rd × Rd × U such that∫

Γ((ΣΣ∗)(x, σ∗(x, v)w, 0, v), β(x, y, σ∗(x, v)w, v)µ(dv, dw)

=
(
(ΣΣ∗)(x, y, z̄, θ̄, v̄), β(x, y, z̄, θ̄, v̄)

)
.

(16)

Set Φ(v, w) = ((σσ∗)(x, v), (σσ∗)(x, v)w, b(x, v), f(x, y, σ∗(x, v)w, v)). As assumption (H1)

is supposed to hold true, there exists a couple (v̄, w̄) in Γ such that∫
Γ

Φ(v, w)µ(dv, dw) = Φ(v̄, w̄). (17)

We set z̄ = σ∗(x, v̄)w̄. Now the explicit calculus of (ΣΣ∗)(x, y, σ∗(x, v)w, 0, v) shows that,

for getting (16), it suffices to find θ̄ ∈ Rd such that

α :=
∫

Γ
w∗(σσ∗)(x, v)wµ(dv, dw)− w̄∗(σσ∗)(x, v̄)w̄ = |θ̄|2. (18)

But α is non negative, since it can also be written as

α =
∫

Γ
(σ∗(x, v)(w − w̄)) (σ∗(x, v)(w − w̄))∗ µ(dv, dw) ≥ 0.

Consequently, such θ ∈ Rd satisfying (18) exists. Further let us rewrite (18) as∫
Γ
|σ∗(x, v)w|2µ(dv, dw) = |z̄|2 + |θ̄|2. (19)

Since the support of µ is included in Γ, it follows that z̄ and θ̄ belongs to B̄K(0).

Now we define B as the set of triplets (z̄, θ̄, v̄) for which there exist w̄ ∈ Rd and a probability

measure µ on Γ such that

(i) z̄ = σ∗(x, v̄)w̄, |z̄| ≤ K

(ii) the relations (17) and (18) are satisfied.

Consequently,

co {((ΣΣ∗)(x, σ∗(x, v)w, 0, v), β(x, y, σ∗(x, v)w, 0, v)) |(v, w) ∈ Γ}
= {((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v)) |(z, θ, v) ∈ B} .

Le A be the closure of B. From the boundedneess of B (⊂ B̄K(0) × B̄K(0) × U) follows

the compactness of A. Moreover, since ((ΣΣ∗)(x, y, ·, ·, ·), β(x, y, ·, ·, ·)) is continuous, the

convexity of {((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v)) |(z, θ, v) ∈ B} implies that of
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{((ΣΣ∗)(x, y, z, θ, v), β(x, y, z, θ, v)) |(z, θ, v) ∈ A}. Finally, for all (v̄, w̄) ∈ U × Rd with

|σ∗(x, v̄)w̄| ≤ K, (σ∗(x, v̄)w̄, 0, v̄) ∈ B ⊂ A (for µ = δv̄,w̄).

2) As for 1), for all probability measure µ on Γ, we can find v̄ ∈ U such that∫
Γ

((σσ∗)(x, v), b(x, v), f(x, y, v))µ(dv, dw) = ((σσ∗)(x, v̄), b(x, v̄), f(x, y, v̄)) .

We will show next that there exists w̄ ∈ Rd such that∫
Γ
(σσ∗)(x, v)wµ(dv, dw) = (σσ∗)(x, v̄)w̄. (20)

Indeed, since the matrix (σσ∗)(x, v̄) is semidefinite positive, it can be written as

(σσ∗)(x, v̄) = TΛT ∗,

where T ∈ Rd×d such that TT ∗ = T ∗T = IRd , and Λ =


λ1 0

. . .

0 λd

 ∈ Rd×d, with

λ1 ≥ . . . ≥ λd ≥ 0.

For {e1, . . . , ed} the canonical basis of Rd, we set fk = Tek, k ∈ {1, . . . , d}. Remark that

also {f1, . . . , fd} is an orthonormal basis of Rd.

Now let l ∈ {0, . . . , d} be such that λ1 ≥ . . . ≥ λl > 0 = λl+1 = . . . = λd. If l = d, the

matrix (σσ∗)(x, v̄) is invertible and to get (20), we just have to set

w̄ = {(σσ∗)(x, v̄)}−1

∫
Γ
(σσ∗)(x, v)wµ(dv, dw).

Else, for all r ∈ {l + 1, . . . , d}, we have

〈(σσ∗)(x, v̄)fr, fr〉 = 〈Λer, er〉 = 0 ,

where 〈·, ·〉 stands for the scalar product in Rd. This implies that∫
Γ |σ

∗(x, v)fr|2µ(dv, dw) =
∫
Γ〈(σσ∗)(x, v)fr, fr〉µ(dv, dw)

= 〈
(∫

Γ(σσ∗)(x, v)µ(dv, dw)
)
fr, fr〉

= 〈(σσ∗)(x, v̄)fr, fr〉
= 0.

In other words σ∗(x, v)fr = 0, µ-a.e., and

〈
∫

Γ
(σσ∗)(x, v)wµ(dv, dw), fr〉 =

∫
Γ

w∗(σσ∗)(x, v)frµ(dv, dw) = 0 , l + 1 ≤ r ≤ d .
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Hence
∫
U×B̄C(0)(σσ∗)(x, v)w∗µ(dv, dw) ∈ span{f1, . . . , fl}, and the existence of w̄ ∈ Rd

satisfying (20) follows.

The end of the proof proceeds as for statement 1) : we chose some θ̄ ∈ Rd that satisfies

(18), we set z̄ = σ∗(x, v̄)w̄ and prove that z̄ and θ̄ necessarily belong to BK(0). Then we

define A as for statement 1) . •
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