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The modulation instability of the one-dimensional cubic-quintic complex Ginzburg-Landau equa-
tion with fouth-order dispersion and gain terms, a. k. a., the quintic complex Swift-Hohenberg equa-
tion, is investgated. The effects of the fourth-order terms to the modulational instability is studied.
We numerically investigate the dynamics of the modulational instability in the presence of the fourth-
order dispersion and gain terms. – PACS numbers: 42.65.Tg, 42.81DP, 42.65Sf
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1. Introduction

It is well known that a continuous-wave (CW) or
quasi-CW radiation propagating in a nonlinear disper-
sive medium may suffer an instability with respect to
weak periodic modulations of the steady state and re-
sults in the breakup of the wave into a train of ul-
trashort pulses [1]. Modulational instability (MI), oc-
curing as a result of an interplay between nonlinear-
ity and dispersion (or diffraction, in the spatial do-
main), is a fundamental and ubiquitous process that
appears in most nonlinear wave systems in nature
such as fluid dynamics [2, 3], nonlinear optics [4, 5],
and plasma physics [6]. In the context of fiber optics,
the temporal MI has been experimentally verified for
a single pump wave propagating in a standard non-
birefringence fiber, which can be modeled by the non-
linear Schrödinger (NLS) equation, and it was found
that the MI only occurs in anomalous group-velocity
dispersion (GVD) regime with a positive cubic nonlin-
ear term [7].

Recently, Hong [8] has investigated the MI of op-
tical waves in a high dispersive cubic-quintic higher-
order nonlinear Schödinger equation. In the more com-
plicated optical systems with gain and loss terms,
described by the cubic-quintic complex Ginzburg-
Landau equation (CGLE), the MI of continuous-waves
of the cubic-quintic CGLE has been investigated:
the low-amplitude CW solutions are always unstable,

0932–0784 / 04 / 0700–0437 $ 06.00 c© 2004 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

while for higher-amplitude CW solutions there are re-
gions of stability and regions where they are modula-
tionally unstable [9].

In this paper, we investigate the properties of the
MI of the extended CGLE with fourth-order dispersive
terms, a. k. a, the normalized quintic complex Swift-
Hohenberg equation (qCSHE), which has many im-
portant applications in nonlinear optics and compli-
cated pattern-forming dissipative systems, in the form
[10 – 12]

iψz+
D

2
ψττ +|ψ|2ψ+(h+is)ψττττ (1)

+ (ν − iµ)|ψ|4ψ = iδψ + iβψττ + iε|ψ|2ψ.
In mode-locked laser applications, ψ(z, τ) is the nor-
malized amplitude, z is the propagation distance or the
cavity round-trip number (treated as a continuous vari-
able), τ is the retarded time, D is the group-velocity
dispersion coefficient with D = ±1 depending on
anomalous (D = 1) or normal (D = −1) dispersion,
h is the fourth-order dispersion, δ the linear gain or
loss coefficient, β accounts for spectral filtering or lin-
ear parabolic gain (β > 0) due to an amplifier, the ε
term represents the nonlinear gain (which arises, e.g.,
from saturable absorption), the term with µ represents,
if negative, the saturation of the nonlinear gain, and the
one with ν corresponds, also if negative to the satura-
tion of the nonlinear refractive index, and finally s rep-
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resents the fourth-order correction of the band-limited
gain term, i. e., βψττ [9, 12].

The analytic solutions of (1) such as bright, black,
chirped bright, and chirped black solitary-waves have
recently been obtained by using Painlevé analysis, the
Hirota multi-linear method and a direct ansatz tech-
nique under certain constraints between the coeffi-
cients [12, 13]. For the CGLE, intensive researches
have previously been performed for finding all analytic
and numerical soliton solutions and its dynamical be-
havior using numerical simulations [9]. However, a de-
tailed analysis of the MI gain spectrum and the evolu-
tion of the MI for the qCSHE has not previously been
studied and will be pursued in the present work.

The paper is organized as follows. In Sect. 2, we
obtain the analytic expression for the MI gain spec-
trum of the qCSHE, study the characteristics of gain
in the presence of the fourth-order dispersion and gain
terms, and compare them with those of the CGLE [9].
In Sect. 3, we numerically investigate the dynamics of
the initial steady CW in the anomalous regime under a
weak modulational field. In particular, the effect of the
fourth-order dispersion and gain terms on the final state
of the MI (solitary-waves) is investigated. The conclu-
sions follow in Sect. 4.

2. Linear-stability Analysis of Modulational
Instability

In order to investigate how weak and time-
dependent perturbations evolve along the optical
medium described by the qCSHE, we consider the fol-
lowing linear-stability analysis. The steady-state solu-
tion of (1) can be given by [1, 8]

ψ̄(z, τ) = A exp[iψNL(z)], (2)

where the linear phase shift ψNL(z) is related to the
optical amplitude A and the propagation distance z as

ψNL(z) = zA2+zνA4+i(−zδ−zεA2−zµA4). (3)

The linear-stability of the steady-state can be exam-
ined by introducing a perturbed field of the form

ψ(z, τ) = [A+ η(z, t)] exp[(δ + εA2 + µA4)z

+ i(A2 + νA4)z],
(4)

where the complex field |η(z, τ)| � A. It is obvious
that, depending on the strength and sign of the gain or
loss terms, i. e. δ, ε, and µ, the steady-state can blow
up or decay. However, due to the presence of the per-
turbed field and its compensation with the steady-state
field, one can expect the total field of (4) to be sta-
ble and produce non-trivial coherent structures such as
solitary-waves, which will be numerically verified in
the following section.

By substituting (4) into (1) and collecting the linear
terms in η, we obtain the equation for the perturbed
field as

iηz +
(
D

2
− iβ

)
ηττ + (h+ is)ηττττ

+ [(i+ 2ν) − i(ε+ 2µ)](η + η∗) = 0,
(5)

where ∗ denotes complex conjugate. We assume a gen-
eral solution of the form

η(z, τ) = U exp[i(Kz − Ωτ)]
+ V exp[−i(Kz −Ωτ)], (6)

where K and Ω represent the wave number and the
frequency of the modulation [1], respectively. Insert-
ing (6) into (5), we obtain the determinant

∣∣∣∣∣
Φ− Φ+

−sΩ4 − βΩ2 + i(−K − 1
2
dΩ2 + hΩ4) sΩ4 + βΩ2 + i(−K +

1
2
dΩ2 − hΩ4)

∣∣∣∣∣ = 0, (7)

where

Φ± = ±K + 2A2 − dΩ2 + hΩ4 + 4νA4

+ i(−2εA2 − 4µA4 + βΩ2 + sΩ4).
(8)

This results in the expression

K = i
√
Kr + iKi, (9)

for the wave numberK , where

Kr = (s2 − h2)Ω10 + (2βs+Dh)Ω8

+
(
β2 − 1

4
D2 − 4µA4s− 4νA6h

− 2εA2s− 2A2h
)
Ω6
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Fig. 1. The gain spectrum of the CGLE (dot-dashed curve)
shows two characteristic peaks, while those of the qCSHE
(solid and dashed curves) show four peaks due to the func-
tional dependence of Ω, i.e., g(Ω) ∼ Ω5. The peak fre-
quency, at which the characteristic gain peaks occur, is shown
to decrease as s and h increase. However, the gain rapidly
increases regardless of the strength of h and s as the modu-
lation frequency increases.

+ (−4µA4β + 2νA4D +A2D − 2A2β)Ω2,

Ki = −2shΩ10 + (−2hβ +Ds)Ω8 + (4µA4h

− 4νA4s+ 2εA2h+Dβ − 2A2s)Ω6 (10)

− (4νA4β + εA2D + 2µA4D + 2A2β)Ω2.

Expressing (9) in polar coordinates, we obtain

K = i[K2
r +K2

i ]1/4

[
cos

(
θ

2

)
+ i sin

(
θ

2

)]

=
i

2
[K2

r +K2
i ]1/4[

√
2 + 2 cos(θ)

+ i
√

2 − 2 cos(θ)],

(11)

where cos(θ) = Kr/
√
K2

r +K2
i . The steady-state so-

lution becomes unstable whenever K has an imagi-
nary part since the perturbation then grows exponen-
tially with the intensity given by the MI gain defined
as g(Ω) ≡ 2Im(K) [1] as

g(Ω) = [K2
r +K2

i ]1/4
√

2 + 2 cos(θ)

= [2
√
K2

r +K2
i + 2Kr]1/2.

(12)

The inclusion of the fourth-order dispersion and gain
terms lets the MI gain spectrum depend on higher

Fig. 2. The maximum gain peaks g(Ω)max as a functions of
the amplitude A for the same coefficients as in Fig. 1 with
several different h and s values in the range of |Ω/2π| <
0.3. Nonzero gmax occurs at a much lower amplitude than
in the CGLE case. Note that at the higher amplitude around
1.5 < A < 1.7, there is a region in the model coefficients
space where a CW can be stable under MI even in the pres-
ence of the fourth-order dispersion terms, since gmax is close
to zero.

modulation frequencies, i.e., g(Ω) ∼ Ω 5 instead of
g(Ω) ∼ Ω3 for the CGLE in [9]. Thus, the gain spec-
trum of (12) grows indefinitely as the modulation fre-
quency increases even for small h and s values. How-
ever, at small modulation frequencies the lower orders
of the Ω terms of Kr and Ki dominate over the high-
est order Ω. Thus we expect that the characteristic MI
gain peaks occur as in [1, 8].

Figure 1 shows the MI gain spectrum g(Ω) as func-
tion ofΩ/2π for several values of h, s, and the optical
amplitude A with the following set of physical coeffi-
cients used in [9]: β = 0.18, δ = −0.1,µ = −0.1, ν =
−0.6, and ε = 1.5. In case of the CGLE (dot-dashed
curve), i. e., h = s = 0, there are two local peaks at
low modulational frequencies (|Ω/2π| < 0.5). How-
ever, the gain spectra of the qCSHE (solid and dashed
curves) show four characteristic peaks appearing at the
low frequencies |Ω/2π| < 0.3, rapidly increasing at
|Ω/2π| > 0.3. As mentioned above, it can be seen
from Fig. 1 that the overall effect of the fourth-order
dispersion and gain terms to the MI gain is to make the
spectrum narrower as the values increase.

Figure 2 shows the dependence of the maximum
gain peak g(Ω)max on A, using the same coefficients
as in Fig. 1, for the modulation frequency in the
range |Ω/2π| < 0.3. Comparing with the maximum
gain peak of the CGLE (dot-dashed curve), those of
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Fig. 3. (a) Simulation of an injected CW to the nonlinear
medium supporting anomalous dispersion with Ωm = 0.001
and εm = 0.01, which qualitatively agrees with the result
in [9]. The initial CW transforms to solitary-waves after in-
teraction. Note that the solitary-wave located in the center is
directly generated by the initial modulated field, (b) Contour
plot of (a). (c) The evolution of normalized energy and mass
Q(z) and R(z), respectively. Q(z) is almost constant up to
z ∼= 50 and thereafter drops to 30% of the initial value, since
the nonlinear terms (δ, ε, µ < 0) in (1) act as an effective
energy loss.

the qCSHE (solid and dashed curves) in Fig. 2 show
nonzero gain maxima at much lower amplitude. On the
other hand, for 1.5 < A < 1.7, there is a region of the
model coefficients where the CW can be stable under
the MI even in the presence of the fourth-order disper-
sion and gain terms, since gmax is close to zero.

Before we proceed to the numerical simulations of
the MI, it is worth noting that the wave number K
in (11) has not only the purely growing imaginary term
but also the real term, giving an oscillatory instability
which may influence to a solitary-wave formation at
the end process of the MI. As shown in (4), the expo-
nentially decaying (δ < 0, ε < 0, and µ < 0 in this
work) or increasing factor can modify (12), therefore
the effective gain is given as

geff (Ω) = (δ + εA2 + µA4)

+
[
2
√
K2

r +K2
i + 2Kr

]1/2

,
(13)

which only shifts the magnitude of (12).

3. Numerical Simulations

In order to understand the dynamics of a CW un-
der the MI, (1) is solved, utilizing the split-step Fourier

Fig. 4. The evolution of the initial CW with Ωm = 0.5 and
εm = 0.001. (a) The presence of fourth-order dispersion and
gain terms give rise to a ‘breathing’ and ‘creeping’ motion
of the waves along the evolution distance. (b) The contour
plot shows that the solitary-wave in the center is stationary.
(c) Evolution of Q(z) and R(z) with the fourth-order terms,
which shows a slight variation of their initial values, indicat-
ing their role as energy supplier to the system.

method applying the periodic boundary condition [14].
We use an incident field at the launch plane z = 0 into
the nonlinear medium of the form

ψ(0, τ) = [A+ εm cos(Ωmτ)], (14)

where εm is the strength of the modulation amplitude
and Ωm is the angular frequency of a weak sinusoidal
modulation imposed on the CW, which can be deter-
mined from the gain spectra for the given set of coeffi-
cients, such as Figure 1. Among many sets of possible
coefficients of (1), in this section we only focus on the
effects of the h and s terms to the evolution of the MI.

In Fig. 3, we present the simulation of an injected
CW to the nonlinear medium supporting anomalous
dispersion (D = 1) by choosing, as an example, β =
0.18, δ = −0.1, µ = −0.2, ν = −0.1, and ε = 0.45,
using the same set of coefficients in Fig. 1 (dot-dash
curve), and applying the modulation frequency Ωm =
0.001 with a perturbed field amplitude εm = 0.01.
Figures 3a,b show the occurrence of several modula-
tion fields which in turn generate the solitary-waves
due to the MI. In particular, the solitary-wave located
in the center of Fig. 3a is directly generated from the
initial modulated field, which is different from the re-
sult in [9], where the solitary-waves can be produced
only through the interaction of initial perturbed fields.
The dynamical properties of the MI and the evolution
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Fig. 5. The effect of the fourth-order terms to the MI with the same set of coefficients as for Fig. 3 and increasing strength of
h and s: (a) h = 0.08 and s = 0.40; (b) h = 0.10 and s = 0.50; (c) h = 0.11 and s = 0.55; (d) h = 0.12 and s = 0.60.
The breathing and creeping behaviors of the solitary-waves are more conspicuous if the strength increases.

of solitary-waves can be more throughly investigated
from the energy and mass (or the area under |ψ(z, τ)|)
defined as

ε(z) ≡
∫ ∞

−∞
|ψ(z, τ)|2dτ,

M(z) ≡
∫ ∞

−∞
|ψ(z, τ)|dτ,

(15)

respectively. Figure 3c shows the evolution of the nor-
malized energyQ(z) ≡ ε(z)/ε(0) and the normalized
massR(z) ≡M(z)/M(0), respectively, where the en-
ergy Q(z) of the system is almost constant up to z ∼= 50
and thereafter drops to 30% of the initial value, since
the nonlinear terms (δ, ε, µ < 0) in (1) in this case
act as an effective energy loss. Also, it is shown that
the solitary-waves are produced at z ∼= 60 due to the
MI. At z ∼= 145 the collision of two solitary-waves oc-
curs, andQ(z) andR(z) decrease as before. It has been
checked through several numerical simulations that the

solitary-waves are maintained in stationary motion and
the energy is conserved up to z = 1000.

In Fig. 4, for example, the effect of the fourth-order
dispersion and gain terms to the evolution of MI is in-
vestigated for h = 0.14, s = 0.7, εm = 0.01, and
Ωm = 0.5 with the same coefficients as in Figure 3.
Contrary to the stable evolution of the solitary-waves
in Fig. 3a, the presence of those terms give rise to a
‘breathing’ and ‘creeping’ motion of the waves along
the evolution distance. It is seen from Fig. 4a that the
solitary-wave in the center shows a stationary motion
similar to that of Figs. 3a and 3b, but the other waves
both breathe and creep during their propagation, which
is clearly observed in the contour plot of Fig. 4b.Q(z)
and R(z) calculated in Fig. 4c shows a slight decrease
from their initial values in comparison with those of
Fig. 3c, which indicates that they compensate the loss
due to the nonlinear terms of (1) by providing energy
to the system.
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Fig. 6. The evolution of Q(z) with that of the fourth-order
dispersion and gain terms. The energy, as expected, is shown
to become more stable as the strength of the fourth-order
terms increases.

Finally, in Fig. 5 we further investigate the dynamics
of the MI under the fourth-order terms with increasing
strength: (a) h = 0.08 and s = 0.40; (b) h = 0.10 and
s = 0.50; (c) h = 0.11 and s = 0.55; (d) h = 0.12 and
s = 0.60. The simulation result in Fig. 5 shows that the
breathing and creeping behaviors of the solitary-waves
are more conspicuous as the strength of the coefficients
increases. In particular, the creeping solitary-waves in
Fig. 5b interact with the center wave so that it breathes
more violently during the evolution. On the other hand,
the energy in Fig. 6, as expected, is shown to be the
more stable the more the strength increases.

4. Conclusions

In this work we have derived the analytic expression
for the MI gain of the qCSHE in (1), which is an ex-
tended model of the cubic-quintic complex Ginzburg-
Landau equation, by adding the fourth-order disper-
sion and gain terms. It is shown that the presence
of fourth-order dispersion and gain terms changes the
characteristic MI gain spectrum of the CGLE as shown
in Figure 1. The fourth-order terms make the MI gain
spectrum depend on a higher modulation frequency,
i.e., g(Ω) ∼ Ω5 in comparison with g(Ω) ∼ Ω3 for
the case of CGLE in [9]. The maximum gain spectra
shown in Fig. 2 are different from those of [9], in that
all CWs for the given particular set of coefficients are
unstable. Using the split-step Fourier method, we nu-
merically demonstrated the dynamics of the CW in the
presence of fourth-order dispersion and gain terms in
Figures 4 – 6. The terms give rise to ‘breathing’ and
‘creeping’ motion of the waves along the evolution dis-
tance, as shown in Figs. 4a and 5. On the other hand,
their effect on Q(z) and R(z) has been calculated in
Fig. 4c, showing a slight decrease from their initial val-
ues in comparison with those of Fig. 3c, which indi-
cates that they compensate the loss due to the nonlin-
ear terms (δ, ε, µ < 0) in (1) by providing energy to
the system.
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