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I. INTRODUCTION

It is well-known that various forms of stochastic reso-
nance occur in neural tissue, both in vitro and in living
brains1. An unsolved macro-problem is to what extent
noise facilitates, or is necessary, for the functioning of
various computational tasks accomplished by the brain
in giving rise to perception, cognition, and behaviour1.
This presentation describes the context for three impor-
tant problems within this arena: To what extent may
the oscillatory behavior of individual neurons, or linked
populations of neurons, best be characterized as noise-
driven quasicycles or as noisy limit cycles? What role(s)
does neural noise play in the synchronization of, and in-
formation transmission between, neural populations lo-
cated far from one another in the brain? To what extent
do noise-driven quasipatterns arise in the brain and affect
its overall functioning?

II. NOISY LIMIT CYCLES OR NOISE-DRIVEN
QUASICYCLES?

An influential model of the interactions between pop-
ulations of excitatory and inhibitory neurons in brains
(Fig. 1) is

τEdVE(t) =

[
− VE(t) + g

[
aE

(
SEEVE(t)− SEIVI(t)− θE

+ PE(t)
)]]

dt+ σEdWE(t),

(1)

τIdVI(t) =

[
− VI(t) + g

[
aI

(
− SIIVI(t) + SIEVE(t)

− θI

)]]
dt+ σIdWI(t),

(2)

where VE(t), VI(t) are voltages of excitatory
and inhibitory neuron populations, respectively,
SEE , SII , SEI , SIE are synaptic efficacies, τE , τI are
time constants, g is a threshold function, aE , aI , θE , θI
are constants, PE(t) is input current, and WE(t),WI(t)
are standard Brownian motions. This model is similar
to some models of individual neurons, e.g., the Morris-
Lecar neuron, where a pair of differential equations
models fast and slow processes within the neuron2.
When g(x) = (1 + e−x)−1 and σ = 0, this model yields

deterministic limit cycles with a characteristic frequency,
i.e., neural oscillations3. When σ > 0 the limit cycle is
noisy4, and for very large σ the noise obscures the limit
cycle and there is no oscillation apparent. If we take
g = 1, aE = aI = 1, θE = θI = 0, and P (t) = 0, then the
system exhibits a damped oscillation that goes to a fixed
point with a rate depending on the synaptic efficiacies
and the time constants. If we take σ > 0, however,
then the system exhibits quasicycles, that is, the noise
drives the system away from the fixed point and we see
what appear to be noisy oscillations about that point at
a mean frequency determined by the various synaptic
efficacies and time constants5. Thus, in the limit cycle
version of the model, noise is a nuisance that obscures
the inherent oscillations that may, or may not, play a
significant role in information processing in the brain. In
the quasicycle version of the model, however, noise is an
essential driving force without which neurons or neuron
populations would not exhibit oscillations, or any other
interesting behaviour, at all. This is a quinessential
example of what McDonnell and Ward1 called ‘stochastic
facilitation.’ Although much theoretical work has been
done on the limit cycle model, and some is beginning
on the quasicycle version (e.g.,4–6), it is unknown which
model best captures the characteristics of oscillatory
neural activity in the brain, or indeed whether both
models capture neural oscillations at particular scales.
There are some reasons to believe that quasicycles
dominate at intermediate scales in the brain5 but much
more information is needed. There exist some methods
that may differentiate between noisy limit cycles and
quasicycles7 but these have yet to be applied to a wide
range of neural data at many scales.

FIG. 1. Typical arrangement of an excitatory (E) and in-
hibitory (I) neuron pair. SEE , SII , SEI , SIE refer to the
synaptic efficacies of the connections; see equations (1), (2).
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III. NOISE IN SYNCHRONIZATION AND
INFORMATION TRANSMISSION?

Noise is known to facilitate neural synchronization,
both through studies of models8 and through experi-
ment9. Interestingly, even when deterministic versions of
the Wilson-Cowan equations are studied, noise is added
to the simulation process in order to ‘accelerate’ the pro-
cess10. Importantly, both limit cycle10 and quasicycle11

models of neural interactions exhibit Kuramoto-type syn-
chronization, indicating that for local neural populations
at least, noise could be deeply involved in neural syn-
chronization, and thus could play an important role in
information transmission in the brain. This is because os-
cillatory synchronization of neural populations has been
seen as an important mechanism for improving informa-
tion transmission between those populations12.

There is considerable controversy about the role of neu-
ral oscillations in the brain, however. And there have
been no direct experiments to our knowledge on the effect
of variations in neural noise levels on any information-
transmission related neural computational tasks. More-
over, if quasicycles dominate at the scale of interregional
information transmission, then there is likely an opti-
mal noise level involved, both for the maintenance of the
quasicycles themselves and for the synchronization be-
tween sets of quasicycles. It is unknown whether such
a noise level would be the same for both functions, or
whether different noise sources and levels (synaptic noise
for synchronization and ion channel noise for quasicy-
cles?) would be required.

Finally, it is possible that information can be trans-
mitted between brain regions through a multiplexing-
demultiplexing process that depends on an oscillatory
modulation of noisy firing-rate population codes13. It
is unknown whether such a scheme requires stochastic-
ity (noise) or whether it would work better without any
noise at all.

IV. NOISE-DRIVEN QUASIPATTERNS?

Stochastic differential equation models of neural sys-
tems, like the stochastic equations 1 and 2, describe only
fluctuating temporal oscillations. But several large scale
models of the brain, when simulated, have indicated that
spatial patterns of temporal oscillations can occur, e.g.14.
Recently mathematical methods have been developed to
derive temporal and spatial patterns (indexed by fre-
quency ω and by wave number k)15 from a system of
stochastic partial differential equations. Power spectra,
as in Fig. 2, indicate the existence of temporal-spatial
quasipatterns (Turing patterns) occurring on a lattice.
, as in Potentially such a system could be extended to
describe the types of noise-driven quasipatterns seen in
other models and in the brain itself, providing an account
of the generation and consequences of such noise-driven
quasipatterns. This is yet to be be accomplished.

FIG. 2. Power spectrum showing spatial-temporal stochastic
patterns. Reprinted with permission from16.
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