
 87

DelfosnetX: A Workbench for XML-based Information Retrieval Systems

M. J. Fernández-Iglesias*, P. Pavón-Mariño, J. Rodríguez-Estévez, L. Anido Rifón, M. Llamas-Nistal
Grupo de Ingeniería de Sistemas Telemáticos. Depto. de Tecnologías de las Comunicaciones.

Universidade de Vigo – Spain
*Visiting the International Computer Science Institute, Berkeley CA, USA

manolo@ait.uvigo.es

Abstract

In this paper we present DelfosnetX, an Information
Retrieval (IR) system intended to evaluate different
relevance analysis and ranking techniques for metadata-
enabled IR, and more specifically, XML-based IR. The
theoretical background that supports the proposed model
is also discussed here.

1. Introduction

In this paper we study the introduction of metadata,
and more specifically XML, into the IR domain. We try
to evaluate how metadata may improve the features of
classical IR systems. For this, we propose DelfosnetX, a
workbench intended to analyze the properties of metadata-
enabled IR systems.

The introduction of XML provided an open
environment to define any metadata scheme. This
environment supports the description of already available
metadata schemes, like DublinCore[5], and to define new
schemes as new tag languages to address new scenarios
that may appear.

The rest of this paper is organized as follows. First, we
offer further insight on our motivation and objectives.
Then, a brief presentation of the state of the art in the field
of XML-enabled search engines and IR systems is
provided. Section 4 is devoted to briefly discuss some
aspects of classical IR theory, which will help to state
some notation and concepts. Sections 5 and 6 present the
theoretical foundation of DelfosnetX. In section 7 we
present DelfosnetX, this section being the core of this
paper. At the end of the paper we present some
conclusions and discuss briefly our present and future
work.

2. Motivation and objectives

Metadata is used to describe the information provided
by a document. Therefore, metadata can be used to make
explicit higher level information not directly present in the
document itself.

IR systems (e.g. search engines) may be provided with
this higher level, structured information about document
contents. Users may query the system not only about
document contents, but also about these higher level
descriptions.

Therefore, metadata may improve the features of IR
systems. In this paper we propose a theoretical framework
to support the design, implementation and evaluation of
metadata-enabled IR systems. As stated in the
introduction, XML is a suitable model for metadata
description, and will be adopted here as the metadata
reference scheme. A tool that implements our approach is
the second contribution of this paper.

The proposed framework is not domain specific, but
valid for different application domains. In fact, we will
define a family of models (i.e. a metamodel?) that can be
instantiated to be applied to a given, specific application
domain. On the other side, we will make use of already
available developments from classical IR theory.

3. Current Trends in XML-Enabled Systems

Already available XML-enabled IR systems can be
classified into two groups: those that support inter-
document searches/queries, and those that support intra-
document searches/queries using an XML query language
like XQL[7], XML-QL[3] or Lorel[1].

The model presented in this paper can be classified
into the first group. Query results will be composed by
relevant XML documents, and not by fragments of them.
Searches are performed over all the database documents.
DelfosnetX will also allow the definition (and therefore

0-7695-0746-8/00 $10.00  2000 IEEE

Published in Proceedings of SPIRE 2000,
IEEE Computer Society, Los Alamitos, CA,
USA, 2000. ISBN 0-7695-0746-8

 88

testing) of query languages under specific restrictions, as
discussed in section 7.4.

The systems presented below are examples of these
two approaches:
• XRS[11] is a XML-enabled search engine based on

BUS[7] (Bottom Up Scheme). XRS returns elements
extracted from XML documents that fulfill a set of
requirements in a user query.

• XSet[12] is oriented towards intradocument
information retrieval. Queries are defined as XML
documents whose tags reflect the corresponding
query parameters.

The systems above differ in the way information is
internally organized to handle structured XML files and to
efficiently support queries. In XRS, information
management is based on traditional database technologies,
and a set of inverted files to support searches. XSet is
based on a set of hash tables that reflect the structured
organization of XML documents.

4. Classical information retrieval

In our context, classical IR models are those which do
not support metadata information. Classical IR is a well
established field and many different approaches have been
discussed along the years: vector models, models based on
fuzzy sets, models based on neural networks are just some
examples[8][4][2]. Indeed, this scenery is further enriched
with many different variations and combinations of
models.

The following concepts and notation from classical IR
will be used to describe our proposal:
- Queries and documents are represented as I-

dimensional vectors, where I is the size of the
dictionary (i.e. the number of distinct terms stored in
the IR system).

- A query is then represented as),,(1 Iqq nnq �

&

= , and

document j is represented as),,(1 Ijjj nnd �

&

= .

Coordinates nij (niq) represent the number of times
term i appears inside document j (query q). Note that
information about the relative position of terms inside
a document is not considered. The document database
in a classical IR system containing J documents can
be represented by the nij above, that is Bclassic = {nij,
I=1…I, j=1…J}.

- Queries trigger the calculation of a similarity function

),(jdqsim
&

&

that tries to estimate the similarity

between the query and the documents in the database.
For the calculation of the similarity function,

additional information is used besides q
&

and jd
&

.

This information is obtained from a set of statistic
functions whose domain is Bclassic and return a real

number. We classify these functions into three
groups:
- G: They are global statistics. For example, N

(size of the database) is a G statistic.
- T: They are computed for single terms in the

database. For example,)log(ii nNidf =

describes the discrimination power of term i (ni is
the number of times term i appears in the
collection).

- D: They are computed for single documents. For
example, uj is a D statistic that represents the
number of distinct terms in document j.

5. Matrix model

Let Bext be an IR database containing J XML
documents. Documents in Bext are composed by a
hierarchy of nodes, where each node has a tag and a
content. This structure results from parsing an XML
document (DOM[6] tree).

Database Bext is modeled as Bext={nijm, i=1…I, j=1…J,
m=1…M}, where I is the number of distinct terms in the
database and M is the number of distinct tags in the XML
scheme, and nijm represents the number of times that term i
appears in document j bound to tag m.

From the classical point of view, this model is based on
an IxM-dimensional vector space, where both queries and
documents are IxM matrices (i.e. elements in the above
vector space). For a given document [dj], each row is a

vector m
jd
&

 that represents the contents of the

corresponding document bound to tag m. The same
applies for a user query:

),,(][1 M
jj

T
j ddd

&

�

&

= ;),,(][1 MT qqq
&

�

&

=

where),,(1
m
I

mm qqq �

&

= , and the m
iq represent how

much the user is interested in documents containing term i
bound to tag m.

We can also define two different dictionaries from Bext:
the term dictionary Dt composed by the set of indexed
terms in the IR database, and the tag dictionary Dl
containing the tags from XML document schemes. The
cardinality of Dt (resp. Dl) is I (resp. M).

Document 1 (d1) Document 2 (d2)
<List>
<Title>
 things to do
</Title>
<Item>read</Item>
<Item>write</Item>
<Item>read</Item>
</List>

<List>
<Item><Abstract>
 do
</Abstract></Item>
<Item>write</Item>
</List>

Figure 1. Example documents

 89

In figure 1 we show two XML documents belonging to
a simple IR database. Some examples about the
information managed for this database are presented
below:
• Dictionaries:

- Dt = {things, to, do, read, write}; I =5
- Dl = {<List><Title>, <List><Item>,

<List><Title><Abstract>}; M=3
• Example queries

- qa: Retrieve all documents containing “read” at
tag “<List><Item>”.

- qb: Retrieve all documents containing “write”
and “do” in any tag under tag “<List><Item>.

• Matrices
- [d1]

T = [(1 1 1 0 0), (0 0 0 2 1), (0 0 0 0 0)]
- [d2]

T = [(0 0 0 0 0), (0 0 0 0 1), (0 0 1 0 0)]
- [qa]

T = [(0 0 0 0 0), (0 0 0 1 0), (0 0 0 0 0)]
- [qb]

T = [(0 0 0 0 0), (0 0 1 0 1), (0 0 1 0 1)]

There is a class of queries that are common in XML-
enabled search engines due to the hierarchy of tag
definitions, namely tree queries. These queries ask for
terms bound to a given tag and all tags below it. The
query [qb] above is an example of this class of queries,
which can be straightforwardly handled by the proposed
model.

Classical vector-based similarity functions is now
calculated from document and query matrices. Now,
similarity functions will measure the distance between a
document matrix and a query matrix in the corresponding
IxM-vector space. Retrieved documents are ranked
according to the corresponding results.

The statistics available to compute similarities can now
be enriched with new ones that take into account metadata
information:
- M: They are computed for single tags. For example,

Nm is an M statistic representing the number of
documents having tag m.

- DM: They are computed for single tags in a given
document. For example, njm represents the number of
terms bound to tag m in document j.

- TM: They are computed for single tags for a given
term. For example,)log(immim nNidf = represents

the discrimination power of term i for contents bound
to tag m.

Obviously, other combinations are possible. As far as
we know, the evaluation of available metadata-dependent
statistics is an open problem.

6. Relevance analysis in a matrix model

The classical similarity function, i.e. the basis for
relevance analysis, is a function on vectors. As stated
above, the matrix model defines a similarity function on

matrices. In this section we will try to link available
results for classical models to the new proposed model.
First, we will define a tool that will help to establish this
link: the projection of a matrix model into a classical one.

6.1. Projections

Let Bext be an extended IR system containing J
documents [dj], j=1…J, M tags and I different terms. Let

),,(1 MppP �

&

= be an M-dimensional projector vector.

We define the P-projection of Bext as a classical (i.e.

metadata free) database Bclassic = { jd ′
&

, j=1…J} composed

by J documents),(][1 Mjj dddPd ′′==′ �

&&

, where

∑ =
=′

M

m mimi npd
1

.

Values in P
&

 weight the relevance that contents bound
to tag m will have in the new classical database. The di’ in
the projected document include information about the
relative importance of term i depending on the tag it was
bound to, as defined by the pm.

This projection may be also applied to queries. This
way, existing classical relevance analysis methods can be
straightforwardly applied to a metadata-extended
framework.

6.2. Some projection examples

Example 1 A projection vector)11(�
&

=P generates

classical databases where all metadata information is lost.

Let us apply the projector)111(=P
&

 to the database in

section 5 (see also figure 1). Then, all text bound to any
XML tag is equally relevant, and as a consequence XML
specific information will not be considered for relevance
calculation.

Let)cos()(, qjj wwqdsim
&&&

&

∠= , where qwq
&&

= , and

iijij nnw = , and ni is the number of documents where

term i appears (a T statistic, cf. Section 4).

For query qb we have)11121(1 =− projd
&

;

)00101(2 =− projd
&

;)00202(=projq
&

, and Nthings = Nto =

Nread = 1, Ndo = Nwrite = 2, and therefore)11212(=in
&

.

Then,)5.025.011(1 =w
&

,)5.005.000(2 =w
&

, and the

corresponding values for the similarity function are

277.0)(,1 =bqdsim
&

&

and 1)(,2 =bqdsim
&

&

We conclude that d2 is more relevant to the query qb.
Note that all metadata information was lost, and d2 is
composed solely by the terms in the query.

Example 2 A canonical vector m1
&

 where

1,0 =≠∀= mi pmip generates classical databases

 90

whose documents contain only the information bound to
tag m.

For this example we generate M classical databases
from the example database in section 5, one for each
XML tag, using the projectors above. Then, M similarity
results can be obtained for a given query.

We have to select a procedure to combine these M
values into a single one for ranking purposes. For this
example, the procedure selected is based on the similarity
estimation for the extended boolean model. We will
assume that the query string is composed by a set of
subqueries, each bound to an XML tag, combined by
boolean operators.

Let us assume that XML query substrings for each tag

are or-ed. Then, ∑ ′

=− ′
=

M

m mextbool sim
M

sim
1

21
, where

M’ is the number of non-null similarities. For query qb we

obtain 171.0)(,1 =bqdsim
&

&

and 5.0)(,2 =bqdsim
&

&

. If we

compare these results with those from the previous
example, we see that the relevance of both documents to
the query qb decreases. This is due to the role played by
the metadata. We see that the term “do” is not bound to
tag “<List><Item>” in the first document. For the second
document we see that, although both query terms are
relevant to the query, they are bound to different tags.

7. DelfosnetX: the system

DelfosnetX is an information retrieval system that
handles XML documents. Documents managed by
DelfosnetX may be defined according to any scheme
(DTD file), and different DTDs can be handled
simultaneously. The search engine was developed
according to the framework described in this paper.

The first aim of DelfosnetX was to provide a
workbench to validate our proposal, so it was designed to
easily test the performance of different configurations for
the matrix model. The system automatically fetches and
(re)calculates a comprehensive set of statistics to be used
to compute and test different similarity functions and
relevance analysis methods. This approach also permits to
study the relative performance of classical and metadata-
oriented IR systems.

DelfosnetX is a Java-based system that can be
accessed through the Web using a standard web browser.
An Application Programmer Interface (API) is also
provided to easily customize DelfosnetX for particular
applications.

At this point we will offer some insight into the
architecture selected to support the model discussed in
previous sections. First, we will present the components of
the system and how they interact. Then, we will justify the
relational model selected to support the data structures

needed to implement the target IR system. We will also
briefly discuss the main features of DelfosnetX, and
present the dynamics of a typical user query.

7.1. System Architecture

DelfosnetX is based on a well known paradigm for
distributed computing: a three-tier architecture (see figure
2). We divided all the software involved into three
separated tiers. At the front-end a thin client was selected
to allow efficient access through a networked
environment. The middle tier, business logic tier, is
responsible for actually implementing the functionality of
the whole system by managing the data stored at the back-
end tier. This model has been selected because it permits
to separate network issues related to remote system access
from database access and management, simplifying
system maintenance. Whatever change in any of the three
tiers can be carried out independently as clear interfaces
are provided between the elements involved. The three
main components of DelfosnetX are:

Figure 2. DelfosnetX architecure

- DelfosnetX Client Access to the system (user

queries, maintenance, user management) is provided
by an applet that implements the DelfosnetX
Application Programmer Interface (API). Its methods
may be invoked by JavaScript or Java code running at
the client. A standard WWW browser provides the
adequate Graphical User Interface (GUI) for any
particular application (see section 8 below).

- DelfosnetX Server It implements the DelfosnetX
API at the server side and takes care of network
connections and user authentication. It also provides
basic IR features: relevance analysis, result ranking,
etc. It is the only agent that interacts with the database
system. This also improves system security and hides
implementation details related to low-level data
management, preventing direct access from clients to
the database. To sum up, it converts a relational
database management system (RDBMS) into an IR
system. It is Java-based application responsible for
implementing the business logic for the whole
DelfosnetX system.

 91

- Relational Data Base Management System All data
needed to implement the functionality of DelfosnetX
is managed by the RDBMS. It maintains all the
information needed to process user queries, manage
documents, users and permits.

7.2. The relational model

Among the available solutions, we have selected the
relational model to support the data structures that serve
as the foundation of DelfosnetX. In other words, we have
constructed an IR system on top of a RDBMS.

As stated before, XML has been selected as the
language to define metadata. XML documents follow a
simple model: they are composed by a set of tag-term(s)
pairs. The system handles XML documents according to
this structure, that is, documents are parsed to extract tags
and terms bound to them.

In figure 3 we present an outline of the RDB
organization. We see that there are seven relations directly
related to terms and tags. These relations are summarized
in table 1.

Figure 3. Database organization

Despite of terms being bound to a tag, DelfosnetX has

been designed to support queries both for terms
interpreted as free (i.e. not bound to any tag) and as terms
bound to a tag. Information stored in tables T, D and TD
allow relevance calculation without any tag influence (as
if plain documents were indexed). In this way, classical
and matrix similarities can be tested in DelfosnetX.

Table 1. The relational model

Rel. Record info Record field example
T Terms nni: # of docs. containing term i

M Tags nm: # of terms bound to tag m
D Documents uj: # of unique terms in doc. j

TM Tag-term
pairs

nim: # of times i is bound to m

TD Term-doc
pairs

nij: # of apparitions of i in j

TDM Term-doc-tag
triplets

nijm: # of times I appears
binded to m in j.

In figure 3 also appears a relation not described in

table 1. This relation stores global statistics. For example,
entry nn stores the size (number of documents) of the
database.

All the relations described above are indexed to
minimize response time. A thorough analysis, supported
by well established database theory, has been performed
to select and adequate indexing scheme. The most
convenient index set is described in table 2.

Table 2. Index set for the relational model

Relation Indexing field(s)
T term
M label
D document
TM term and tag
DM tag and document
TD term and (tag,document)
TDM (term,tag) and (term,tag,document)

Note that RDBMS indexes are, from an

implementation point of view, inverted files. Inverted files
are a classical approach in the IR world to support
document retrieval. In other words, we rely on the
indexing scheme provided by the RDBMS, which in turn
is implemented as an inverted file set, to support queries.
This approach speeded up system development and
permitted us to devote most of our efforts to issues related
to retrieval and relevance analysis.

Furthermore, the relational approach offers a great
flexibility to define and maintain statistics to support
relevance analysis. Note that one of our main objectives
was to develop a platform to study several approaches to
relevance calculation/analysis for multimedia documents.
The availability of a set of structured statistics will permit
us to easily define customary relevance approaches
maintaining fairly reasonable response times.

7.3. Data and metadata

Metadata enabled systems can follow two parallel
approaches.
- Traditional approaches for IR systems rely on

document contents for retrieval and ranking. In this
case the XML document (used for indexing and

 92

relevance calculation), is the only item the user wants
to retrieve.

- On the other side, XML can be used to store
additional information available about document
contents, which does not need to be made explicit in
the documents themselves. That is, documents are
retrieved according to data about the data, i.e.
according to available metadata.

For example, an image database will have, for each
stored image, an attached XML metadocument reflecting
all the information relevant to the final user (e.g. creator,
content description, format, image digest, watermark info,
location, ...). Image retrieval is not based directly on
document content, but on available information about
document contents.

DelfosnetX allows both kinds of approaches. Every
indexed XML can have associated information (i.e.
image), that is stored in related_data variable length field.
Each system built on top of DelfosnetX can define the
contents it associates to its documents (i.e. a serialized
Java object with the image plus any particular
information). We feel that this design concept gives
flexibility and strength to the system.

7.4. DelfosnetX functionality

The present version of DelfosnetX addresses definition
and testing on the following key aspects of IR systems:

- Similarity functions to estimate the relevance of a

given document with respect to a user query.
- Stoplists for document and/or query filtering.
- Stemming functions for document and/or query

filtering.
The DelfosnetX API enables the user to perform the

actions summarized below:
- Register/unregister a custom-defined matrix similarity

function. A Java .class file implementing a
concrete interface should be provided (see section 5).

- Register/unregister a stemming function. A Java
.class file implementing a concrete interface
should be provided.

- Register/unregister stoplists. A text file with the list's
stopwords should be provided.

- Upload an XML file into the database. A registered
stoplist and a registered stemmer may be selected to
be applied to the document. The system will parse the
document, apply the stoplist, apply the stemmer and
update the index set. Actually, this action does not
immediately update the database, but schedules this
action to be performed during the next offline
actualization.

- Delete a document from the databbase. As in the
previous case document deletion is not performed
online.

- Perform a query according to the matrix model.
Documents are retrieved and classified according to
their relevance. The selected stoplist and stemmer
will be applied to the query, and relevance analysis
will be based on the selected similarity function. The
system filters the query using the selected stoplist,
and generates a set of potentially relevant documents
ranked according the number of times query terms
appear in each document. This set may be optionally
truncated to the n potentially more relevant
documents if desired, n being specified by the user.
This preliminary selection may improve response
time for big collections. The target similarity function
will be applied only to this truncated set of
documents.

- Calculate a precision-recall set of points according to
the standard process presented in [2]. A query and a
priory relevant document set are passed as
parameters.

- Offer direct (read) access to the statistics stored in the
database.

- Many available test collections offer several a priori
relevant document sets for a given query[9]. Each set
generates distinct precision-recall points. The system
permits to specify several relevant document sets to
calculate a set of precision-recall sets. This feature
speeds up this kind of tests.

- All actions related to system maintenance. A matrix
of permits can be defined, to grant or deny access for
every user and API function.

As previously stated, DelfosnetX is based on the
matrix model presented in section 5. This model is a
generalization of classical vector models. As a
consequence, DelfosnetX may also be used as a
benchmark for this kind of systems.

Next, we will present two examples to illustrate basic
DelfosnetX operation.

Adding documents To add an XML document to the
database, the user invoke the following method from the
API:

public FloatMatrix addDocument(URL url,
 Byte[] relatedData, Locale language,
 String idStoplist, String idStemmer)

where url identifies a link to the XML document to be
indexed; relatedData points to actual data attached to
the XML document, if any; language identifies the
unicode set for the document; and idStoplist and
idStemmer are identifiers for a registered stoplist and
stemming function.

Similarity calculation Some commands (e.g. queries,
precision-recall matrix calculation) require the calculation

 93

of similarity values. Registered similarity functions are
implemented as Java classes according to a predefined
interface. Then, DelfosnetX invokes the calculate method
from the appropriate class to get the needed similarity
values:

float calculate (FloatMatrix queryMatrix,

String doc, Object params, DBMatrix db,
Vector rankingDocs)

queryMatrix stores the user’s query; doc points to
the target document; and params is a generic object
defined by the user that the system passes to the similarity
function.

db is an object whose methods provide statistics for
similarity calculation. For example, db.idfi(“calcium”)
returns IDFi for the term “calcium”. The method
generateProjection(Vector tags) returns a
DBMatrix object where only the selected tags are taken
into account for statistic generation, as discussed in
section 6.1.

rankingDocs stores other documents that will be
ranked in this query. Probabilistic-like similarity functions
may user this information.

8. Some results and ongoing work

Preliminary tests have been performed based on the
cystic fibrosis reference collection provided by TREC[9].
This database includes 1239 XML documents related to
cystic fibrosis. It also provides 99 natural language
queries together with a priori results for four different
user groups (see table 3).

Table 3. Cystic fibrosis refcol. User groups
Group Description
Score 1 Relevant docs. for authors
Score 2 Relevant docs. for other physicists in the field
Score 3 Relevant docs. for post-doc researchers
Score 4 Relevant docs. for other medical bibliographist

DelfosnetX is queried for all the 99 queries to obtain
the precision-recall matrix in every case. Each query is
performed three times using three different similarity
functions:
- Classical Salton and Buckley, discarding all metadata

information.
- Matrix similarity based on the extended boolean

method applied to Salton and Buckley, where the
corresponding projections are and-ed (see section 5).

- Matrix similarity based on the extended boolean
method applied to Salton and Buckley, where the
corresponding projections are or-ed.

For the matrix similarity case, tags where weighted as
reflected in table 4. Note that these values affect the final
performance. DelfosnetX may be used to tune up these
weights to get better results.

Table 4. Tag weights for cystic fibrosis refcol.

Tag Weight
Majorsubj Topic 7
Minorsubj Topic 6
Title 8
Abstract 3
Other tags 1

We obtained 3x4x99 precision-recall point sets. To

analyze these results, we calculated for each set the
corresponding average precision as the arithmetic mean of
the precision values. This statistic favors those systems
that rank higher the most a priori relevant documents.

Results are summarized in figures 4 to 7. Each graphic
corresponds to one of the scores in table 3. They display
query number vs. average precision for the three similarity
functions defined, queries being sorted in ascending order
by average precision for the classical case (no metadata
information).

We can extract the following conclusions:
- For each query, the performance for both extended

boolean approaches (and, or) are similar, although
results are slightly better for the or case.

- There are remarkable differences between metadata
and metadata-free queries. Depending on the query,
we can get clearly better or worse results introducing
metadata.

- On average, global results are comparable for the
metadata and metadata-free cases.

Figure 4. Results for score 1

 94

Figure 5. Results for score 2

Figure 6. Results for score 3

Figure 7. Results for score 4

Note that this test is only an example of the kind of

analysis that can be performed using DelfosnetX. This

system can be easily tuned up to study a broad spectrum
of relevance analysis methods based on the matrix model
presented above. Indeed, DelfosnetX can be easily
tailored to particular applications where there exists
enough understanding of the underlying domain as to
define a well-suited relevance/ranking strategy.

Currently, we are tuning up the following DelfosnetX
based systems:
- A search engine for non-text documents (audio,

video, images, etc.) An XML file is bound to each
piece of multimedia information. This file identifies
the location of the multimedia file an provides textual
(structured) information about it. We are testing
several configurations of the matrix model (e.g.
projections, query method, etc.) to find the most
suitable ones for this application.

- An online Internet quality-of-service analysis tool.
Information about performance and quality of service
for monitored Internet sites or documents is kept as
structured XML data (roundtrip times, hop counts,
packet sizes, delays, connection establishment
parameters, etc.). Our aim is to tune this tool to help
final users to select the best location (i.e. the one that
likely will guarantee the best quality of service) to
download a given document or to analyze different
routes to a given service. Users would query for a
document, and the system will respond with a ranked
list of locations based on the computed estimation of
the quality of service.

9. Concluding remarks

The need for efficient information retrieval and
management tools for the Web and the apparition of
advanced markup and metadata methodologies
determined the evolution of IR techniques to take into
account metadata information. As a consequence, research
is necessary to study the real contribution of metadata to
the performance of IR systems. A suitable theoretical
framework to formally characterize the different aspects
of this may be helpful.

In this paper we have presented a matrix-based
characterization for metadata-based IR where both
documents and user queries are modeled as matrices.
These proposals adapts well to XML metadata and easily
integrates previous results from classical IR.

DelfosnetX was conceived as an Internet-oriented
workbench to study and test the properties of our
proposal. This system is in an advanced implementation
phase, and some promising results have already been
obtained. Nevertheless, more results are needed, to be
tested against other results in the Academia, to be able to
answer the question: how should metadata be handled to
take all relevant information from available data?

 95

10. Acknowledgments

This work was funded by the European Community and
the Spanish Ministry of Education under grant 1FD97
0282.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Windom, and J.
Wiener, “The Lorel query language for semistructured data”,
International Journal on Digital Libraries, April, 1997.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, Addison-Wesley, 1999.

[3] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and D.
Suciu, XML-QL: A query language for XML, Technical Report,
W3C, August, 1998,
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

[4] W.F. Frakes and R. Baeza-Yates, Information Retrieval.
Data Structures and Algorithms, Prentice-Hall, 1992.

[5] DublinCore Working Group, DublinCore Metadata for
Resource Discovery, Technical Report, DubliCore, 1998,
ftp://ftp.isi.edu/in-notes/rfc2413.txt

[6] W3C DOM Working Group, Document Object Model,
Technical Report, W3C, December, 1998,
http://www.w3.org/DOM

[7] J. Lapp, J. Robie and D. Schach, “XML Query Language
(XQL)”, QL-98-The Query Languages Workshop, W3C,
December 1998,
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[8] D. Shin, “BUS: An effective indexing and retrieval scheme
in structured documents”, Procs. of Digital Libraries 98, 1998

[9] A. Salton and M. J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, 1983

[10] W. M. Shaw, J. B. Wood, R. E. Wood, and H. R. Tibbo,
“The cystic fibrosis database: content and research
opportunities”, Library and Information Science Research, 13,
1991, pp. 247-366.

[11] XRS: http://dlb2.nml.nih.gov/~dwshin/xrs.html.

[12] XSet: http://www.cs.berkeley.edu/~ravenben/xset.

