
Scientific Programming 11 (2003) 309–320 309
IOS Press

Design patterns for library optimization

Douglas Gregora, Sibylle Schuppb,1 and David R. Mussera
aDepartment of Computer Science, Rensselaer Polytechnic Institute, 110 8 th Street, Troy, NY 12180, USA
E-mail: {gregod,musser}@cs.rpi.edu
bDepartment of Computing Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
E-mail: schupp@cs.chalmers.se

Abstract. We apply the notion of design patterns to optimizations performed by designers of software libraries, focusing especially
on object-oriented numerical libraries. We formalize three design patterns that we have abstracted from many existing libraries
and discuss the role of these formalizations as a tool for guiding compiler optimizers. These optimizers operate at a very high
level that would otherwise be left unoptimized by traditional optimizers. Finally, we discuss the implementation of a design
pattern-based compiler optimizer for C++ abstract data types.

1. Introduction

Design patterns have been widely accepted as an in-
valuable tool for the design of software systems. They
represent abstract notions of the behavior of code with-
out collapsing under the weight of implementation de-
tails, and therefore serve as an efficient method of com-
municating design. Design patterns are not synthesized
but instead are abstracted from commonalities in design
found amongst many successful software systems. As
abstractions, these design patterns must be customized
for any specific task at hand, but any instance retains
the properties of the design pattern(s) applied.

Design patterns need not be limited to high-level
design. Techniques employed by designers of high-
performance software libraries to enable code opti-
mizations also constitute design patterns. Especially
in object-oriented libraries, there are standard ways for
example to minimize the number of temporaries, to ma-
nipulate the evaluation of an expression, or to choose
among functionally equivalent expressions. It is es-
sentially because of these optimization patterns that li-
braries in higher level programming languages such as
C++ or Java have become competitive with those writ-
ten in C or Fortran. Often, however, the price for using
these patterns is compromised code clarity.

1This work was performed while the second author was at
Rensselaer.

In an object-oriented numeric library, for example, it
is often possible to directly express mathematical for-
mulae by using operators on user-defined types, but
these operator expressions are known to cause a large
number of extraneous temporary values to be computed
and stored. While these temporaries may be inexpen-
sive for fundamental integer or floating-point types, or
even small user-defined types, such as complex num-
bers, temporaries for large user-defined types, such
as arbitrary-length integers, arbitrary-precision floating
point numbers, or matrices, can become very costly.
Programmers have reacted to these extra costs by re-
verting from the more natural operator-centric repre-
sentation of mathematical expressions to the use of pro-
cedure calls that require fewer temporaries and result
in better overall performance.

Design patterns for optimization provide a new per-
spective on the ways in which library authors design
code for maximal performance. These optimization
patterns offer the same benefits as traditional design
patterns in that they succinctly communicate design,
but have additional value in that they can be directly
transformed into optimization opportunities for com-
pilers. They are based on the observation that the trans-
formation of, e.g., an operator-centric expression to an
equivalent procedural form is a largely mechanical task
for the programmer, which, however, cannot be auto-
mated as long as the programmer cannot communicate
to the compiler the kind of transformation it should per-

ISSN 1058-9244/03/$8.00 2003 – IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357639549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

310 D. Gregor et al. / Design patterns for library optimization

form. What is needed for automation is an optimization
scheme a programmer can refer to and a categoriza-
tion of related optimizations, including the semantic
conditions under which they can be applied.

Optimization patterns help make the process of spec-
ifying such transformations manageable by defining an
abstract form that these transformations may be derived
from. Assuming a compiler supports a particular opti-
mization pattern, a user (i.e., library designer) can refer
to this pattern and identify the characteristics that make
a given transformation an instance of this design pat-
tern. Conversely, an optimization that is given in the
form of an optimization pattern has been proved to be
applicable across several libraries, and thus has estab-
lished itself as an optimization methodology. It is there-
fore worthwhile to develop compiler optimizers based
on design patterns. Our Simplicissimus project [19]
has already produced one such compiler optimizer that
can handle optimization patterns; we hope that other
open compilation environments will follow.

We have surveyed several C++ object-oriented nu-
meric libraries and abstracted design patterns that are
common amongst these libraries. In this paper we in-
troduce three patterns that are important, but not re-
stricted to numerical applications: the Replacement
pattern, the Assignment Replacement pattern, and the
Temporary Removal pattern. The Replacement pattern
is a general pattern for rewriting expressions as other
expressions; the latter two patterns can be understood
as refinements of the Replacement pattern that provide
additional optimization opportunities.

We begin the presentation with examples of optimiz-
ing designs gathered from C++ object-oriented nu-
meric libraries in Section 2 that motivate the abstrac-
tion that underlies each pattern. In Sections 3 and 4 we
formalize, discuss, and illustrate the Replacement pat-
tern and two subpatterns called Assignment Replace-
ment and Temporary Removal. Section 5, finally, sum-
marizes the implementation of optimization patterns
within the Simplicissimus framework and briefly de-
scribes its integration into the GNU C++ compiler.
The emphasis of the paper, however, is on the concept
of a design pattern for optimization, and the main pur-
pose of the paper is to initiate the identification and
refinement of these patterns.

2. Optimization methods used by library designers

We surveyed several object-oriented numeric li-
braries, including LiDIA [20], the Matrix Template

Library Operation Semantics
NTL Inverse(x) 1/x

LiDIA x.AssignZero() x := 0
LiDIA x.EqualsOne() x = 1

Fig. 1. Shorthand operations.

Library (MTL) [17,18], the Number Theory Library
(NTL) [16], and the Basic Linear Algebra Subprograms
(BLAS) [12], searching for design patterns commonly
used to facilitate optimizations that could be leveraged
by a compiler optimizer instead of relying on the li-
brary user. The most common technique is the use of
procedures or functions in lieu of operator expressions.
These functions can be placed into roughly three cate-
gories: shorthand functions, operations that write their
result directly to a target, and functions that combine
several operations into one call. Each of these cate-
gories will be further described with examples from the
aforementioned libraries.

Throughout this paper, by semantic equivalence of
two expressions we mean equivalence of the observ-
able behavior of the expressions. Expressions e1 and
e2 have the same observable behavior if replacing an
instance of one with the corresponding instance of the
other will not change a program barring exceptional
conditions (e.g., memory allocation failure). We denote
this relation by e1 ≡ e2.

In addition to standard mathematical notation, we
use the infix copy assignment operator ‘:=’ that replaces
the value of the left-hand operand with the result of
computing the right-hand operand. The result of this
operation is the left-hand operand.

2.1. Shorthand functions

Shorthand functions often encapsulate operations
that are expressible by common operations but may
be computed more efficiently within a single function.
Such operations include complex conjugation, inverses,
and taking the square of a value. Figure 1 illustrates
examples of shorthand functions in NTL and LiDIA.

2.2. Targeted operations

The return value of an operation is often the cause
of unwanted temporaries. Even in simple assignments,
such as y := a × x, a temporary is generated by the
multiplication a × x and must be copied into y. As a
reaction to this, library authors create procedures that
store the result directly into one of its operands. Fig-
ure 2 illustrates some examples of this pattern.

D. Gregor et al. / Design patterns for library optimization 311

Library Operation Semantics
LiDIA add(x, y, z) x := y + z
LiDIA multiply(x, y, z) x := y × z
NTL Sub(x, y, z) x := y − z
NTL Inverse(x, y) x := 1/y
MTL transpose(A, B) B := AT

Fig. 2. Targeted operations.

2.3. Composite operations

Certain sets of operations are often used in conjunc-
tion. Library authors have used this as an opportunity
to introduce new functions that perform all operations
in one step without the creation of temporaries and with
efficiency that would otherwise not be achieved using
separate functions. The most obvious implementation
of this technique is in the BLAS libraries, where op-
erator expressions are not included but instead com-
plicated general-purpose routines are supplied. Some
examples of composite functions are listed in Fig. 3.

3. The replacement pattern

Shorthand, targeted, and composite operations of-
ten have semantics that are expressed via mathematical
formulas. In the majority of object-oriented numeric
libraries, these mathematical formulas are also directly
expressible, but come at a cost in efficiency. The pro-
grammer is expected to transform the mathematical for-
mulas into a set of function or procedure calls to eval-
uate them. Informally speaking, the Replacement pat-
tern is a natural abstraction of this expression transfor-
mation for optimization and can be likened directly to
a rewriting system where the left-hand side of a rewrite
rule denotes the mathematical expression and the right-
hand side denotes the equivalent, more efficient, pro-
cedure call. In the rest of this section we formalize the
Replacement pattern in terms of sets of rewrite rules.

3.1. Definitions and notation

Expressions are finite tree structures built from a
given finite set F of function symbols and a denumer-
ably infinite set V of variable symbols; the set of all
such expressions is denoted T (F, V). An equation is
a pair of such expressions, say (t1, u1), usually written
t1 = u1, and the equality rules of inference are cap-
tured in the notion of rewriting a subexpression of an
expression using an equation as a rewrite rule. Specif-
ically, a pair of expressions (l, r) is a rewrite rule if l

is not just a variable and the variables that appear in r
also appear in l. We usually write the rule as l → r,
and l is called the left-hand side and r the right-hand
side of the rule. Note that in some cases an equation
t = u could be used as a rewrite rule as either t → u
or u→ t.

A substitution is a mapping σ from expressions to
expressions that is determined entirely by its value on
a finite number of variables; a substitution is denoted
by an expression of the form {t1/v1, . . . , tk/vk}, read
“substitute t1 for v1, . . . , tk for vk.” The k � 0 variable
symbols v1, . . . , vk must be distinct, and the case k = 0
is the identity substitution ι such that ι(t) = t for
all expressions t. Following convention we write an
application of a substitution as tσ rather than σ(t).
For example, if σ = {(a + b)/x, (b · c)/y, d/z} and
t = x+(a·(z−y)), then tσ = (a+b)+(a·(d−(b·c))).

To define rewriting precisely we also need some no-
tion of position of an occurrence of a subexpression s
within an expression t. A standard way [4] to define
a position p in an expression t is as a sequence of nat-
ural numbers: the root position is assigned the empty
sequence, denoted by Λ; and if p is the position in t of
a subexpression s = f(s1, . . . , sk) then the subexpres-
sion si in the ith argument of s is assigned position p.i
in t, for i = 1, . . . , k. Then t[p] denotes the subterm of
t at position p, and t[p ← s] denotes the result of re-
placing the subexpression at p in t by the expression s.
For example, if t = x+ (a · (z− y)) then t[2.2.1] = z,
and t[2.2.1← d] = x+ (a · (d− y)).

For a given rewrite rule l → r, a relation on pairs
of expressions, t rewrites to u, can be defined as: for
some position p in t, there is a substitution σ such that
t[p] = lσ and u = t[p← rσ]. We write this as “t→ u
using l → r,” overloading the use of the symbol →.
For example,

x+ (a · (z − y))→ x+ ((z − y) · a))
using i · j → j · i, since, for σ = {a/i, (z − y)/j},

(x+ (a · (z − y)))[2] = (a · (z − y)) = (i · j)σ
and

x+ ((z − y) · a)) = (x+ (a · (z − y)))[2
← (j · i)σ].

For a given set of rewrite rules R, we say t → u
using R if t → u using l → r for some rule l → r
inR. These definitions can be extended to conditional
rewriting: a conditional rewrite rule is a triple of ex-
pressions (l, r, c) where (l, r) is a rewrite rule and c is
a predicate expression whose variables also appear in

312 D. Gregor et al. / Design patterns for library optimization

Library Operation Semantics
MTL mult(A, x, y, z) z := A × x + y
MTL mult(A, B, C) C := A × B + C
BLAS AXPY(a, x, y) y := a × x + y
BLAS GEMM(a, A, B, b, C) C := a × A′ × B′ + b × C′

where x′ = x, xT , or xH

Fig. 3. Composite operations. The BLAS library’s GEMM subroutine has been simplified from its original thirteen arguments for brevity.

l. We usually write the rule as l→ r (if c). For a set of
such conditional rules R the rewriting relation t → u
usingR is defined by t→ u if there is a rule l → r (if
c) in R such that t → u using l → r and cσ is true,
where σ is the same substitution used in the rewrite.

The nature of the condition on a rewrite rule depends
partly on the programming language used and its type
system, partly on the program transformation in which
the expression e takes place. Conditions can include
conceptual or type requirements as well as the speci-
fication of computational behavior, e.g., freedom from
side-effects of a functional expression, or anti-aliasing
of pairs of variables. We want to emphasize, however,
that especially in the examples listed the validity of a
condition cannot (efficiently) be deduced in an auto-
mated way. What can be automatically checked, how-
ever, are assertions of properties, including the logical
implications of these assertions. We therefore assume
that the pattern designer asserts certain properties of
variables and other subexpressions, and that a condition
is then checked against these declarations. Likewise it
is the pattern designer, and not a program, that claims
the semantic equivalence of two expressions.

3.2. The replacement pattern

We assume there is a cost function available from
expressions to reals (or any totally ordered domain) so
that costs of expressions can be compared. We also
recall the relation of semantic equality,≡, as introduced
in Section 1.

Definition. Let L and R be expressions and P be a
predicate expression. A Replacement pattern is a triple

(L,R, P)

such that

1. L ≡ R whenever P holds
2. cost(R) � cost(L)

Operationally speaking, a Replacement pattern can
be implemented in a framework of conditional rewrite
rules. Some patterns can be implemented as a single

conditional rewrite rule, L → R (if P). This is the
case, for example, with the shorthand operation Inverse
in Fig. 1, with the rewrite rule

1/x→ Inverse(x)

where there is no condition required. Similarly, the
Replacement patterns for the other two shorthand op-
erations in Fig. 1 can each be implemented with a sin-
gle rule. More generally, the implementation of a Re-
placement pattern can require several rules if there are
expressions that are semantically equivalent to L that
are not instances of L in the strict syntactic sense of
matching defined by the rewrite system. Consider, for
example, the Replacement pattern instance that targets
the BLAS AXPY routine in Fig. 3, which is commonly
used for manipulation of vectors. Formally, this in-
stance is

(y := a× x+ y, AXPY (a, x, y), P (a, x, y))

(To simplify the discussion in this section we do not
spell out the constraints represented by the predicate
P ; details of such constraints in several examples are
however discussed in Section 5.) We can use this triple
first of all to form the rewrite rule

(y := a× x+ y)→ AXPY (a, x, y)

(if P (a, x, y)),

but if we want the same optimization in the case a = 1
we also need the rule

(y := x+ y)→ AXPY (1, x, y) (if P (1, x, y)),

since y := x + y doesn’t syntactically match y :=
a× x + y (because it lacks an occurrence of the mul-
tiplication operator,×). Similarly, to reflect the role of
commutativity of + in semantic equivalence of expres-
sions, we need two more rules

(y := y + a× x)→ AXPY (a, x, y)

(if P (a, x, y)),

(y := y + x)→ AXPY (1, x, y)

(if P (1, x, y)).

D. Gregor et al. / Design patterns for library optimization 313

(We could get by without such additional rules if we
were implementing in terms of a more powerful form
of rewriting, such as associative-commutative rewrit-
ing [4].)

Thus, in general, to implement the Replacement pat-
tern (L,R, P) we require a set ofn rewrite rules li→ ri
(if ci) such that li ≡ ri ≡ Lσi and ci ≡ Pσi for some
substitution σi, for i = 1, . . . , n.

Given that pattern designers are responsible for de-
termining the semantic equality of left- and right-hand
sides as well as for identifying the constraints that hold
for instances of L, the rewrite framework is left with
three tasks. First, it performs the syntactic match be-
tween an actual subexpression s and a left-hand side,
l, of one of the rewrite rules l → r (if c), obtaining
a substitution σ such that lσ = s. Second, it checks
the constraints cσ by inferring whether or not declar-
atively asserted properties of the actual subexpression
s preserve the constraints. If the constraints are satis-
fied, it applies the rewrite rule and replaces s with the
corresponding instance rσ.

Note that for a set of rewrite rules and a given actual
expression the selection of an appropriate rewrite rule
is not necessarily unique: the actual expression can
match, and satisfy the conditions, of more than one
left-hand side. The cost function associated with each
rule can then be used to compute an optimal selection.

All examples we have seen so far can be considered
as instances of the Replacement pattern. This is un-
surprising, as the Replacement pattern itself relies on
the very general notion of expression rewriting, but it
nonetheless serves as a base for pattern-based optimiz-
ers. Several of these examples, however, share addi-
tional characteristics and furthermore refer to expres-
sion schemes that occur sufficiently frequently to estab-
lish patterns on their own, or, more precisely, subpat-
terns of the Replacement pattern. A subpattern inherits
all properties of its superpatterns but may add proper-
ties, both to the left-hand side of its superpattern and to
its right-hand side. Any optimization for a given pat-
tern is valid for any subpatterns of that pattern, and the
subpattern relationship is necessarily transitive. The
next section presents two examples of subpatterns.

4. Assignment replacement and temporary
removal

As the survey in Section 2 has shown, a great deal
of emphasis within numerical computing is placed on
the removal of temporaries. Therefore, many instances

of the Replacement pattern within numeric libraries
are designed specifically to remove extraneous tempo-
raries. In this section we first introduce the Assign-
ment Replacement pattern, an abstraction from the tar-
geted operation discussed earlier, then the Temporary
Removal adaptor that further eliminates temporaries by
adding appropriate expressions. While the Assignment
Replacement pattern is a syntactic refinement of the
Replacement Pattern, the Temporary Removal adap-
tor applies to Replacement patterns and generates new
instances of Assignment Replacement patterns (which
are then eligible for optimization with existing pattern
instances).

4.1. The assignment replacement pattern

As motivation we again consider the Replace-
ment pattern for the BLAS routine, (y := ax +
y,AXPY (a, x, y), P). We consider here just the first
of the four rewrite rules that implement this pattern as
discussed in the previous section.

(y := a× x+ y)→ AXPY (a, x, y) (if P).

If we consider the naive computation of the expres-
sion y := a×x+ y, three loops are required for evalu-
ation: one for the scalar multiplication, one for the vec-
tor addition, and one for the vector copy. For each of
the two temporaries created by this expression, mem-
ory for the vector’s storage must be allocated and later
freed by the destruction of the temporary. On the other
hand, the procedure call AXPY (a, x, y) requires no
temporaries and a single loop. Since the discussion
of targeted expressions in Section 2.2 has shown that
copy assignments are a frequent source of temporaries
(see Fig. 2) the introduction of a separate optimization
pattern for copy assignments seems to be appropriate.

Definition. An Assignment Replacement pattern is a
Replacement pattern (L,R, P) such that the root of
L is a binary function (operator) that represents an
assignment to its left operand.

As with the Replacement pattern, instances of the
Assignment Replacement pattern may vary greatly in
generality and scope. The LiDIA routineaddmay only
be useful for the expression listed in Fig. 2, whereas the
BLAS routine GEMM has many possible instances, as
is illustrated in the form of rewrite rules in Fig. 4.

The utility of the Assignment Replacement pattern
is not in its ability to express optimizations not avail-
able to the Replacement pattern, but to simplify the

314 D. Gregor et al. / Design patterns for library optimization

(C := a × A × B + b × C) → GEMM(a, A, B, b, C)
(C := A × B + b × C) → GEMM(1, A, B, b, C)

(C := a × A × B) → GEMM(a, A, B, 0, C)
(C := C + a × A × B) → GEMM(a, A, B, 1, C)

Fig. 4. Rewrite system for optimizing to the GEMM function.

specification of instances of the Replacement pattern
that follow a particular form. Consider the predicate P
that verifies the semantics of a rewrite rule of the form
(x := f(x, y1, y2, ..., yN), g(x, y1, y2, ..., yN), P): P
must ensure that x does not alias any yi, requiring the
author to repeat these semantic checks for every rule of
this form. With the Assignment Replacement pattern,
a pattern-based optimizer must either perform aliasing
checks directly or transform the Assignment Replace-
ment rule into an equivalent instance of the Replace-
ment rule including the required checks.

What, however, happens if an actual expression does
not quite match, even semantically, the left-hand side
of an Assignment Replacement pattern?

4.2. The temporary removal adaptor

Consider an expression z := a × x + y that is sim-
ilar to the semantic specification of AXPY, but is not
semantically equivalent. In this case, two temporaries
will be generated. It is possible, however, to remove
one of these temporaries by executing z := y followed
by the procedure call AXPY (a, x, z). Similarly, the
expression a × x + y may be optimized into a call to
AXPY depending on the nature of y. If y is a tempo-
rary value, overwriting it with another temporary value
is reasonable assuming that y is not reused. In fact,
the semantics of most programming languages does
not support the direct reuse of temporaries, making
this a reasonable assumption. An expression such as
a×x+b×y can therefore be optimized into t := b×y
followed by a call toAXPY (a, x, t). Generalizing the
two examples, we introduce the Temporary Removal
adaptor.

Definition. Let (L,R, P) be an Assignment Replace-
ment pattern where L is of the form y := e for
some variable y and expression e. We further assume
e[p] = y and R[q] = y for some positions p and q.
From this pattern the Temporary Removal adaptor pro-
duces the following new Replacement patterns:

(z := e, (z := y, R[q ← z]), P),
(e, (var t = y, R[q ← t]), P).

where var t = y denotes the declaration of a tempo-
rary variable t (local to the expression sequence) and
its initialization to the value of y.

Applied to the just discussed AXPY Assignment Re-
placement, for example, the Temporary Removal adap-
tor generates the following two Replacement patterns:

(z := a× x+ y, (z := y, AXPY (a, x, z)),
P),
(a× x+ y, (var t = y, AXPY (a, x, t)),
P).

In the same way the Assignment Replacement used
in the MTL library (see Fig. 3)

(C := A×B + C, (A,B,C), P)

generates the two patterns

(D := A×B + C, (D := C, (A,B,D)),
P),
(A×B + C, (var t = C, (A,B, t)),
P),

and the GEMM Assignment Replacement (see Fig. 4)

(C := C + a×A×B,GEMM(a,A,B, 1, C),

P)

the two patterns

(D := C + a×A× B, (D := C, GEMM
(a,A,B, 1, D)), P),

(C + a×A×B, (var t = C, GEMM
(a,A,B, 1, t)), P).

5. Implementation

The implementation of an optimizer for the Replace-
ment pattern and its subpatterns essentially requires the
implementation of an expression rewrite system with
rewrite rules supplied by the user. An immediate re-
quirement of such a system is that the implementation
of expression matching must be generic enough to sup-
port any form of expression, including user-defined op-
erators (in the form of overloaded operators or function
calls). Additionally, the user must be able to examine
an expression to determine the semantics of the expres-
sion and its subexpressions to ensure correctness when
applying a rewrite rule. Finally, the user must be able
to construct new expressions to complete the rewriting
step.

Simplicissimus consists of a conditional rewrite en-
gine (implementing optimizations via the Replacement

D. Gregor et al. / Design patterns for library optimization 315

pattern) and an extensible set of rewrite rules. The ba-
sic set of rewrite rules implements subpatterns of the
Replacement pattern, including subpatterns based on
algebraic structures (e.g.,

(x+ 0, x, right-identity(+, 0)),

where right-identity(Op, Id) is a predicate defined to
be true when Id is the right identity element for operator
Op) and the Assignment Replacement and Temporary
Removal subpatterns. Simplicissimus receives input
from several sources: the basic set of rewrite rules (sub-
pattern implementations), extension rewrite rules from
some set of software libraries, library-defined map-
pings between Simplicissimus’s internal representation
and the library’s C++ syntax, and, finally, the program
source code. Simplicissimus transforms the program
source code (available in the compiler’s internal repre-
sentation) into its own internal representation, applies
rewrite rules that reduce the cost of an expression in a
bottom-up fashion,1 and transforms the result back into
the compiler’s internal representation.

The Simplicissimus optimizer can be viewed as a
generalization of the simplifier component present in
the vast majority of compilers. A compiler’s simplifier
performs simple rewrites based on known properties of
built-in types, such asx+0→ x for integer values. Ex-
tending these simplifiers generally requires direct mod-
ification of the compiler source code, and is therefore
not feasible for most users. Simplicissimus provides
the rewrite capabilities of a traditional simplifier but
is directly extensible via instances of the Replacement
pattern.

We now discuss Simplicissimus’s internal represen-
tation and implementation of new instances of the pat-
terns presented here. Additional information regarding
the expression rewrite process and the Simplicissimus
architecture may be found in a separate paper [15].

5.1. Internal representation

Simplicissimus’s internal representation consists en-
tirely of C++ expression templates, a set of classes rep-
resenting unary, binary, ternary, and other operations
that are parameterized by the operators and operands,
in a form similar to functional prefix form. Expres-
sion templates were discovered as an optimization tech-

1Simplicissimus’s default behavior is to compute a locally opti-
mal solution for efficiency reasons, although the user may intervene
with an alternative rewrite strategy that results in a globally optimal
solution.

nique for numerical computing [23] but have also been
used for delayed evaluation and functional composi-
tion [6,10,11]. In Simplicissimus expression templates
differ from most in that they have no runtime com-
ponents: distinct variables and literal values are mod-
eled as types, so that C++ expressions can be fully
expressed as C++ types and manipulated at compile
time.

Compile-time manipulations of expressions using
expression templates have several advantages. They
do not exist at run-time, so they incur no run-time
overhead, and because they are constructed and ma-
nipulated entirely in C++ they are naturally compiler-
and platform-independent, as discussed in Section 5.5.
Most importantly, expression templates interact well
with the complicated C++ type system and rely on tem-
plate metaprogramming techniques [21] well-known in
the C++ library design community. The drawback of
expression templates is the inefficiency of the C++
template engine as an interpreter, although this problem
is due not to any fundamental limitation of the C++
template engine but rather to design decisions made in
current compilers.

The form of an expression template is similar to that
of function prefix form. An expression x+y ∗z can be
expressed in prefix form as (+ x (∗ y z)) and, similarly,
as the expression template

Expr < BinaryExpr < Add,X,

Expr < BinaryExpr < Mul,Y,Z >>>> .

Here we use the type names Add and Mul to repre-
sent addition and multiplication, respectively. Each op-
erator or function will have a unique type (generally an
empty class) that represents it in an expression template.
Expressions are wrapped in class templates that contain
the operator name and its operand(s), and are named
based on the arity of the operation (UnaryExpr,
BinaryExpr, etc.). The Expr class is a wrapper
around each expression template that makes all expres-
sion templates easily distinguishable from other types.

The leaves of an expression tree – literal values and
variables – are each expressed using unique types. The
class template Variable is parameterized by the type
of the variable (e.g., int) and by an integer identifica-
tion number that is unique to that variable. In our ex-
ample above,Xmay beExpr<Variable<int,0>>
whereas Y could be Expr<Variable<int,1>>.
Similarly, a class template Literal contains literal
values, where a literal can be any C++ literal, but
the notion has been extended slightly to include user-
defined literals for abstract data types.

316 D. Gregor et al. / Design patterns for library optimization

5.2. Matching expressions

Expression templates naturally lend themselves to
pattern-matching via partial specialization. Partial spe-
cialization allows multiple definitions of class tem-
plates where each definition specifies the partial type
structure of types it will be instantiated with. Expres-
sion templates use type structure to express expression
evaluation, thus partial specialization can trivially be
used to specify and match expressions. Figure 5 il-
lustrates the primary template and one specialization
of the class template AXPYMatch. The template can
match any expression template via the primary template
(the valid member will be false) but it can also
match an expressiona∗x+ywhere + is represented by
the type VectorAdd and ∗ is represented by the type
VectorScale, in which case valid will be true
to signify a match.

A library author defines the AXPYMatch class tem-
plate (with specializations) based on the nomencla-
ture of the library’s domain. The VectorAdd and
VectorScale types are names chosen by the library
author to represent vector addition and vector scaling
for that library, and are accompanied by transformation
functions between the types and their corresponding
C++ operations. The library-specific vocabulary is
augmented by a base set of operations, such as assign-
ment or comparison, that cross-cut library domains and
are of general interest.

5.3. Semantic constraints

Semantic constraints determine whether or not a par-
ticular expression that syntactically matches the left-
hand side of a rewrite rule will be semantically equiva-
lent if the expression is rewritten. The check for seman-
tic equivalence relies primarily on traits that describe
the computational behavior of expressions, including
which operands are modified, whether an operation has
side effects beyond what is reflected in the operands and
return value, and whether the operation is applicative
(i.e., predictable given a set of operands and regardless
of program state).

We will extend the expression matching class tem-
plate AXPYMatch described in Section 5.2 to validate
the semantic constraints of the AXPY subroutine in ad-
dition to matching the structure. This dual purpose is
reasonable because semantic constraints are generally
expressed as predicates based on the variables bound
when matching the expression.

Figure 6 illustrates the validation of the semantic
constraints on AXPY. Altogether three constraints on
its parametersx and y, logically connected to the mem-
ber valid, have to be met. For one, neither the eval-
uation of x nor the evaluation of y may have side ef-
fects, because the order of evaluation may change when
rewriting an expression as a function call. The compile-
time value of the member has side effects of
any expression template is recursively determined us-
ing expression and user-defined operation traits. Ad-
ditionally, x and y may not be the same variable. The
SameVariable class template of Fig. 6 determines if
the given expression templates are the same variable in
the simplest case. A completely developed version of
SameVariable is more extensive in that it takes into
account user-defined operators that return references to
one of their arguments, such as the C++ assignment
operator.

5.4. Temporary removal adaptor

The optimizations described for temporary removal
in Section 4.2 are implemented in Simplicissimus as
a class template InPlaceOperationSimp. This
class template is instantiated with a class template T
that implements the functionality specific to an partic-
ular instance of the Temporary Removal adaptor. The
functionality required of T is implemented by three
members:

– valid: a boolean value that is true if and only
if the syntactic and semantic constraints on the
pattern are met;

– result: the type of the variable that is the target
of the assignment in the underlying Assignment
Replacement;

– rewrite with target: a class template that
performs a rewrite of the given expression to the
procedural form using the given target expression.

From the definition of T, InPlaceOperationSi
mp generates the two Temporary Removal rewrite
rules defined in Section 4.2 along with the Assign-
ment Replacement rewrite rule defined in Section 4.1.
TheInPlaceOperationSimp adaptor matches the
syntactic forms z := e and e, where z is a variable
and e is an expression such that the valid member
of T<e> is true, i.e., InPlaceOperationSimp
delegates the pattern-instance–specific matching to the
underlying domain-specific match template T. Once a
match has been found, InPlaceOperationSimp
will query T<e> to determine the subexpression

D. Gregor et al. / Design patterns for library optimization 317

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<

VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >,
Y> > >

{ static const bool valid = true; };

Fig. 5. Using partial specialization to perform a syntactic match.

template<typename Expr1, typename Expr2> struct SameVariable
{ static const bool value = false; };

template<typename T, int ID>
struct SameVariable<Expr<Variable<T, ID> >,

Expr<Variable<T, ID> > >
{ static const bool value = true; };

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<

VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >,
Y> > >

{
static const bool valid = !SameVariable<X, Y>::value
&& !X::has_side_effects && !Y::has_side_effects;

};

Fig. 6. Expressing the semantic requirements of the AXPY transformation using traits.

that would be overwritten by the rewritten opera-
tion, e.g., y in the expression AXPY (a, x, y), allow-
ing InPlaceOperationSimp to distinguish be-
tween the three rewrite rules mentioned without re-
sorting to knowledge of the specific operations in-
volved. When transformation is required, the subex-
pression is replaced with an appropriate expression via
rewrite with target.

We complete the optimization of the AXPY func-
tion in Fig. 7 with our final implementation of the
class template AXPYMatch. This class is to be
directly used as the template parameter T of the
InPlaceOperationSimp template to generate the
rewrite rule class AXPYSimp that performs three
temporary-removing optimizations within the Simpli-
cissimus system: the AXPY Assignment Replacement
along with the two optimizations generated by the
AXPYMatch adaptor.

(y := a× x+ y)→ AXPY (a, x, y),
(z := a× x+ y)→ (z := y, AXPY (a, x, z)),
a× x+ y → (var t = y, AXPY
(a, x, t)).

Partial specialization is again used to match AX-
PY’s semantic constraints. The valid member is
true whenever the expression is matched, and the tar-
get of the AXPY function is identified as y by the
target member type. The actual rewriting into the
more efficient form using AXPY is performed by the
class template rewrite with target, which triv-
ially builds an expression template using the ternary
operation AXPY.

5.5. Integration in the GNU C++ compiler

Simplicissimus is a stand-alone optimizer written in
the C++ template sublanguage, and is therefore natu-

318 D. Gregor et al. / Design patterns for library optimization

template<typename ExprT> struct AXPYMatch
{ static const bool valid = false; };

template<typename A, typename X, typename Y>
struct AXPYMatch< Expr< BinaryExpr<

VectorAdd,
Expr<BinaryExpr<VectorScale, A, X> >,
Y> > >

{
static const bool valid = !SameVariable<X, Y>::value
&& !X::has_side_effects && !Y::has_side_effects;

typedef Y target;

template<typename Z> struct rewrite_with_target
{ typedef Expr<TernaryExpr<AXPY, A, X, Z> > result; };

};
struct AXPYSimp : public InPlaceOperationSimp<AXPYMatch> {};

Fig. 7. Optimizations for the BLAS AXPY function based on the Temporary Removal adaptor.

rally compiler-neutral. Such a design allows optimiza-
tions based on Simplicissimus, such as the implemen-
tation of the Replacement pattern and its subpatterns,
to be portable as well.

Integration of the Simplicissimus optimizer with a
new compiler requires a transformation from the com-
piler’s internal representation to Simplicissimus’s ex-
pression templates for optimization, and then the re-
verse transformation to utilize the results of the opti-
mization, both of which are defined in C++ by library
authors. Within the GNU C++ compiler, approxi-
mately 2000 lines of C code were required to perform
these transformations.

6. Related work

Design patterns [7] have been gaining wide accep-
tance as a tool for the construction and documentation
of software systems, but their use does not generally
extend beyond that of documentation or guidelines for
programmers. The FRED [9] development environ-
ment, which extends this limited view of patterns to
instead aid the programmer in the specialization of pat-
terns for a particular purpose, thus shares our view that
a design pattern is more than documentation or guide-
line. On the other hand, the goals are radically different
from our own.

Tools for applying domain-specific transformations
to optimize code, such as TAMPR [3] and Draco [13],
enable authors of domain-specific languages to intro-
duce optimizations based on the semantics of a par-
ticular domain. However, these general systems do

not provide a conceptual framework for generating
transformations that are common across multiple do-
mains and multiple languages; that is, they do not
take a pattern-based approach that describes optimiza-
tions as specializations of well-known, language- and
domain-neutral optimization patterns. Constructing
new, domain-specific languages that have similar opti-
mization opportunities in other domains therefore re-
sults in a large amount of repetition.

Tools that allow library-specific optimizations within
general purpose languages, such as the Broadway [8]
open compilation system and the CodeBoost [2]
source-to-source transformation system, enable users
(library designers) to introduce additional semantic in-
formation and optimization opportunities for ordinary
user code. Like domain-specific transformation, how-
ever, these systems give users little direction regarding
optimizations that span multiple software libraries. Ap-
plying design patterns for optimization to any of these
transformation systems would yield the same benefits
as in our own Simplicissimus optimizer.

Work on the construction of active libraries [24],
such as Blitz++ [22] and POOMA [14], has signifi-
cantly narrowed the gap between library and compiler.
Such libraries take an active role in the compilation pro-
cess, tuning the generated code to specific tasks or spe-
cific architectures. Design patterns for optimization–
or, specifically, implementations supporting them–can
serve as a powerful tool for use by active libraries en-
abling optimizations that are impossible without such
support. The Sophus C++ library [5] integrates with
the aforementioned CodeBoost transformation system
to apply domain-specific transformations to C++ code

D. Gregor et al. / Design patterns for library optimization 319

that uses the Sophus library. The transformations there
are similar to those of the Temporary Removal adaptor.

7. Conclusion

We have surveyed the design of several object-
oriented numeric libraries with a strong focus on op-
timization techniques employed. From these designs
we abstracted the common structure and semantics to
form the Replacement pattern and two important sub-
patterns, the Assignment Replacement and the Tem-
porary Removal adaptor. Additional patterns, such as
the delayed element-wise transformation used by ex-
pression templates in libraries such as Blitz++ [22] and
POOMA [14], are also known to exist but have not yet
been studied.

Optimization patterns are not unique to the C++
language nor are they unique to the domain of nu-
merical computing. For instance, transforming po-
tentially expensive Java String concatenation ex-
pressions into equivalent operations on a temporary
StringBuffer [1] is an instance of the Temporary
Removal pattern. However, the usefulness of a partic-
ular design pattern for optimization depends greatly on
the underlying domain.

Unlike many design patterns, the Replacement pat-
tern and its subpatterns present optimization opportuni-
ties at a very high level of abstraction. Once instances
of these patterns are identified, a compiler optimizer
can attempt to generate better code based on strong,
user-supplied assumptions on the semantic behavior of
abstract data types.

We see these patterns as tools for advanced users and
library authors to direct the optimization of high-level
constructs that otherwise would be left unoptimized.

The Simplicissimus compiler optimizer implements
the three patterns discussed in a compiler-independent
manner. By using the strengths of the C++ language,
Simplicissimus provides users with the ability to spec-
ify optimizations for abstract data types without requir-
ing recompilation or additional extension of the com-
piler.

Acknowledgements

This work was supported in part by the National
Science Foundation (NSF) NGS Grant 0131354.

References

[1] String concatenation and performance, http://developer.
java.sun.com/developer/JDCTechTips/2002/tt0305.html,
March 2002.

[2] O. Bagge, M. Haveraaen and E. Visser, CodeBoost: A frame-
work for the transformation of C++ programs, Technical re-
port, Universiteit Utrecht, The Netherlands, October 2000.

[3] J. Boyle, T. Harmer and V. Winter, The TAMPR program
transformation system: Design and applications, in: Modern
Software Tools for Scientific Computing, E. Arge, A. Bruaset
and H. Langtangen, eds, Birkhauser, 1997.

[4] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in:
Handbook of Theoretical Computer Science, J. van Leeuwen,
ed., (Vol B), Formal Models and Semantics, Elsevier, Amster-
dam, 1990, pp. 243–320.

[5] T. Dinesh, M. Haveraaen and J. Heering, An algebraic pro-
gramming style for numerical software and its optimisation,
Technical Report SEN-R9844, CWI, December, 1998.

[6] FACT! – Multiparadigm programming with C++,
http://www. kfa-juelich.de/zam/FACT/start/index.html, 2001.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, Massachusetts, 1994.

[8] S.Z. Guyer and C. Li, An annotation language for optimizing
software libraries, in: 2nd Conference on Domain-Specific
Languages, T. Ball, ed, Usenix, 1999.

[9] M. Hakala, J. Hautamäaki, K. Koskimies, J. Paakki, A.
Viljamaa and J. Vil-jamaa, Generating application develop-
ment environments for Java frame- works, in: Generative
and Component-Based Software Engineering, J. Bosch, ed.,
(Vol. 2186 of LNCS), Springer, September 2001, pp. 163–176.

[10] J. Jäarvi and G. Powell, The Boost Lambda library,
http://www.boost.org/libs/lambda/doc/index.html, March
2002.

[11] J. Jäarvi, G. Powell and A. Lumsdaine, The Lambda Library:
unnamed functions in C++, Software–Practice and Experi-
ence 33 (2003), 259–291.

[12] C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh, Basic
Linear Algebra Subprograms for Fortran usage, ACM Trans-
actions on Mathematical Software 5(3) (Sept. 1979), 308–323.

[13] J.M. Neighbors, The Draco approach to constructing software
from reusable components, IEEE Transactions on Software
Engineering 10(5) (Sept. 1984), 564–574.

[14] POOMA. http://www.acl.lanl.gov/pooma/, 2001.
[15] S. Schupp, D. Gregor, D. Musser and S.-M. Liu, Semantic and

behavioral library transformations, Information and Software
Technology 44(13) (October 2002), 797–810.

[16] V. Shoup, NTL: a library for doing number theory, 2001.
http://www.shoup.net/ntl/.

[17] J.G. Siek and A. Lumsdaine, The Matrix Template Library: A
generic programming approach to high performance numeri-
cal linear algebra, In International Symposium on Computing
in Object-Oriented Parallel Environments, 1998.

[18] J.G. Siek and A. Lumsdaine, The Matrix Template Library:
Generic components for high-performance scientific comput-
ing, Computing in Science & Engineering 1(6) (Nov.–Dec.
1999), 70–78.

[19] Simplicissimus, http://www.cs.rpi.edu/research/gpg/ Simpli-
cissimus, 2001.

[20] The LiDIA Group, Lidia–a C++ library for computational
number theory. http://www.informatik.tu-darmstadt.de/TI/
LiDIA/.

320 D. Gregor et al. / Design patterns for library optimization

[21] T. Veldhuizen, Using C++ template metaprograms, C++
Report 7(4) (1995).

[22] T. Veldhuizen, Blitz++, http://www.oonumerics.org/blitz/,
2001.

[23] T.L. Veldhuizen, Expression templates, C++ Report 7(5)
(June, 1995), 26–31. Reprinted in C++ Gems, ed. Stanley

Lippman.
[24] T.L. Veldhuizen and D. Gannon, Active libraries: Rethink-

ing the roles of compilers and libraries, in Proceedings of
the SIAM Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing (OO’98).
SIAM Press, 1998.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

