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Abstract

A oorplannar that can handle convex-rectilinear

blocks is developed by enhancing the BSG-based

packing algorithm. The ideas are in the intro-

duction of (1) multi-rectangle representation of a

block as a superpose of element-rectangles, (2)

parametric-BSG as a generalization of the BSG, (3)

multi-BSG which is an arrangement of plural BSG's

on a multi-layer, and (4) layer sharing condition of

element-rectangles so that non-overlapping is dis-

cussed on each layer. A solution space of packings is

de�ned as the set of packings generated by changing

parametric-BSG and room assignments. It is guar-

anteed to contain an optimal packing if the BSG is

not smaller than a certain size. A oorplan based

on a simulated annealing was implemented. In ex-

periments, it output highly compressed packings.

1 Introduction

An algorithm to pack the convex-rectilinear blocks

is developed as an enhancement of the BSG-based

packing algorithm so far proposed in [8, 10]. See

Fig.1011 where the packings by the proposing algo-

rithm are shown.

This is aiming to meet the need of the recent

advance of microscopic manufacturing technology

of semiconductor that yields ultra large scale in-

tegrated electronic circuits of the size such that

a whole system is capable to be on a single sili-

con chip. Any competent design methodology in

such an environment shall make e�ective use of the

macro-library where macro-cells (blocks) are pre-

designed in soft- or hard-level such as IP's (intel-

lectual property). Each block is designed for per-

formance (e.g. timing, I/O pins, area, power, and

others) so that its shape is more complex than a

simple rectangle.

A packing algorithm considering the perfor-

mance of circuits is called a oorplannar. It deter-

mines the locations of blocks in a feedback design

style, and a high level synthesis analyzes the lay-

out information to improve the circuit performance.

Therefore, the oorplannar is a key tool in layout

design as studied in literatures, e.g., [1, 2, 3, 4, 5, 6].

On the other hand, recent development of com-

putation powers enables e�ective stochastic ap-

proaches which output a near optimal solution of

a myriad of solutions which have been searched

stochastically, as the simulated annealing, genetic

algorithm, and others do. The key of a success-

ful stochastic approach is how the solution space is

nicely constructed.

In the framework that every input block is a

rigid rectangle and the evaluation of the output is

width�height of the bounding box that encloses all

the placed blocks, the existing packing algorithms

based on the Sequence-Pair or BSG structures are

satisfying as reported in [7, 8, 10]. Furthermore,

papers [8, 9, 10] demonstrated ideas to pack L- or

T-shaped blocks. But their algorithms are ad hoc

and very restrictive.

This paper proposes an enhancement of the

BSG-based packing algorithm to handle systemat-

ically general convex-rectilinear blocks. It is based

on several new ideas such as: (1) Multi-rectangle

representation of a block in terms of element-

rectangles, (2) Parametric-BSG. (3) Multi-BSG,

and (4) Layer assignment of element-rectangles.

The set of all the packings generated by the

room assignment and junction matrices is the solu-

tion space of packings. An important property is

that this space is guaranteed to contain an optimal

packing.
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However, it is impractical to exhaust the space.
Hence, a simulated annealing was implemented.
Experiments achieved to output highly compressed
packings compared with the results by the previous
methods[8, 10].

The rest of the paper is arranged as follows.
After the preliminaries in Section 2, our propos-
ing packing algorithm is given in Section 3. P-
admissibility of the solution space is discussed in
Section 4. Experimental considerations are in Sec-
tion 5. Section 6 is the concluding remarks.

2 Preliminaries

We de�ne the input blocks with their representation
and generalize the BSG.

2.1 Multi-Rectangle Representation

of Input Blocks

The input is the set C = fcig of convex-rectilinear
blocks. A convex-rectilinear block is a region en-
closed by vertical or horizontal segments such that
for any two internal points, a shortest Manhattan
path connecting them is included in the region. See
Fig.1(left).

Intersection points of horizontal and vertical
segments are called apexes, and their locations are
represented with respect to the reference point. A
special convex-rectilinear block with four apexes
is called a rectangle. In this paper, a convex-
rectilinear block is called simply a block.

A packing of blocks is a placement of blocks
such that no two blocks overlap each other. The
area of a packing is de�ned as the area of the mini-
mum rectangle that bounds all the blocks(bounding
box). Then for input C, the packing problem is to
get a packing whose area is minimum.

A block is represented by a set M (ci) = fmi;jg

of rectangles with locations such that their super-
pose is exactly the set of inner points of the block.
See Fig.1(right). M (ci) is called the multi-rectangle
representation and each rectangle mi;j the element-
rectangle of ci.

The multi-rectangle representation may not be
unique for a block. In this paper we use M (ci)
to represent any one if (i) it consists of the min-
imum number of element-rectangles, and (ii) each
element-rectangle is maximal in area.

The number of element-rectangles jM (c)j is re-
ferred to as the convexity of c. The convexity is no

more than (number of convex-apexes � 3), where
the convex-apex is an apex whose in-corner angle is
�
2
.

Figure 1: A multi-rectangle representation of a
block with 9 convex-apexes by 5 element-rectangles
(convexity is 5)

2.2 Parametric-BSG

The Bounded-Sliceline Grid (BSG)[8, 10] consists of
vertical and horizontal segments, called BSG-segs,
such that the junctions (grid points) are vertically
cut or horizontally cut alternatively. BSGp�q is
consisting of p and q rooms horizontally and ver-
tically respectively. BSG4�4 is shown in Fig.2.

Junctions and rooms are given addresses; the
most left and top junction is (0,0) and a room has
the same address as its left top junction. See Fig.2.

In this paper, we generalize BSGp�q by intro-
ducing a parameter junction matrix which is

T =

0
BBB@

t0;0 t1;0 � � � tp;0
t0;1 t1;1 � � � tp;1
...

...
. . .

...
t0;q t1;q � � � tp;q

1
CCCA ; ti;j = h or v:

This junction matrix T de�nes BSGT
p�q, the

(0,0)

(2,3)

r3,2

Figure 2: Canonical BSG4�4 with addresses of junc-
tions and rooms

parametric-BSG, by the following rule.



Prepare a grid consisting of p+ 1 vertical
lines and q + 1 horizontal lines. The grid
point of ith vertical line and jth horizontal
line is called the (i; j) junction.

If ti;j = h, the vertical line at (i; j) junc-
tion is split to make a slit keeping the hor-
izontal line to pass through the slit. If
ti;j = v, the horizontal line is split sim-
ilarly. The de�nition will be clear by an
example shown in Fig.3.

Note that the conventional BSG is the one de-
�ned by the junction matrix with ti;j being v or h
according to i+j even or odd, respectively. We call
this the canonical BSG.

T =

0
BBBB@

v h v h v

h v h h h

v v v h v

h h h v h

v h v h v

1
CCCCA

Figure 3: BSGT
4�4

, a parametric-BSG

2.3 Multi-BSG

Given k junction matrices T 1; T 2; : : : ; T k, k

parametric-BSG`s B1;B2; : : : ;Bk are de�ned, re-
spectively. The multi-BSG ~Bk

p�q is a multi-
layer structure obtained by superposing all the
parametric-BSG`s keeping the address of the rooms
on each parametric-BSG. It is denoted as

~Bk
p�q = B1=B2= : : : =Bk

.

The number k is called the multiplicity. In the
following we say that Bl is said to be on the l th
layer and rl is the room on the l th layer. The
sequence of rooms with the same address on all the
layers is called the multi-room, denoted as ~rki;j =

r1i;j=r
2

i;j= : : : =r
k
i;j. In Fig.4, a multi-BSG is shown.

3 Packing by Multi-BSG

3.1 Outline of Packing

The input is set C = fc1; :::; cng of convex-
rectilinear blocks with multi-rectangle representa-
tion M (ci) for each ci. A packing is obtained by
�ve steps:

Figure 4: Multi-BSG ~B3

4�4
:Top layered BSG has T

in Fig.3

Step 1: Preparation of BSGk
p�q with junction

matrices T l (l = 1; : : : ; k).

Step 2: Room assignment by mappingAR of ci
to distinct rooms.

Step 3: Layer assignment by mapping AL of
element-rectangles to layers of the multi-BSG.

Step 4: Construction of a pair of graphs to
represent horizontal and vertical constraints.

Step 5: Compaction .

To execute those steps, we have to �x the fol-
lowing six parameters: p�q, k, T l, M (ci), AR, and
AL.

p � q must satisfy p � q � jCj. Recall that a
packing is an arrangement of blocks on the plane
under the constraint that any two blocks do not
overlap. This is equivalent to the requirement that
any two element-rectangles of di�erent blocks do
not overlap. This could be veri�ed by using the
conventional BSG packing techniques, if a pair of
element-rectangles which should not overlap is as-
signed to distinct rooms on the same layer. This
condition on the element-rectangles is formalized
as the condition Layer-Share, the discussion on
which is postponed to the next subsection. It will
be shown that Layer-Share is satis�ed if k is not
smaller than a certain number, O(t2 logn).

Of these six parameters, we �x p� q, k, M (ci),
and AL. Then the choice of T l and AR make the
compaction output a unique packing. Our algo-



rithm is a heuristic one to chose a best one by

stochastically changing T l and AR.

3.2 Room Assignment and Layer As-

signment

A room assignment is a one-to-one mapping

AR : C ! R:

where R is the set of multi-rooms. Take a block

ci 2 C, and assume that it is mapped to a multi-

room ~rk 2 R, i.e. AR(ci) = ~rk.

Layer assignment

AL :M (ci) ! ~rk

is a one-to-many non-overlapping mapping, that is,

a mapping that satis�es

AL(mi;�) \AL(mi;�) = ; if � 6= �

In Fig.5, an M (ci) is shown. Its corresponding

AR and AL are shown in Fig.6.

The condition Layer-Share is de�ned for �xed

AR.

Layer-Share: For any pair of distinct blocks ci
and cj , and for any pair of element-rectangles

mi;� 2M (ci) and mj;� 2M (cj),

AL(mi;�) \AL(mj;�) 6= ;

i.e. there exists a layer to which mi;� and mj;�

are assigned.

An example of AR and AL is shown in Fig.6

such that Layer-Share is satis�ed.

Apparently multiplicity k of the BSG shall be

large to satisfy Layer-Share as the convexity and

the number n of blocks are large. k = n(n� 1)=2�

(maxmum convexity)2 satis�es Layer-Share since

we can prepare one layer for each pair of element-

rectangles. This is too large for practical implemen-

tation. We can prove that a far smaller multiplicity

is enough.

Theorem 3.1 If the maximum convexity is t,

there is a layer assignment AL satisfying Layer-

Share if

k = dt(t � 1) logt n+ 1e:

Proof: For the space, it will be shown that we

can provide an AL for the case t = 2.

Layer Assignment AL for t = 2

We represent the proposing AL by a k �

n matrix AL
n for C, jCj = n, where the

rows correspond to the layers r1; r2; :::; rk

in this order and columns the blocks. Let

M(ci) = fmi;0;mi;1g. The (i,j) element of

the matrix is 0 or 1 meaning to assign mi;0

or mi;1 to the j-th layer.

AL
n is de�ned recursively for n = 2x; x �

2, starting with AL
4 as:

AL
4 =

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

1
CCCCA

(1)

Note that this assignment satis�es Layer-

Share since (10), (01), (00),and (11) all ap-

pear in any two columns.

Suppose we have got Ax
L, x � 4 whose size

is k�x. Then, de�ne a (k+2)�2xmatrix.

AL
2x =

0
@

AL
x AL

x

1x 1x

0x 0x

1
A (2)

Here, A denotes the matrix obtained from

a matrix A by interchanging 1 and 0, and

1x and 0x denote the 1� x matrices (row

vectors) whose elements are all 1 or 0, re-

spectively.

In this construction, the number k of rows is 5 for

n = 4 and increases by 2 each time n is doubled.

Hence k = 2 log2 n+1 for n in the form n = 2x. For

n such as 2x < n < 2x+1, we can use any n columns

of AL
2
x+1

. Hence the theorem will be proved if it

is shown that AL
n satis�es Layer-Share.

It is to prove that for any pair � of columns,

there are all the combinations of (00), (11), (10),

and (01). AL
4 shown in eq. (1) trivially satis�es

this property as was explained. Assuming thatAL
x

satis�es this property, we prove that A2x
L also sat-

is�es the property. In eq. (2), if both columns of

� = (�;�) are taken from the �rst x columns (last

x columns), the property is satis�ed since the sub-

matrix AL
x satis�es it. Assume that � is from the

�rst half and � from the last half. (11) and (00) are

contained in the added rows (1x 1x) and (0x 0x).

Let �0 be the column in the �rst half corresponding



to �. Then, if �0 6= �, there are (11) and (00) in

AL
x by assumption. Since the elements of �0 are

changed in � by construction, there are (10) and

(01) at those rows in � and �, completing the proof

(when the convexity is 2).

If �0 = �, the proof is similar. 2

3.3 Compaction

Let ~Bk

p�q
= B1=B2=:::=Bk. Considering each Bl

being a single BSG, we can make the horizontal- and

vertical-seg constraint graphs. In the multi-BSG,

the total horizontal-seg (vertical-seg) constraint

graph is constructed by merging those horizontal-

seg (vertical-seg) graphs. Finding the longest paths

of the resultant graphs, a packing of the convex-

rectilinear blocks is obtained. It is described in

the following for the horizontal-seg constraint graph

only since the vertical-seg one is analogously ob-

tained.

We associate each convex-rectilinear block

ci with a reference point. Each element-

rectangle is represented by the 4-tuple as mi;j =

(xi;j; yi;j;wi;j; hi;j), where the �rst two denote the

relative coordinates with respect to the reference

point and the last two width and height.

Horizontal-Seg Constraint Graph Gh(Vh; Eh)

1. Construct a horizontal-seg constraint graph

Gh(V
l

h
; El

h
) for each layer, which we call the

constraint graph of the l th layer. Note that

each is a directed acyclic graph with a source

and a sink.

2. Create a vertex s called the grand source. Re-

place the sources of all the layer graphs with

the grand source. The same change is done for

the the sink.

3. Create n vertices Vc = fvig(i = 1:::n), assum-

ing that vi corresponds to each block ci.

4. For simplicity, let an arbitrary block ci be rep-

resented as c. Assume that it is assigned by AR

to multi-room ~rk. Also assume that el = (u; v)

is the edge that crosses the room on the l-

th layer where an element-rectangle mj of c

is layer assigned. Execute the following graph

change for all l(= 1; : : : ; k). See Fig.7.

� Eh  (Eh � fe
l
g) [ f(u; vc); (vc; u)g.

� Let the weight of edge (u; vc) be �ym and

that of (vc; v) be ym + hm.

2

Find the longest path from the grand source

to each vertex in Gh(Vh; Eh). Let the length as

the vertical location of the BSG-seg in each layer.

Then, the vertical position of the element-rectangle

will be determined.

Similarly, the total vertical-seg constraint

graph Gv(Vv;Ev) is completed and the horizon-

tal position of the element-rectangle will be deter-

mined.

1 2 3

1a

1b

2a
2b

3a

3b

Figure 5: Multi-rectangle representations

1a

3b

2b

1a

2a

3a

2b

1b1b

3b

2a

3a

B1 B 2 B 3 B4

Figure 6: Room and layer assignments

v

u

−ym

ym+ h m

Figure 7: Merging of edges in each layer

In Fig.5 through 8, a total example of element-

rectangle decomposition, room assignment, layer

assignment up to the graph construction is shown.

The following fact is rather trivial.

Theorem 3.2 Given a set of blocks, the compu-

tational complexity of the compaction procedure is

linear to p� q
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Figure 8: Total horizontal-seg constraint graph

4 P-admissible Solution Space

In packing, with properly de�ned k and p � q,

four varieties were introduced with respect to multi-

rectangle representations, junction matrices, room

assignments, and layer assignments. Here we �x the

multi-rectangle representation and layer assignment

of the varieties, and construct a solution space of

the packings by changing the room assignment and

junction matrix.

The packing algorithm is to search the space

to �nd the best. For the purpose, it is hoped that

the solution space is a P-admissible space[7, 8, 10],

which satis�es the following four properties;

Solution feasibility: Every solution is feasible,

i.e. a packing.

Polynomial-time evaluation: A solution is eval-

uated in polynomial time.

Space �niteness: The number of solutions is �-

nite.

Optimum containment: An optimal solution is

included.

It is obvious from the previous discussion that

Solution feasibility and Polynomial-time evaluation

are satis�ed. The Space �niteness is trivially satis-

�ed, but we would like to know the upper bound.

The number of solutions is the product of va-

rieties of junction matrices and room assignments.

It is 2p�q�k since the number of junctions of ~Bk
p�q is

p � q � k and each junction has a value h or v. The

number of distinct room assignments is
(p�q)!

(p�q�m)! .

As total, the number of solutions is

(p� q)!

(p� q �m)!
� 2pqk:

For Optimum containment, we do not have any

general result on how large k; p � q are. Even the

following simple fact needs a long proof which is

omitted here.

Theorem 4.1 The packing solution space on

multi-BSG ~Bk
p�q includes an optimal packing if the

convexity is 1 or 2 for every block, k = dt(t �

1) logt n+ 1e, and p; q � 4� jCj.

It is believed that the critical values k, p, and

q are far smaller than those in the theorem. It is



hoped to develop a general algorithm to handle the

blocks of arbitrary convexities. However, in practi-

cal applications, those values will not be so sensitive

to get a satisfactory solution by a stochastic search.

In fact, we experienced high compacted packings

using the multi-BSG with p; q far smaller than 4jCj.

5 Experiments

We restrict the input blocks with convexity being at

most 2. We adopted a standard simulated annealing

(SA) as a stochastic search.

Letting each BSG be canonical, the initial

solution is obtained through a random room as-

signment. The operation in the search is chosen

stochastically from the following four:

1. Interchange of a pair contents of multi-rooms.

2. Rotation of a block.

3. X- or Y-Mirror of a block

4. Change of ti;j of junction matrix. fv ! h;h !
vg

First, to see the basic performance of our algo-

rithm, we prepared the input data generated arti-

�cially, of which we know an optimal packing. It

consists of 4 rectangles and 4 L-shaped blocks.

The resultant packing is shown in Fig.9. Multi-

rectangle representations, structure of parametric-

BSG's room assignment, and layer assignment of

the packing, are also indicated.

Note that the minimal area was attained. Fur-

thermore, it is interesting to observe in the result

that the structure of the packing does not contain

any sliceline, while each BSG of the multi-BSG is a

slicing structure.

Second, we compared our algorithm with the

existing one which was proposed for L-shaped block

packing in [8, 10]. We used the same data, which

consists of 40 blocks including 10 L-shaped blocks.

The area ratio (area of packing divided by sum

of area of blocks, denoted by p/r) of the packing

in [8, 10] is 112 %, while our algorithm achieved a

packing of 109 % area ratio. Our resultant packing

is shown in Fig.10. We can see superiority to the

existing algorithm[8], which had been then the �rst

proposed algorithm for L-shaped block packing.

Third, we tried to pack more complicated

shaped blocks than L- or T-shaped ones. We pre-

pared one data of 10 convex-rectilinear blocks and

4 4

Input blocks

Resultant packing

B1 B2

B3 B4

B5

Figure 9: Packing and its state of ~B5

4�4

40 rectangles which is generated arti�cially includ-

ing pathological blocks, and input them to our al-

gorithm. In almost all the cases, we could obtain

satisfactory results. One of them is demonstrated

in Fig.11.

The CPU time of all the above experiments �n-

ished in time of about a quarter day which could be

improved considerably by better implementation.

6 Concluding Remarks

It has been hoped a oorplannar that can handle

the convex-rectilinear blocks such that designs of



Figure 10: ~B6

20�20
(p=r = 109%)

Figure 11: ~B6

15�15
(p=r = 111%)

macro-cells can be released from the constraint of

rectangles and be devoted to the performance of cir-

cuits. Our algorithm is described in general frame-

work and its performance is superior to some ad

hoc techniques for L- or T- shaped blocks that was

proposed in [8, 9, 10].

Future works are to re�ne Theorems 3.1 and

4.1 including to develop e�cient heuristics of layer

assignment.
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