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1. Introduction

Fractional calculus has been given considerable popularity and importance during the past
three decades, due mainly to its applications in numerous fields of science and engineering.
For example, phenomena in the areas of fluid flow, rheology, electrical networks, probability
and statistics, control theory of dynamical systems, electrochemistry of corrosion, chemical
physics, optics and signal processing, and so on can be successfully modelled by linear or
nonlinear fractional differential equations (fDEs) [1–4].

Finding accurate methods for solving nonlinear differential equations has become
important. Some of the analytical methods for nonlinear differential equations are the
Adomian decomposition method (ADM) [5–14], the homotopy-perturbation method (HPM)
[15–19], variational iteration method (VIM) [12, 20–24], and the EXP-function method [25].
Another analytical approach that can be applied to solve nonlinear differential equations is
to employ the homotopy analysis method (HAM) [26–29]. Some of the recent applications of
HAM can be found in [30–41]. An account of the recent developments of HAMwas given by
Liao [42]. HAM has been successfully applied into engineering fields. The method has been
applied to give an explicit solution for the Riemann problem of the nonlinear shallow-water
equations [43]. The obtained Riemann solver has been implemented into a numerical model
to simulate long waves, such as storm surge or tsunami, propagation and run-up.
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Very recently, Song and Zhang [44] applied HAM to solve fractional KdV-Burgers-
Kuramoto equation. Cang et al. [45] solved nonlinear Riccati differential equations of
fractional order using HAM. Hashim et al. [46] employed HAM to solve fractional initial
value problems (fIVPs) for ordinary differential equations. In [47], the applicability of the
HAMwas extended to construct numerical solution for the fractional BBM-Burgers equation.
The HAM solutions for systems of nonlinear fractional differential equations were presented
by Bataineh et al. [48].

A specific linear, nonhomogeneous time fractional partial differential equation (fPDE)
with variable coefficients was first transformed to two fractional ordinary differential
equations which were then solved by HAM in [49]. Recently, Xu et al. [50] applied the HAM
to linear, homogeneous one- and two-dimensional fractional heat-like PDEs subject to the
Neumann boundary conditions. Jafari and Seifi [51] applied HAM to linear and nonlinear
homogeneous fractional diffusion-wave equations. Very recently, the HAM was shown to be
capable of solving linear and nonlinear systems of fPDEs [52].

In this paper, we shall consider linear and nonlinear fPDEs of the form

Dα
t u(x, t) = f

(
u, ux, uxx

)
, n − 1 < α ≤ n, t > 0, (1.1)

subject to the initial conditions

u(k)(x, 0) = gk(x), k = 0, 1, 2, . . . , n − 1, (1.2)

where n is an integer, f is a linear/nonlinear function, and Dα
t (·) = ∂α(·)/∂tα is a fractional

differential operator. We shall demonstrate the applicability of HAM to fPDEs through
several linear and nonlinear test examples.

2. Preliminaries

The fractional derivative is defined in the Caputo sense as in [53],

Dαw(t) = Jn−αDnw(t). (2.1)

Here Dn is the usual integer differential operator of order m and Jβ is the Riemann-Liouville
fractional integral operator of order β > 0, defined by

Jβw(t) =
1

Γ(β)

∫ t

0
(t − τ)β−1w(τ)dτ, (t > 0),

J0w(t) = w(t).

(2.2)

Some of the properties of the operator Jβ, which we will need in our work, are as follows
[2, 3]:

(1) JβJμw(t) = Jβ+μw(t),

(2) JβJμw(t) = JμJβw(t),

(3) Jβtγ = (Γ(γ + 1)/Γ(β + γ + 1))tβ+γ .
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Caputo’s fractional derivative has a useful property [54]

(
JμDμ)w(t) = w(t) −

n−1∑

k=0

w(k)(0+
) tk

k!
, (n − 1 < μ ≤ n). (2.3)

The operator form of the nonlinear fPDEs (1.1) can be written as follows:

Dα
t

(
u(x, t)

)
= A

(
u, ux, uxx

)
+ B

(
u, ux, uxx

)
+ C(x, t), n − 1 < α ≤ n, t > 0, (2.4)

subject to the initial conditions

u(k)(x, 0) = gk(x), k = 0, 1, 2, . . . , n − 1, (2.5)

whereA is a linear operator whichmight include other fractional derivatives of order less that
α, B is a nonlinear operator which also might include other fractional derivatives of order less
that α and C is a known analytic function.

Applying the operator Jα, the inverse operator of Dα, to both sides of (2.4) with
considering the initial conditions (2.5) according to (2.3), we obtain

u(x, t) =
n−1∑

k=0

gk(x)
tk

k!
+ JαC(x, t) + JαA

(
u, ux, uxx

)
+ JαB

(
u, ux, uxx

)
, n − 1 < α ≤ n, t > 0.

(2.6)

3. Homotopy analysis method (HAM)

3.1. The zeroth-order deformation equation

Let L denote an auxiliary linear operator, u0(x, t) is an initial approximation of u(x, t) which
satisfies the initial conditions (2.5). Note that, in this paper, the auxiliary linear operator L is
not the same linear operator A of (2.4).

Note that the original equation (1.1) contains the linear operator Dα
t . So, it is

straightforward for us to choose the auxiliary linear operator

L(φ) = Dα
t (φ). (3.1)

According to (2.6), we can choose the initial approximation to be

u0(x, t) =
m−1∑

k=0

gk(x)
tk

k!
+ JαC(x, t). (3.2)

For simplicity, let us define, according to (2.4), the nonlinear operator

N(φ) = Dα
t (φ) −A

(
φ, φx, φxx

) − B
(
φ, φx, φxx

) − C(x, t). (3.3)
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Hence, in the frame of HAM [29], we can construct the so-called zeroth-order deformation

(1 − q)L(
U(x, t; q) − u0(x, t)

)
= q�N(

U(x, t; q)
)
, (3.4)

subject to the following initial conditions:

U(k)(x, 0; q) = gk(x), k = 0, 1, 2, . . . , m − 1, (3.5)

where q ∈ [0, 1] is the embedding parameter, �/= 0 is an auxiliary parameter, and U(x, t; q) is
an unknown function on the independent variables x, t, and q.

When q = 0, since u0(x, t) satisfies all the initial conditions (2.5), and φ = 0 is a solution
of Lφ = 0, we have obviously

U(x, t; 0) = u0(x, t), (3.6)

and when q = 1, the zeroth-order deformation equations (3.4) and (3.5) are equivalent to the
original equations (2.4) and (2.5), provided

U(x, t; 1) = u(x, t). (3.7)

Using the parameter q, we expand U(x, t; q) in Taylor series as follows:

U(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (3.8)

where

um(x, t) =
1
m!

∂mU(x, t; q)
∂mq

∣∣∣∣
q=0

. (3.9)

Assume that the auxiliary linear operator L, the initial guess u0 and the auxiliary
parameter � are properly chosen such that the series (3.8) is convergent at q = 1. Thus, due to
(3.7) we have

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t). (3.10)

3.2. The mth-order deformation equation

Let us define the vector

�un =
{
u0(x, t), u1(x, t), . . . , un(x, t)

}
. (3.11)
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Following Liao [26–29], differentiating (3.4) m times with respect to the embedding
parameter q, then setting q = 0, and finally dividing them by m!, we have the so-called mth-
order deformation equation

L[
um(x, t) − χmum−1(x, t)

]
= �Rm

(
�um−1

)
, (3.12)

subject to the initial conditions

u
(k)
m (x, 0) = 0, k = 0, 1, 2, . . . , m − 1, (3.13)

where

Rm

(
�um−1

)
=

1
(m − 1)!

∂m−1N(
U(x, t; q)

)

∂m−1q

∣
∣
∣∣
q=0

, (3.14)

χm =

{
0, m ≤ 1,
1, m > 1.

(3.15)

Substituting (3.3) into (3.14), and since A is a linear operator, Rm(�um−1) can be given by

Rm

(
�um−1

)
= Dα

t um−1 −A
(
u(m−1), u(m−1)x, u(m−1)xx

)

− 1
(m − 1)!

∂m−1B
(
U,Ux,Uxx

)

∂m−1q

∣∣∣∣
q=0

− (
1 − χm

)
C(x, t).

(3.16)

According to (3.1), we can apply the operator Jα to both sides of (3.12) to obtain

JαDα[um(x, t) − χmum−1(x, t)
]
= �Jα

[Rm

(
�um−1

)]
. (3.17)

Using the property (2.3) and the initial conditions (1.1), we have

um(x, t) = χmum−1(x, t) + �Jα
[Rm

(
�um−1

)]
. (3.18)

Finally, for the purpose of computation, we will approximate the HAM solution (3.10)
by the following truncated series:

φm(x, t) =
m−1∑

k=0

uk(x, t). (3.19)

3.3. Convergence theorem

Theorem 3.1. As long as the series u(x, t) = u0(x, t) +
∑+∞

m=1um(x, t) converges, where um(x, t) is
governed by (3.12) under the definitions (3.14) and (3.15), it must be a solution of (2.4).



6 Differential Equations and Nonlinear Mechanics

Proof. If the series
∑+∞

m=0um(x, t) is convergent, we can write

S(x, t) =
+∞∑

m=0

um(x, t), (3.20)

and it holds

lim
n→+∞

un(x, t) = 0. (3.21)

From (3.12) and by using (3.15), it yields

�

+∞∑

m=1

Rm

(
�um−1

)
=

+∞∑

m=1

L[
um(x, t) − χmum−1(x, t)

]

= lim
n→+∞

n∑

m=1

L[
um(x, t) − χmum−1(x, t)

]

= L
[

lim
n→+∞

n∑

m=1

(
um(x, t) − χmum−1(x, t)

)
]

= L
[
lim

n→+∞
un(x, t)

]
= 0.

(3.22)

Since �/= 0, then

+∞∑

m=1

Rm

(
�um−1

)
= 0. (3.23)

Substituting (3.16) into the above equation and simplifying it, due to the convergence of the
series u(x, t) = u0(x, t) +

∑+∞
m=1um(x, t) and since A is a linear operator, yield

+∞∑

m=1

Rm

(
�um−1

)
=

+∞∑

m=1

[
Dα

t um−1 −A
(
u(m−1), u(m−1)x, u(m−1)xx

)]

−
+∞∑

m=1

[
1

(m − 1)!
∂m−1B

(
U,Ux,Uxx

)

∂m−1q

∣∣∣∣
q=0

− (
1 − χm

)
C(x, t)

]

= Dα
t

(
+∞∑

m=0

um

)

−A

(
+∞∑

m=0

um,
+∞∑

m=0

umx,
+∞∑

m=0

umxx

)

−
+∞∑

m=0

[
1
m!

∂mB
(
U,Ux,Uxx

)

∂mq

∣∣∣∣
q=0

]

− C(x, t).

(3.24)
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Now, expanding the nonlinear term B(U(x, t; q), Ux(x, t; q), Uxx(x, t; q)) by using the general
Taylor theorem at q = 0 yields

B
(
U(x, t; q), Ux(x, t; q), Uxx(x, t; q)

)
=

+∞∑

m=0

[
1
m!

∂mB
(
U,Ux,Uxx

)

∂mq

∣
∣
∣
∣
q=0

qm
]

. (3.25)

Setting q = 1 in the above equation and using (3.8), we obtain

B

(
+∞∑

m=0

um,
+∞∑

m=0

umx,
+∞∑

m=0

umxx

)

=
+∞∑

m=0

[
1
m!

∂mB
(
U,Ux,Uxx

)

∂mq

∣
∣
∣
∣
q=0

]

. (3.26)

Then

+∞∑

m=1

Rm

(
�um−1

)

= Dα
t

(
+∞∑

m=0

um

)

−A

(
+∞∑

m=0

um,
+∞∑

m=0

umx,
+∞∑

m=0

umxx

)

− B

(
+∞∑

m=0

um,
+∞∑

m=0

umx,
+∞∑

m=0

umxx

)

− C(x, t)

= Dα
t

(
S(x, t)

) −A
(
S(x, t), Sx(x, t), Sxx(x, t)

) − B
(
S(x, t), Sx(x, t), Sxx(x, t)

) − C(x, t).
(3.27)

From the initial conditions (3.5) and (3.13), it holds that

S(k)(x, 0) =
+∞∑

m=0

u
(k)
m (x, 0) = u

(k)
0 (x, 0) +

+∞∑

m=1

u
(k)
m (x, 0) = gk(x). (3.28)

Thus, S(x, t)is satisfied and also must be the exact solution for (2.4).

4. Test examples

In this section, we shall illustrate the applicability of HAM to several linear and nonlinear
fPDEs.

4.1. Problem 1

Let us consider the following linear time-fractional wave-like equations:

Dα
t u(x, t) =

1
2
x2uxx(x, t), t > 0, x ∈ R, 1 < α ≤ 2, (4.1)

u(x, 0) = x, ut(x, 0) = x2. (4.2)
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We note that the heat-like counterpart of (4.1) was solved by HAM in [50] without direct
comparison with the result by the ADM. According to (3.2), we can choose the initial guess
to be

u0(x, t) = x + x2t. (4.3)

From (3.18), we have

um =
(
χm + �

)
um−1 − �

2
x2Jα

[(
um−1

)
xx

]
. (4.4)

Consequently, the first few terms of HAM series solutions are as follows:

u1(x, t) = −�
tα+1

Γ(α + 2)
x2,

u2(x, t) = −�(� + 1)
tα+1

Γ(α + 2)
x2 + �

2 t2α+1

Γ(2α + 2)
x2,

u3(x, t) = −�(� + 1)2
tα+1

Γ(α + 2)
x2 + 2�2(� + 1)

t2α+1

Γ(2α + 2)
x2 − �

3 t3α+1

Γ(3α + 2)
x2,

(4.5)

and so on. Hence, the HAM series solution is

u(x, t) = u0 + u1 + u2 + u3 + · · ·

= x + x2t − �
[
1 + (� + 1) + (� + 1)2 + · · · ] tα+1

Γ(α + 2)
x2

+ �
2[1 + 2(� + 1) + · · · ] t2α+1

Γ(2α + 2)
x2

− �
3 t3α+1

Γ(3α + 2)
x2 + · · · .

(4.6)

Since we choose the initial guess u0(x, t) to be the same initial guess used by ADM [12], we
can notice that when � = −1, the above expression gives the same solution given by ADM.
Table 1 shows the HAM approximation solutions for (4.1)-(4.2)when α = 1.5, 1.75, and 2 with
� = −1 and −1.0453. It is to be noted that the first four terms of the HAM series were used to
evaluate the approximate solutions in Table 1.

4.2. Problem 2

In this example, we consider the following one-dimensional linear inhomogeneous time-
fractional equation:

Dαu(x, t) + xux(x, t) + uxx(x, t) = 2t + 2x2 + 2, t > 0, x ∈ R, 0 < α ≤ 1, (4.7)
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Table 1:Approximate solution of (4.1) for some values of α using the 4-termHAM approximation, φ4, with
� = −1 and � = −1.0453.
t x α = 1.5 α = 1.75 α = 2.0

� = −1 � = −1.045 � = −1 � = −1.045 � = −1 � = −1.045 Exact

0.2

0.25 0.26284062 0.26284062 0.26266989 0.26266991 0.26258350 0.26258350 0.26258350
0.50 0.55136246 0.55136250 0.55067959 0.55067964 0.55033400 0.55033402 0.55033400
0.75 0.86556554 0.86556562 0.86402909 0.86402919 0.86325150 0.86325156 0.86325150
1.0 1.20544985 1.20544999 1.20271839 1.20271856 1.20133600 1.20133610 1.20133600

0.4

0.25 0.27697114 0.27697109 0.27615668 0.27615669 0.27567202 0.27567205 0.27567202
0.50 0.60788455 0.60788437 0.60462675 0.60462679 0.60268808 0.60268820 0.60268808
0.75 0.99274025 0.99273983 0.98541019 0.98541027 0.98104818 0.98104846 0.98104818
1.0 1.43153821 1.43153748 1.41850702 1.41850715 1.41075232 1.41075282 1.41075232

0.6

0.25 0.29309481 0.29309501 0.29109009 0.29108997 0.28979084 0.28979084 0.28979084
0.50 0.67237924 0.67238006 0.66436039 0.66435990 0.65916338 0.65916339 0.65916339
0.75 1.13785328 1.13785513 1.11981088 1.11980978 1.10811762 1.10811764 1.10811764
1.0 1.68951694 1.68952024 1.65744156 1.65743961 1.63665355 1.63665358 1.63665358

subject to the initial condition

u(x, 0) = x2. (4.8)

In Section 3, we chose the initial guess to contain the initial conditions and the source term
C(x, t). In this example, due to the appearance of noise terms and also to get the exact
solution, we will modify the way we choose the initial guess. The initial guess is set to contain
only the initial condition (4.8), and the source term, C(x, t) = 2t + 2x2 + 2, will be added to
u1(x, t). The other terms are obtained the same as described in Section 3.

Hence, the initial guess is given by

u0(x, t) = x2, (4.9)

and according to (3.18), we have

u1 = Jα
[
2t + 2x2 + 2

]
+ �Jα

[
x
(
u0
)
x +

(
u0
)
xx

]
,

um =
(
χm + �

)
um−1 + �Jα

[
x
(
um−1

)
xx +

(
um−1

)
xx

]
, m ≥ 2.

(4.10)

The terms of the HAM solution series can be given by

u1(x, t) =
2tα+1

Γ(α + 2)
+ 2(� + 1)

(
x2 + 1

) tα

Γ(α + 1)
,

u2(x, t) = 2(� + 1)
tα+1

Γ(α + 2)
+ 2(� + 1)

(
x2 + 1

)
[
(� + 1)tα

Γ(α + 1)
+

2�t2α

Γ(2α + 1)

]
,

(4.11)
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and so on. Hence, the HAM series solution is

u(x, t) = u0 + u1 + u2 + · · ·

= x2 + 2
[
1 + (� + 1) + · · · ] tα+1

Γ(α + 2)

+ 2(� + 1)
(
x2 + 1

)[
1 + (� + 1) + · · · ] tα

Γ(α + 1)

+ 4�(� + 1)
(
x2 + 1

) t2α+1

Γ(2α + 1)
x2 + · · · .

(4.12)

Taking � = −1 in (4.12), we obtain the exact solution,

u(x, t) = x2 +
2tα

Γ(α + 2)
. (4.13)

4.3. Problem 3

Consider the following nonlinear time-fractional hyperbolic equation:

Dα
t u(x, t) =

∂

∂x

(
u(x, t)

∂u(x, t)
∂x

)
, t > 0, x ∈ R, 1 < α ≤ 2, (4.14)

subject to the initial conditions

u(x, 0) = x2, ut(x, 0) = −2x2. (4.15)

Equation (4.14) can be rewritten as follows:

Dα
t u(x, t) =

(
∂u(x, t)

∂x

)2

+ u(x, t)
∂2u(x, t)

∂x2
. (4.16)

From (3.4), construct the following zeroth-order deformation:

(1 − q)L(
U(x, t; q) − u0(x, t)

)
= q�N(

U(x, t; q)
)
, (4.17)

subject to the following initial conditions:

U(x, 0) = x2, Ut(x, 0) = −2x2, (4.18)

where

N(θ) = Dα
t θ − θ2

x − θθxx. (4.19)
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The auxiliary linear operator can be chosen as follows:

L(θ) = Dα
t (θ), (4.20)

with the property

L(θ) = 0 when θ = 0, (4.21)

while, the initial guess is

u0(x, t) = x2 − 2x2t. (4.22)

Again from (3.12), the high-order deformation equation can be given by

L[
um(x, t) − χmum−1(x, t)

]
= �Rm

(
�um−1

)
, (4.23)

subject to the initial conditions

u
(k)
m (x, 0) = 0, k = 0, 1, (4.24)

where

Rm

(
�um−1

)
=

1
(m − 1)!

∂m−1N(
U(x, t; q)

)

∂m−1q

∣∣∣∣
q=0

. (4.25)

Then, Rm(�um−1) can be given by

Rm

(
�um−1

)
= Dα

t um−1 −
m−1∑

i=0

uixu(m−1−i)x −
m−1∑

i=0

uiu(m−1−i)xx. (4.26)

Accordingly, the governing equation is as follows:

um = χmum−1 + �Jα
[

Dα
t um−1 −

m−1∑

i=0

uixu(m−1−i)x

]

− �Jα
[
m−1∑

i=0

uiu(m−1−i)xx

]

, m ≥ 1. (4.27)
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Consequently, the first few terms of HAM series solutions are given by

u1(x, t) = −6�x2
[

tα

Γ(α + 1)
− 4

tα+1

Γ(α + 2)
+ 8

tα+2

Γ(α + 3)

]
,

u2(x, t) = −6�x2
[
(� + 1)

tα

Γ(α + 1)
− 4(� + 1)

tα+1

Γ(α + 2)
+ 8(� + 1)

tα+2

Γ(α + 3)

]

+ 72�2x2
[

t2α

Γ(2α + 1)
− 2

(
Γ(α + 2)
Γ(α + 1)

+ 2
)

t2α+1

Γ(2α + 2)

]

+ 576�2x2
[(

Γ(α + 3)
Γ(α + 2)

+ 1
)

t2α+2

Γ(2α + 3)
+ 2Γ(α + 4)

t2α+3

Γ(2α + 4)

]
,

(4.28)

and so on. Hence, the HAM series solution is

u(x, t) = u0 + u1 + u2 + u3 + · · ·

= x2 − 2x2t − 6�x2[1 + (� + 1) + · · · ] tα

Γ(α + 1)

+ 24�x2[1 + (� + 1) + · · · ] tα+1

Γ(α + 2)

− 48�x2[1 + (� + 1) + · · · ] tα+2

Γ(α + 3)

+ 72h�
2x2 t2α

Γ(2α + 1)
+ · · · .

(4.29)

The four-term HAM approximate solutions for (4.14)-(4.15), when α = 1.5, 1.75, and 2 with
� = −1 and −1.0966, are shown in Table 2. Notice that the HAM approximate solution when
α = 2 with � = −1.0966 is in good agreement with the exact solution, u(x, t) = (x/(t + 1))2.

4.4. Problem 4

Consider the following nonlinear time-fractional Fisher’s equation:

Dαu(x, t) = uxx(x, t) + 6u(x, t)
(
1 − u(x, t)

)
, (4.30)

for t > 0, x ∈ R, 0 < α ≤ 1, subject to the initial condition

u(x, 0) =
1

(
1 + ex

)2 . (4.31)

According to (3.2), we can choose the initial guess to be

u0(x, t) =
1

(
1 + ex

)2 , (4.32)
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Table 2: Approximate solution of (4.14) for some values of α using the 4-term HAM approximation, φ4,
with � = −1 and � = −1.0966.

α = 1.5 α = 1.75 α = 2.0
t x � = −1 � = −1.0966 � = −1 � = −1.0966 � = −1 � = −1.0966 Exact

0.2

0.25 0.060049 0.060199 0.048780 0.048788 0.043403 0.043404 0.043403
0.50 0.240195 0.240795 0.195119 0.195152 0.173610 0.173617 0.173611
0.75 0.540439 0.541789 0.439018 0.439092 0.390623 0.390638 0.390625
1.0 0.960781 0.963180 0.780477 0.780607 0.694441 0.694468 0.694444

0.4

0.25 0.074536 0.076976 0.045434 0.045821 0.031853 0.031904 0.031888
0.50 0.298142 0.307903 0.181736 0.183285 0.127412 0.127616 0.127551
0.75 0.670821 0.692783 0.408907 0.412392 0.286677 0.287137 0.286990
1.0 1.192570 1.231614 0.726946 0.733141 0.509649 0.510465 0.510204

0.6

0.25 0.091469 0.099717 0.045907 0.048048 0.023920 0.024414 0.024414
0.50 0.365878 0.398867 0.183626 0.192191 0.095680 0.097656 0.097656
0.75 0.823225 0.897450 0.413159 0.432430 0.215280 0.219727 0.219727
1.0 1.463511 1.595467 0.734504 0.768765 0.382720 0.390626 0.390625

Table 3: Approximate solution of (4.30) for some values of α using the 3-term HAM approximation, φ3,
with � = −1 and −1.05133.

α = 0.5 α = 0.75 α = 1.0
t x � = −1 � = −1.0513 � = −1 � = −1.0513 � = −1 � = −1.0513 Exact

0.1

0.25 0.946129 0.984066 0.488195 0.496911 0.317948 0.319612 0.316042
0.50 0.843908 0.883590 0.405740 0.414926 0.250500 0.252292 0.250000
0.75 0.715013 0.752540 0.324453 0.333180 0.190964 0.192689 0.191689
1.0 0.576466 0.609185 0.249683 0.257315 0.140979 0.142501 0.142537

0.2

0.25 1.475318 1.551785 0.791250 0.816533 0.481199 0.488421 0.461284
0.50 1.359827 1.439679 0.690146 0.716646 0.396941 0.404576 0.387456
0.75 1.180981 1.256421 0.574405 0.599498 0.315266 0.322535 0.316042
1.0 0.970078 1.035807 0.456647 0.478543 0.241175 0.247540 0.250000

0.3

0.25 1.967448 2.082543 1.124230 1.171123 0.681440 0.698116 0.604195
0.50 1.845234 1.965336 1.009482 1.058531 0.581860 0.599391 0.534447
0.75 1.622908 1.736324 0.859509 0.905896 0.475833 0.492464 0.461284
1.0 1.345505 1.444292 0.695479 0.735922 0.372917 0.387446 0.387456

and according to (3.18), we have

um =
(
χm + �

)
um−1 − �Jα

[
(
um−1

)
xx + 6um−1 − 6

m−1∑

i=0

uium−1−i

]

. (4.33)

Consequently, the first few terms of HAM series solutions are as follows:

u1(x, t) = − 10�ex
(
1 + ex

)3
tα

Γ(α + 1)
,

u2(x, t) = − 10�ex
(
1 + ex

)3

[
(� + 1)

tα

Γ(α + 1)
− 5�

(
2ex − 1

)

(
1 + ex

)
t2α

Γ(2α + 1)

]
,

(4.34)
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and so on. Hence, the HAM series solution is

u(x, t) = u0 + u1 + u2 + · · ·

=
1

(
1 + ex

)2 − 10�ex
(
1 + ex

)3
(
1 + (� + 1) + · · · ) tα

Γ(α + 1)

+ 50�2 e
x
(
2ex − 1

)

(
1 + ex

)4
t2α

Γ(2α + 1)
+ · · · .

(4.35)

Table 3 shows the 3-termHAM approximate solutions for (4.30)-(4.31), φ3, when α = 0.5, 0.75,
and 1 with � = −1 and −1.05133. We notice that the HAM approximate solution when α = 2
with � = −1.05133 is in good agreement with the exact solution, u(x, t) = 1/(1 + exp(x − 5t))2.

5. Conclusions

In this work, the homotopy analysis method (HAM) was implemented to derive exact and
approximate analytical solutions for both linear and nonlinear partial differential equations
of fractional order. The convergence region of the series solution obtained by HAM can
be controlled and adjusted by the auxiliary parameter �. We give some examples to show
the efficiency and accuracy of the suggested method. It was also demonstrated that the
Adomian decomposition method (ADM) is a special case of HAM for the first and second
test examples.
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