
D

Proceedings of IDETC/CIE 2005 
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference 
September 24-28, 2005, Long Beach, California, USA 

DETC2005-84671 

STABILITY-OPTIMIZED CLEARANCE CONFIGURATION OF FLUID-FILM JOURNAL BEARINGS 
 
 

Koichi Matsuda 
Kyushu University 
6-10-1 Hakozaki,  

Fukuoka, 812-8581, JAPAN 
matsuda@mech.kyushu-u.ac.jp 

Yoichi Kanemitsu 
Kyushu University 
6-10-1 Hakozaki,  

Fukuoka, 812-8581, JAPAN 
kanemitu@mech.kyushu-u.ac.jp 

 

Shinya Kijimoto 
Kyushu University 
6-10-1 Hakozaki,  

Fukuoka, 812-8581, JAPAN 
kiji@mech.kyushu-u.ac.jp 

Proceedings of IDETC/CIE 2005 
ASME 2005 International Design Engineering Technical Conferences 

& Computers and Information in Engineering Conference 
September 24-28, 2005, Long Beach, California USA 

 
DETC2005-84671
 
ABSTRACT 

A clearance configuration of fluid-film journal bearings is 
optimized in a sense of enhancing the stability of a full circular 
bearing at high rotational speeds. A performance index is 
chosen as the sum of the squared whirl-frequency ratios over a 
wide range of eccentricity ratios, and a Fourier series is used to 
represent an arbitrary configuration of fluid-film bearings. An 
optimization problem is then formulated to find the Fourier 
coefficients to minimize the index. The whirl-frequency ratio is 
inversely proportional to the stability threshold speeds of a 
Jeffcott rotor. The short bearing approximation is used to 
simplify a mathematical model that describes a pressure 
distribution developed in a fluid-film bearing. The designed 
bearing cannot destabilize the Jeffcott rotor at any high rotating 
speed subject to the short-bearing assumption and significantly 
reduces the size of the unstable region for a finite-length 
bearing with a small length-to-diameter ratio. 

 
INTRODUCTION 

Fluid-film journal bearings are widely used to support a 
rotating machinery system, and those bearings often have a 
clearance configuration of a full circle. However, it is well 
known that the full circular bearings destabilize the system at 
high rotational speeds, which is called the whirl instability. The 
whirl instability occurs due to the presence of skew-symmetric 
stiffness coefficients. Many types of clearance configuration 
have been suggested in place of a full circle to solve this 
instability problem [1]. Although the stability problem is 
certainly improved by them, there still exist any other 
configuration that has stability characteristics better than those 
configurations. By the way, many clearance optimization 
problems have been solved to increase the static load capacity 
of fluid-film journal bearings [2-8]. Hashimoto [9] also found 
an optimal clearance configuration that minimizes the weighted 
sum of fluid-film temperature rise and supply lubricant 
quantity. A stability-related optimization problem was also 
solved for a fluid-film journal bearing in recent years. Wang et 
al. [10] designs an elliptical bearing with high eccentricity ratio 
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and two large pressure zones for high-speed stability by 
maximizing film pressures in the upper and lower lobes. The 
current authors [11-13] found an optimal clearance 
configuration that minimizes the sum of the attitude angles over 
a region of eccentricity ratio. This optimization criterion aims 
to eliminate the cross-coupling terms of the stiffness 
coefficients for enhancing the stability of a fluid-film journal 
bearing. The designed bearings originally had load capacity 
when the journal is situated at the bearing center [11, 12] and 
are modified to have a rotationally symmetric clearance 
configuration without load capacity at the situation of the 
journal [13]. The designed bearings successfully increase the 
stability threshold speeds of a simple rotating-machinery 
system, and, however, the attitude angles are not necessarily 
small for a fluid-film bearing with good stability characteristics. 
Recently, Swanson [14] obtained an optimal clearance 
configuration that minimizes the maximum value of the whirl-
frequency ratios in a wide range of bearing loads at a specific 
rotating speed. The whirl-frequency ratios are inversely 
proportional to the stability threshold speed of a Jeffcott rotor 
with a very flexible shaft and depend only on the stiffness and 
damping coefficients of a fluid-film bearing [1]. The stability of 
the designed bearings is significantly improved compared with 
those of the previously designed bearings with a fixed 
configuration, and the Jeffcott-rotor system is stable at any 
frequency for all the bearing loads at the specific rotating 
speed. However, the optimization problem is formulated using 
the specific values of the bearing length and diameter, rotating 
speed, and bearing loads, and the results are less general in this 
sense. 

This paper treats another optimization problem for a 
clearance configuration of fluid-film journal bearings. This 
optimization aims to enhance stability characteristics of a full 
circular bearing. The performance index is chosen as the sum of 
the whirl-frequency ratios over a wide range of eccentricity 
ratios. The performance index is more closely related to 
stability of a rotating machinery system than that of the 
previous work of the authors, the attitude angles. However, the 
1 Copyright © 2005 by ASME 
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whirl-frequency ratio is a function of stiffness and damping 
coefficients of a fluid-film bearing, and it significantly 
increases computational time to solve the optimization 
problem. The short bearing model is thus used to reduce the 
computational time because the model gives an analytical 
solution to the Reynolds equation that describes a pressure 
distribution developed in a fluid-film bearing. Moreover, it is 
assumed that the circumferential clearance configuration is only 
optimized and that the configuration is constant in the axial 
direction. This clearance optimization is thus expected to be 
effective only in the case that bearing length is shorter than 
bearing diameter. Therefore, it does not matter that the short-
bearing model is limited to the case that bearing length is 
infinitely short. A Fourier series is used with a period of 
π [rad] to represent an arbitrary clearance configuration of 
fluid-film bearings. The designed bearings have no load 
capacity owing to the periodicity when the journal is situated at 
the bearing center. An optimization problem is then formulated 
to find the Fourier coefficients to minimize the performance 
index. The optimization problem is numerically solved, and it is 
shown that the designed bearing cannot destabilize the Jeffcott 
rotor at any high rotating speed subject to the short-bearing 
assumption. This assumption does not hold for many fluid-film 
bearings with finite length, and the stability threshold speeds of 
a Jeffcott rotor are computed by a finite difference method for 
finite-length bearings that have the designed clearance 
configuration. It is shown that the designed bearing 
significantly reduces the size of the unstable region for 

DL =0.1. The Reynolds equation is solved without specific 
values of the variables, and the optimization results are more 
general in this sense than those of Swanson [14].  

 

MATHEMATICAL MODEL OF FLUID-FILM JOURNAL 
BEARING 

A pressure distribution developed in a fluid-film journal 
bearing is well described by the Reynolds equation, and the 
closed-form solution to the equation can be obtained in the case 
that the bearing length is sufficiently shorter than the bearing 
diameter. The Reynolds equation for a constant-viscosity 

Bearing Center

Journal Center

C

Bearing F0

γθ

Y

Journal

ω

e

Z X

 
 

Fig.1 Configuration of a fluid-film journal 
bearing 
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incompressible fluid can be written in polar-cylindrical 
coordinates (Fig.1) as 
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where R is bearing radius, H film thickness, μ  viscosity, 

and p  pressure in a fluid film of a journal bearing. Moreover, 

2U and 2V are the velocity components at the journal surface. 
In this study, the boundary conditions enforced on the pressure 
solution are 
For the axial direction: 

 
( ) 02, =± Lp θ  and ( ) 00, =∂∂ θzp  (2) 

For the circumferential direction: 
 

( ) ( )zpzp ,2, πθθ +=  (3) 
 

Equation (1) is rewritten in a dimensionless form to give 
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where hCH r= , )12( 22
rCRpp μω= , 22 URU ω= , 

22 VCV rω= , zRz ˆ= , and rC denotes the minimum clearance 

of the bearing. It is assumed that the clearance ratio, RCr , is 
sufficiently smaller than unity. The right hand side of Eq. (4) is 
then rewritten as 
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where γ  is the attitude angle, γε sin~ =x , γε cos~ −=y , and 
the prime denotes the differentiation with respect to 
dimensionless time tt ω= . For the details of Eq. (5), see Child 
[1]. The short bearing model is used to obtain the closed-form 
solution to Eq. (4). That is, it is assumed that the bearing length 
is sufficiently short compared with the bearing diameter. The 
first term is then neglected on the left hand side of Eq. (4) to 
give 
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Equation (6) is analytically integrated with respect to ẑ , and 
the integration constants are uniquely determined to satisfy the 
boundary condition Eq. (2) to yield 

 

( ) ( )22
3

ˆ
2

ˆ, τθ −= z
h

g
zp  (7) 

 
where DL=τ  with bearing diameter RD 2= , and 

ττ ≤≤− ẑ . The pressure solution of Eq. (7) is still dependent 
of the axial coordinate ẑ . To eliminate the dependency on ẑ , 
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Eq. (7) is axially integrated to yield an average value of the 
pressure in the axial direction 

 

( ) ( ) ( )
3

~

3
ˆˆ,

2

1
,

1 2

3

22

2

θττθ
τ

θ
τ

τ

p

h

g
zdzpdzzp

L

L

L
≡−== ∫∫ −−

 (8) 

 
where 

( ) ( ) zdzp
h

g
p ˆˆ,

2

3~
33 ∫−

=−≡
τ

τ
θ

τ
θ  (9) 

 
Here, pressure p~ is independent of the length-to-diameter ratio 
of the bearing, whereas the conventional short-bearing solution, 
Eq. (8), is not. The reaction force of the fluid-film is computed 
by integrating the pressure over the journal surface. It is 
assumed that only the positive values of the pressure 
contributes to integrating the reaction force of the fluid-film, 
that is, the pressure solution should satisfy the Gümbel 
boundary condition. When the rotor-bearing system is in a 
steady state, the reaction force is mathematically expressed as 
follows: 
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where the subscript 0 denotes the steady state, and 

0xF and 0yF are x - and y -components of the reaction 

force 0F , respectively. For later convenience, the reaction force 

is rewritten in a dimensionless form to give 
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and pressure 0p  takes a positive value for Θ∈θ  with Θ  

independent of ẑ . By the way, stiffness and damping 
coefficients are computed by integrating pressure derivatives 
with respect to displacement and velocity of the journal center. 
The dimensionless stiffness and damping coefficients are 
related to the dimensional ones as follows: 

 
( ) ijrij KFCk 0=  and ( ) ijrij CFCc 0ω=  (14) 

 
Moreover, Eq. (14) is rewritten by Eqs. (12) and (13) as 
follows:  
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where the derivations of the reaction force to the journal 
displacement and the journal velocity are given by integrating 
the pressure derivatives, for an example, 
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It is noted that integration region Θ  generally varies the size 
depending on the journal displacement and velocity but the 
dependency does not affect the values of the bearing 
coefficients because the pressure always takes a value of zero at 
the boundary of Θ  in the present study. Moreover, clearance 
magnitude is sufficiently smaller than a bearing diameter, and 
dimensionless film-thickness is given by 
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where rCCc =  with C  being a clearance configuration of 
a fluid-film journal bearing. The pressure derivatives are used 
for computing the bearing coefficients and given by 
differentiating Eq. (13). Moreover, Eq. (23) is differentiated by  
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To compare stability characteristics for different configuration 
of fluid-film bearings, the Sommerfeld number is introduced 
and defined by 
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where ( ) 0
24

0 24 FCRF rμω= . To investigate static properties of 
the designed bearing, the friction coefficient of fluid-film 
bearings is defined as a dimensionless friction torque applied 
on the bearing surface: 

 
( ) 0FFCR Jr=ς  (20) 

 

where friction torque JF  is given by integrating the shear 

force on the bearing surface 
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FORMULATION OF OPTIMIZATION PROBLEM 
An optimization problem is formulated uniquely to 

determine the clearance configuration of the journal bearings. A 
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Fourier series is here used to represent an arbitrary clearance 
configuration as follows: 
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where C  is now the mean value of the clearance over the 
entire clearance [ ]πθ 2,0∈  and K  the order of the series. 
Equation (22) means that the clearance is circumferentially a 
continuous and smooth function of θ  and constant in the axial 
direction. Furthermore, the clearance configuration has a period 
of π [rad], and, therefore, the designed bearings have no load 
carrying capacity when the journal is situated at the bearing 
center, that is, 0=ε . For the later convenience, the fluid-film 
thickness of Eq. (17) is rewritten as 
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where hCCh r )(=  and εε )( CCr= . The Fourier 
coefficients are mathematically determined to minimize a 
performance index. The performance index is chosen so that 
the designed bearings have excellent stability characteristics 

Optimization Problem 
 

For given values of α , minh , δ , and sj 'ε ,  

find [ ]TTT qddX 21Γ=Π  to minimize the 
performance index: 
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Fig. 2 Optimization problem for clearance 
configuration of fluid-film journal bearings 
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compared with conventional fluid-film bearings. Here, we 
consider a Jeffcott-rotor model to choose the performance 
index. The Jeffcott-rotor model contains a flat disk supported 
by a uniform, massless, flexible shaft, and the shaft is supported 
at the two ends by fluid-film bearings. The stability threshold 
speed sfP for a Jeffcott rotor is written as 

 

{ })](1[22
rssf CDDP δ+Ω=  (24) 

 
where 

 
( ) ( )yyxxyxxyxyyxxxyyyyxx cckckckckcD +−−+=  (25) 

 

( ) ( )yxxyyyxxyxxyyyxxs cccckkkDkD −−−−=Ω ))((2 , (26) 

 
and δ is the static deflection of the rotor, which is induced by 
the gravity force applied to the disk, and sΩ is called the whirl-

frequency ratio. For the details of sfP , see Child [1]. The 

whirl-frequency ratio is only dependent of the bearing 
coefficients and is completely independent of rotor mass and 
flexibility. In particular, if the rotor shaft is very flexible, that 
is, rC>>δ , the stability threshold speed is approximately 
simplified by 

 

( )δ22
srsf CP Ω≅  (27) 

 
where δrC  is constant for the Jeffcott rotor and the stability 
threshold speed is inversely proportional to the whirl-frequency 
ratio. Therefore, a performance index is chosen to improve the 
stability characteristics of fluid-film bearings as follows: 
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where if BA ≥ , [ ] ABAMax =, , otherwise, [ ] BBAMax =, , and 
M  is the number of eccentricity ratios. Note that the squared-
values of the whirl frequency ratios could take a negative value 
as is suggested in Eq. (26); in this case the stability threshold 
speed does not exist, and the system cannot be destabilized for 
any rotating speed. The performance index is minimized 
subject to many constraints. The first M constraints are  
 

( ) ( )( ) 0cos,~sin,~),(
2
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( Mk ,,2,1 L= ) (29) 
 

Equation (29) defines kγ as an attitude angle in a steady state, 

where it is assumed that the reaction force 0

~
F  is directed along 

the negative Y axis (Fig. 1). In general, when the clearance 
magnitude is so large, fluid-film bearings have poor load 
capacity. Therefore, another constraint is necessary to limit the 
clearance magnitude to a favorable value as follows: 
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where [ ]K
T XXXX 221 L= , and α is a real number 

prescribed by a designer. The inequality constraint, Eq. (30), is 
converted into an equality constraint by introducing a dummy 
variable as follows: 
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where 1d is the dummy variable. Moreover, we have to 
introduce two constraints on the minimum value of the film 
thickness so that the film thickness takes a positive value at the 
largest eccentricity ratio, Mεε = . For this purpose, we need to 

find θ  at which the film thickness takes the minimum value. 
It is now assumed that α  is sufficiently small compared with 
unity. Equation (23) then suggests that the film thickness takes 
the minimum value close to ( )MM εγπθ +=  when the 
eccentricity ratio is close to unity. Therefore, the film thickness 
is assumed to take the minimum value at 

minsin θδγπθ ≡++= qM , where δ is a small number. The 
sufficient condition to this assumption is given by 
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Fig. 3 Optimal clearance configuration of the 

designed bearings (α =0.1) 

Table 1 Fixed values of some variables in the 
optimization 

α  0.1 

δ  10π  

minh  4100.1 −×  
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Moreover, the film thickness has to take a positive value at 

minθθ =  to give 
 

minmin ),( hh M ≥θε  (33) 
 

where minh is a positive and small number. Equation (33) is 
converted into an equality constraint in the same manner as Eq. 
(30): 

 

( ) 0),(,,, 2
2minmin23 =−−=+ dhhdqX MMM θεγψ  (34) 

 
where 2d is a dummy variable. The eccentricity ratio is again 
normalized by using the maximum value as 

 
εαε )1( −=  (35) 

 
where αε −= 1M ( 10 << α ), and ε  naturally ranges from 
zero to unity. Moreover, the clearance configuration is then 
rewritten as 
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where the minimum clearance )1( α−= CCr . Introducing 
T

M ][ 21 γγγ L=Γ , the optimization problem leads to 

finding [ ]TTT qddX 21Γ=Π  to minimize the cost 
[Eq. (28)] subject to the constraints [Eqs. (29), (31), (32), and 
(34)], and is summarized as shown in Fig. 2. The present 
optimization problem differs from the previous one in the 
performance index subject to the same constraints. By the way, 
the authors previously solved another optimization problem for 
a clearance configuration of a fluid-film journal bearing, and 
the performance index was chosen as follows: 

Table 2 Optimal values of the Fourier coefficients 
X1 -2.944268165383×10— 2 
X2 8.851028532903×10— 2 
X3 -1.918684997893×10— 2 
X4 1.373155939494×10— 2 
X5 -2.420024898786×10— 2 
X6 1.210847806739×10— 3 
X7 -1.009299723161×10— 2 
X8 -6.115563402776×10— 3 
X9 -2.316129747417×10— 3 
X10 -2.443024926041×10— 3 
X11 -2.615550427198×10— 4 
X12 -2.139578080202×10— 3 
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where kw ’s weighting coefficients prescribed by a designer. 
This performance index is chosen because the attitude angle is 
reflected on magnitude of the cross coupling of the stiffness 
coefficients and because the whirl instability occurs due to the 
presence of skew-symmetric stiffness coefficients. 

 

OPTIMIZATION RESULTS 
The optimization problem is numerically solved when α , 

minh , and δ  take the values shown in Table 1. The 
performance index is computed by sampling the whirl-
frequency ratios at 20 eccentricity ratios that equidistantly 
range from 0.03 to 1.0 ( M =20). The order of the Fourier series 
is unknown and initially set to one, and an optimization 
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problem is then solved in an iterative way, increasing the order 
incrementally by one. The value of the performance index 
evidently decreases as the order increases, and it finally 
converges to a value at which the order of the series takes the 
optimum value, K =6 in the present study. The optimal values 
of the Fourier coefficients are shown in Table 2. The optimal 
clearance configuration is compared with a full circle and the 
configuration previously designed with performance index 0J as 
shown in Fig. 3. The two optimal configurations both resemble 
an offset two-lobe configuration [1], and, however, those three 
configurations are oriented in different directions to the applied 
load. It is also shown in Fig. 3 that the designed bearings have 
the same value of the minimum clearance, rC , owing to Eqs. 
(32) and (34). Figure 4 shows squared values of the whirl-
frequency ratios for the three configurations of fluid-film 

bearings. As is suggested in Eq. (26), 2
sΩ  could take a 

negative value, and the Jeffcott-rotor system cannot be 
destabilized at any frequency in this case. The designed bearing 
takes an imaginary value of the whirl-frequency ratio for all the 
eccentricity ratios as shown in Fig. 4, and, therefore, the whirl 
instability does not occur for the designed bearing. This 
conclusion is clearly limited to the case that the bearing length 
is infinitely short and could be deteriorated for fluid-film 
bearings with finite length. Equation (4) is numerically solved 
by a finite difference method to investigate stability 
characteristics of a finite-length bearing with the optimal 
configuration. Figure 5 shows the stability threshold speeds of a 
rigid-rotor system [1] for the designed bearings, which is 
computed by putting the static deflection 0=δ  in Eq. (24). 
As is expected, the whirl instability occurs for a finite-length 
bearing, and, however, the instability region is limited to a 
narrow range of Sommerfeld number for LD =0.1. Moreover, 
the whirl-frequency ratios are also computed as shown in Fig. 
6. As is mentioned in the previous section, the whirl-frequency 
ratio is inversely proportional to the stability threshold speed of 
a Jeffcott rotor with a very flexible shaft. The whirl instability 
also occurs in the same range of Sommerfeld number as the 
rigid-rotor system. For 1.0=LD , the dimensionless stiffness 
and damping coefficients of the designed bearing are shown in 
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Fig. 6 Whirl-frequency ratios of the designed 
bearings for length-to-diameter ratios 
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Figs. 7 and 8, respectively. In contrast to the stiffness and 
damping coefficients of a full circular bearing, one of the direct 

stiffness terms, xxk , takes a negative value at small eccentricity 
ratios, and the cross-coupled damping coefficients are positive 
for some eccentricity ratios. Furthermore, load capacity and 
friction torque of the designed bearing are computed and 
compared with those of a full circular bearing. Figures 9 and 10 
show dimensionless force 0F and friction coefficients ς , 
respectively, for the optimal and circular bearings. It is shown 
in the two figures that the designed bearing has nearly the same 
magnitude of load capacity and friction torque as the full 
circular bearing. Figure 11 compares the attitude angles 
between the optimal and circular bearings. The optimal bearing 
causes the attitude angle steeply to decrease for higher 
Sommerfeld numbers, whereas the attitude angle monotonically 
increases as Sommerfeld number increase for the circular 
bearing. Figure 12 shows centerline pressure profiles for the 
optimal bearing at ε =0.2 and 0.5. The positive pressure is 
primarily developed at the lower part of the designed bearing. 
Figure 12 shows an effect of truncating the Fourier coefficients 
on the whirl-frequency ratios. The order of Fourier series is 
reduced from 6th to first by truncating higher terms 
incrementally by two. The whirl-frequency ratios of the 
designed bearing have no notable difference between K =5 

0 0.5 110–2

10–1

100

101

102

Eccentricity Ratio

D
im

en
si

on
le

s 
S

tif
fn

es
s 

C
oe

ff
ic

ie
nt

s

kxy

–kxy

–kyx

kyy

Optimal Bearing

Circular Bearing

L/D=0.1

kxx

–kxx
kxx

 
Fig. 7 Dimensionless stiffness coefficients for the 
optimal and circular bearings ( 1.0=DL ) 
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Fig. 8 Dimensionless damping coefficients for 
the optimal and circular bearings ( 1.0=DL ) 
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and 6, and are thus insensitive to the truncation. In other words, 
the machining tolerance for manufacturing the designed bearing 
does not need a significantly small value to keep the calculated 
values of the whirl-frequency ratio. 

Swanson [14] found an optimal clearance configuration 
that minimizes the maximum value of the whirl-frequency 
ratios in a wide range of bearing loads at a specific rotating 
speed, whereas the designed bearing minimizes the squared 
sum of the whirl-frequency ratios from 0.03 to 1.0 of 
eccentricity ratios in dimensionless form. Swanson’s clearance 
configuration [14] contains nonsymmetrical upper and lower 
lobes, and departs substantially from a full circle, and the sides 
are pinched in. This configuration is significantly different from 
the present one because the designed bearing is enforced by 
Eqs. (22) and (31) to have a rotationally symmetric 
configuration close to a full circle and no load capacity when 
the journal is situated at the bearing center in the present study. 
Moreover, Swanson’s bearing ( DL =0.75) is free from the 
whirl instability over all the bearing loads at a specific rotation 
speed, whereas the designed bearing is not for finite-length 
cases in the present study. 
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Fig. 9 Eccentricity ratios for the optimal and 
circular bearings 
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Fig. 10 Dimensionless force for the optimal 
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CONCLUSIONS 
A clearance configuration of fluid-film journal bearings is 

optimized to increase the stability threshold speed of a Jeffcott 
Rotor. The performance index is chosen as the sum of the whirl 
frequency ratios over a region of eccentricity ratio. The whirl-
frequency ratios are inversely proportional to the stability 
threshold speeds of a very flexible Jeffcott rotor. It is shown 
that the designed bearing cannot destabilize the Jeffcott rotor 
for the short-bearing model. The stability threshold speeds are 
also computed for a fluid-film bearing with finite length. It is 
shown that the designed bearing significantly reduces the size 
of the unstable region for a small length-to-diameter ratio when 
compared with a full circular bearing. 
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