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ABSTRACT

A clearance configuration of fluid-film journal bearings is
optimized in a sense of enhancing the stability of afull circular
bearing a high rotational speeds. A performance index is
chosen as the sum of the squared whirl-frequency ratios over a
wide range of eccentricity ratios, and a Fourier seriesis used to
represent an arbitrary configuration of fluid-film bearings. An
optimization problem is then formulated to find the Fourier
coefficients to minimize the index. The whirl-frequency ratio is
inversely proportional to the stability threshold speeds of a
Jeffcott rotor. The short bearing approximation is used to
simplify a mathematicall model that describes a pressure
distribution developed in a fluid-film bearing. The designed
bearing cannot destabilize the Jeffcott rotor a any high rotating
speed subject to the short-bearing assumption and significantly
reduces the size of the unstable region for a finite-length
bearing with a small length-to-diameter ratio.

INTRODUCTION

Fluid-film journal bearings are widely used to support a
rotating machinery system, and those bearings often have a
clearance configuration of a full circle. However, it is well
known that the full circular bearings destabilize the system at
high rotational speeds, which is called the whirl instability. The
whirl instability occurs due to the presence of skew-symmetric
stiffness coefficients. Many types of clearance configuration
have been suggested in place of a full circle to solve this
instability problem [1]. Although the stability problem is
certainly improved by them, there ill exist any other
configuration that has stability characteristics better than those
configurations. By the way, many clearance optimization
problems have been solved to increase the static load capacity
of fluid-film journa bearings [2-8]. Hashimoto [9] aso found
an optimal clearance configuration that minimizes the weighted
sum of fluid-film temperature rise and supply lubricant
quantity. A stability-related optimization problem was also
solved for a fluid-film journal bearing in recent years. Wang et
a. [10] designs an elliptica bearing with high eccentricity ratio
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and two large pressure zones for high-speed stability by
maximizing film pressures in the upper and lower lobes. The
current authors [11-13] found an optima clearance
configuration that minimizes the sum of the attitude angles over
aregion of eccentricity ratio. This optimization criterion aims
to eliminate the cross-coupling terms of the stiffness
coefficients for enhancing the stability of a fluid-film journal
bearing. The designed bearings originally had load capacity
when the journa is situated a the bearing center [11, 12] and
are modified to have a rotationaly symmetric clearance
configuration without load capacity at the situation of the
journa [13]. The designed bearings successfully increase the
stability threshold speeds of a simple rotating-machinery
system, and, however, the attitude angles are not necessarily
small for afluid-film bearing with good stability characteristics.
Recently, Swanson [14] obtained an optimal clearance
configuration that minimizes the maximum value of the whirl-
frequency ratios in a wide range of bearing loads at a specific
rotating speed. The whirl-frequency ratios are inversely
proportiona to the stability threshold speed of a Jeffcott rotor
with a very flexible shaft and depend only on the stiffness and
damping coefficients of a fluid-film bearing [1]. The stability of
the designed bearings is significantly improved compared with
those of the previoudy designed bearings with a fixed
configuration, and the Jeffcott-rotor system is stable a any
frequency for all the bearing loads at the specific rotating
speed. However, the optimization problem is formulated using
the specific values of the bearing length and diameter, rotating
speed, and bearing loads, and the results are less generd in this
sense.

This paper treats another optimization problem for a
clearance configuration of fluid-film journal bearings. This
optimization aims to enhance stability characteristics of a full
circular bearing. The performance index is chosen as the sum of
the whirl-frequency ratios over a wide range of eccentricity
ratios. The performance index is more closely related to
stability of a rotating machinery system than that of the
previous work of the authors, the attitude angles. However, the
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whirl-frequency ratio is a function of stiffness and damping
coefficients of a fluid-film bearing, and it significantly
increases computational time to solve the optimization
problem. The short bearing model is thus used to reduce the
computational time because the model gives an analytical
solution to the Reynolds equation that describes a pressure
distribution developed in a fluid-film bearing. Moreover, it is
assumed that the circumferential clearance configuration isonly
optimized and that the configuration is constant in the axia
direction. This clearance optimization is thus expected to be
effective only in the case that bearing length is shorter than
bearing diameter. Therefore, it does not matter that the short-
bearing model is limited to the case that bearing length is
infinitely short. A Fourier series is used with a period of
7 [rad] to represent an arbitrary clearance configuration of
fluid-film bearings. The designed bearings have no load
capacity owing to the periodicity when the journal is situated at
the bearing center. An optimization problem is then formulated
to find the Fourier coefficients to minimize the performance
index. The optimization problem is numerically solved, and it is
shown that the designed bearing cannot destabilize the Jeffcott
rotor at any high rotating speed subject to the short-bearing
assumption. This assumption does not hold for many fluid-film
bearings with finite length, and the stability threshold speeds of
a Jeffcott rotor are computed by a finite difference method for
finite-length bearings that have the designed clearance
configuration. It is shown that the designed bearing
significantly reduces the size of the unstable region for
L/D =0.1. The Reynolds equation is solved without specific

values of the variables, and the optimization results are more
general in this sense than those of Swanson [14].

Bearing Center

Journal Center

Fig.1 Configuration of a fluid-film journal
bearing

MATHEMATICAL MODEL OF FLUID-FILM JOURNAL
BEARING

A pressure distribution developed in a fluid-film journd
bearing is well described by the Reynolds equation, and the
closed-form solution to the equation can be obtained in the case
that the bearing length is sufficiently shorter than the bearing
diameter. The Reynolds equation for a constant-viscosity

incompressible fluid can be written in polar-cylindrica
coordinates (Fig.1) as

3 3
R_zi H_@ +i H_@ =_&8_H+V2 (1)
00\ 124 06 ) 0z\ 124 oz 2R 06
where R is bearing radius, H film thickness, u viscosity,
and p pressure in afluid film of ajournal bearing. Moreover,
U,and V,are the velocity components at the journal surface.

In this study, the boundary conditions enforced on the pressure
solution are
For the axial direction:

p(6,.£L/2)=0 and 9p/dz(6,0)=0 2)
For the circumferential direction:

p(6.2)= p(o+27.2) (3)

Equation (1) isrewritten in a dimensionless form to give

O P 9. U N.g_g @
00 00 ) o0z 0z

where H=Ch , p=pl2uaR?/C?) , U,=Ral, ,
V, =C,@V,, z=Rz, and C, denotes the minimum clearance

of the bearing. It is assumed that the clearance ratio,C, /R, is

sufficiently smaller than unity. The right hand side of Eq. (4) is
then rewritten as

a(o) :—%§—2+ Xcos@+ysing+X'sind—y'cosd  (5)

where y istheattitude angle, X =¢esiny, y=-gcosy, and
the prime denotes the differentiation with respect to
dimensionlesstime t = at . For the details of Eq. (5), see Child
[1]. The short bearing model is used to obtain the closed-form
solution to Eq. (4). That is, it is assumed that the bearing length
is sufficiently short compared with the bearing diameter. The
first term is then neglected on the left hand side of Eq. (4) to
give

J(,.39P)_
g[h gj—g ©)

Equation (6) is analytically integrated with respect to Z , and
the integration constants are uniquely determined to satisfy the
boundary condition Eqg. (2) to yield

p6.2)= )52 -7 ™

where 7=L/D with bearing diameter D=2R , and
-7 <2< 7. The pressure solution of Eq. (7) is still dependent
of the axia coordinate Z . To diminate the dependency on Z,
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Eqg. (7) is axialy integrated to yield an average vaue of the
pressurein the axial direction

12 _ A N ng_Tzﬁ(ﬁ)
IJ.—L/Z p(6, z)dz _2_r~[-r (6, 2)dz = =3 ®)
where
~ 3 r L
p(6)= _h% = J:T p(6, 2)dz 9)

Here, pressure p is independent of the length-to-diameter ratio
of the bearing, whereas the conventional short-bearing solution,
Eq. (8), is not. The reaction force of the fluid-film is computed
by integrating the pressure over the journa surface. It is
assumed that only the positive values of the pressure
contributes to integrating the reaction force of the fluid-film,
that is, the pressure solution should satisfy the Gumbel
boundary condition. When the rotor-bearing system is in a
steady state, the reaction force is mathematically expressed as

follows:
Fy=+F2+ Fo (10)

with
Foo = IWO posinadédz and Fy, =-— jpo>0 p,cosédédz  (11)

where the subscript O denotes the steady state, and
Fo and F, are x - and y -components of the reaction

force ), respectively. For later convenience, the reaction force
isrewritten in adimensionless form to give

Fo = Fo(16uwr°R*[C?) (12)
where
Fo=yFo+Fp with Fo=| Bysinadd and

IEyO = —I@ p, cos&dé, (13)

and pressure p, takes a positive value for e ® with ©

independent of 2 . By the way, stiffness and damping
coefficients are computed by integrating pressure derivatives
with respect to displacement and velocity of the journal center.
The dimensionless stiffness and damping coefficients are
related to the dimensional ones asfollows:

k; = (Cr/FO)Kij and ¢; = (Cra)/FO )Cij (14)

Moreover, Eq. (14) is rewritten by Egs. (12) and (13) as
follows:

Koo =—F3"0F JOR)y, K, =~F;*(0F, /¥ .

Ky = _Eoil(aﬁy/ai)o' Ky ==Fo 1(85),/8?)0 ’

XX

G =P 0P o7, <, =~ OF. o7

’
0

Cpx = _Eoil(aﬁy/ai,lo » Cy = _Eoil(aﬁy/ay,)o’ (15)

where the derivations of the reaction force to the journal
displacement and the journal velocity are given by integrating
the pressure derivatives, for an example,

(0F, /o), = [ _(9p/ax ], snede (16)

It is noted that integration region © generally varies the size
depending on the journa displacement and velocity but the
dependency does not affect the values of the bearing
coefficients because the pressure always takes a value of zero at
the boundary of © in the present study. Moreover, clearance
magnitude is sufficiently smaller than a bearing diameter, and
dimensionless film-thickness is given by

h(e,8) = c(8)+£cos(8 - 7) = c(6)— ¥ cosf + Xsin@ 17)

where ¢=C/C, with C being a clearance configuration of

a fluid-film journal bearing. The pressure derivatives are used
for computing the bearing coefficients and given by
differentiating Eq. (13). Moreover, Eq. (23) is differentiated by

oh . dh ag 1

—___:S|n9, —~=—COSH, —~=—COSH,

oX ay ox 2

ag 1. ag ag

— ==-8nf, —= =8N, — =-cosd 18
Iy 2 ox’ oy’ (18)

To compare stability characteristics for different configuration
of fluid-film bearings, the Sommerfeld number is introduced
and defined by

2
S= ﬂ(ﬁj RybBL__ 7 (19)
2z )\¢, ) F, 1o,

where F, = (24,ua)R4 / Cf)lf0 . Toinvestigate stetic properties of
the designed bearing, the friction coefficient of fluid-film

bearings is defined as a dimensionless friction torque applied
on the bearing surface:

¢=(RIC,)F, /F, (20)

where friction torque F; is given by integrating the shear
force on the bearing surface

F, = j j ,ng—l;/ Rdédz (21)

y=h

FORMULATION OF OPTIMIZATION PROBLEM
An optimization problem is formulated uniquely to
determine the clearance configuration of the journal bearings. A

3 Copyright © 2005 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Optimization Problem

For givenvaluesof «, h,,, 6,and £'s,

fid M=[X" I d, d, qf to minimize the
performance index:

) =gMax[szz<z~k ).0]

(0<g <&, < <&, =l-a<1)
subject to the constraints:

¥ (%, X) =tany,
+(], Bule)sin@ - 7)d0 /[ Bl )eos(o - )d6)= 0
(k=1,2,-~,M)
Yua(X,d) = XTX +d12 ~a*=0
oh _
W2 (X, 7w ,q)=£(8M +Oin)=0

V/M+3(X'7M !q1d2)=ﬁ(gM ’emin)_hmin _d22 =0
where

X=[X1 X, sz]T1 '=[n 7
and 6, =7+y, +Jsinq

rl

Fig. 2 Optimization problem for clearance
configuration of fluid-film journal bearings

Fourier series is here used to represent an arbitrary clearance
configuration as follows:

_ K
C= C{1+ > [X 31 C0S2kE + X SN 2k¢9]} (22)
k=1

where C is now the mean value of the clearance over the
entire clearance A€ [0,27] and K the order of the series.
Equation (22) means that the clearance is circumferentialy a
continuous and smooth function of @ and constant in the axial
direction. Furthermore, the clearance configuration has a period
of x[rad], and, therefore, the designed bearings have no load
carrying capacity when the journal is situated at the bearing
center, that is, £ =0. For the later convenience, the fluid-film
thickness of Eq. (17) is rewritten as

— K
h(z,6) =1+& cos(0—7)+ Y. [X 5, cOS2KE + X, sin 2k] (23)
k=1

where h=(C,/C)h and £=(C,/C)e . The Fourier
coefficients are mathematically determined to minimize a
performance index. The performance index is chosen so that
the designed bearings have excellent stability characteristics

compared with conventional fluid-film bearings. Here, we
consider a Jeffcott-rotor model to choose the performance
index. The Jeffcott-rotor model contains a flat disk supported
by a uniform, massless, flexible shaft, and the shaft is supported
at the two ends by fluid-film bearings. The stability threshold

speed Py for a Jeffcott rotor iswritten as

P2 = p/fe21+p(s/c )i} (24)
where

D:(cxxkyy+cyykxx—c K, —Cy K )/(cxx+cyy) (25)

YXTTXy Xy Tyx
Q2 = ((D -k (D —k,) —kyk, )/(cuc, —CoCp),  (26)

and ¢ isthe static deflection of the rotor, which is induced by
the gravity force applied to the disk, and € is called the whirl-
frequency ratio. For the details of P, , see Child [1]. The

whirl-frequency ratio is only dependent of the bearing
coefficients and is completely independent of rotor mass and
flexibility. In particular, if the rotor shaft is very flexible, that

is, d>>C,, the stability threshold speed is approximately
simplified by

P2 =C, /(Q25) (27)

where C,/d is constant for the Jeffcott rotor and the stability

threshold speed is inversely proportional to the whirl-frequency
ratio. Therefore, a performance index is chosen to improve the
stability characteristics of fluid-film bearings as follows:

J:iMax[Qi(Ek),O] (0<Z, <&, < <&, <1) (28)

k=1

where if A> B, Max|A, B]= A, otherwise, Max|A, B]=B, and
M is the number of eccentricity ratios. Note that the squared-
values of the whirl frequency ratios could take a negative value
as is suggested in Eq. (26); in this case the stability threshold
speed does not exist, and the system cannot be destabilized for
any rotating speed. The performance index is minimized
subject to many constraints. Thefirst M constraints are

Vi (7, X) = ([ Po(Ec, 7 Jsinada /[ Bo (&, 71 )cosae) =0
(k=12,---,M) (29)

Equation (29) definesy, as an attitude angle in a steady state,

where it is assumed that the reaction force IE0 is directed along

the negativeY axis (Fig. 1). In general, when the clearance
magnitude is so large, fluid-film bearings have poor load
capacity. Therefore, another constraint is necessary to limit the
clearance magnitude to afavorable value as follows:
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Table 1 Fixed values of some variables in the
optimization
0.1

o
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Load Rotation
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b TS J
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Fig. 3 Optimal clearance configuration of the
designed bearings (« =0.1)

XX < o? (33)

where X7 =[X; X, X, ], and e is a real number

prescribed by a designer. The inequality constraint, Eq. (30), is
converted into an equality constraint by introducing a dummy
variable as follows:

W (X,d,)=XTX+d?-a? =0 (31)

where d, is the dummy variable. Moreover, we have to
introduce two constraints on the minimum value of the film
thickness so that the film thickness takes a positive value at the
largest eccentricity ratio, £ = g,, . For this purpose, we need to
find @ at which the film thickness takes the minimum value.
It is now assumed that « is sufficiently small compared with
unity. Equation (23) then suggests that the film thickness takes
the minimum vaue close to @=7z+y,(g,) when the
eccentricity ratio is close to unity. Therefore, the film thickness
is assumed to take the minimum value at
O=rx+y, +dsinq=0,,,, where Jis a smal number. The

sufficient condition to this assumption is given by

oh ,_
1//M+2(x:7M1Q):£(5M19min)zo (32)

Table 2 Optimal values of the Fourier coefficients

Xy -2.944268165383% 10" 2
X; 8.851028532903x 10~ 2
X3 -1.918684997893x 10™ 2
Xa 1.373155939494x 10" 2
Xs -2.420024898786x 10" 2
Xs 1.210847806739% 10 °
X -1.009299723161x 10™ 2
Xg -6.115563402776x 10" °
Xo -2.316129747417x 10° 3
X10 -2.443024926041x 10" 3
X1 -2.615550427198x 10™ 4
X1z -2.139578080202x 10" °

Moreover, the film thickness has to take a positive value at
0=40.. togive

min

h(, ,6,,)=h (33)

min
where h,;, is a positive and small number. Equation (33) is

converted into an equality constraint in the same manner as Eq.
(30):

WM+3(X’7M!q!d2)=ﬁ(gM’emin)_hmin_dzz=0 (34)

where d,is a dummy variable. The eccentricity ratio is again
normalized by using the maximum value as

E=(01-a) (35)

whereg,, =1-a (0<a<1), and ¢ naturaly ranges from

zero to unity. Moreover, the clearance configuration is then
rewritten as

K
C= %(u > [X,,, cOS2kO + X, SiN 2k0]j (36)
-

k=1

where the minimum clearance C, =C(l-¢) . Introducing

r=[n 7

finding n:[xT rr d, d, q]T to minimize the cost
[Eq. (28)] subject to the constraints [Egs. (29), (31), (32), and
(34)], and is summarized as shown in Fig. 2. The present
optimization problem differs from the previous one in the
performance index subject to the same constraints. By the way,
the authors previously solved another optimization problem for
a clearance configuration of a fluid-film journa bearing, and
the performance index was chosen as follows:

7w1', the optimization problem leads to
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Fig. 5 Stability threshold speeds of a rigid rotor
with the designed bearings for length-to-diameter
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Jo :(]/Z)Zwk7k2 v Yk :7(Ek) (37)
k=1

where w, 's weighting coefficients prescribed by a designer.
This performance index is chosen because the attitude angle is
reflected on magnitude of the cross coupling of the stiffness
coefficients and because the whirl instability occurs due to the
presence of skew-symmetric stiffness coefficients.

OPTIMIZATION RESULTS

The optimization problem is numerically solved when ¢« ,
h., » and o take the values shown in Table 1. The
performance index is computed by sampling the whirl-
frequency ratios at 20 eccentricity ratios that equidistantly
range from 0.03 to 1.0 (M =20). The order of the Fourier series
is unknown and initially set to one, and an optimization

0.6

T

Optimal (J)

Optimal (J;)  Circular

0.5F

0.4

T

0.3

Whirl-Frequency Ratio

L/D=0.1 |

Lol Lol Lo

Ol
10° 10" 10° 10
Sommerfeld Number

Fig. 6 Whirl-frequency ratios of the designed
bearings for length-to-diameter ratios

3

problem is then solved in an iterative way, increasing the order
incrementally by one. The value of the performance index
evidently decreases as the order increases, and it finaly
converges to a value at which the order of the series takes the
optimum value, K =6 in the present study. The optimal values
of the Fourier coefficients are shown in Table 2. The optimal
clearance configuration is compared with a full circle and the
configuration previously designed with performance index J, as

shown in Fig. 3. The two optimal configurations both resemble
an offset two-lobe configuration [1], and, however, those three
configurations are oriented in different directions to the applied
load. It is dso shown in Fig. 3 that the designed bearings have
the same value of the minimum clearance, C,, owing to Egs.

(32) and (34). Figure 4 shows squared vaues of the whirl-
frequency ratios for the three configurations of fluid-film

bearings. As is suggested in Eqg. (26), Q2 could take a

negative value, and the Jeffcott-rotor system cannot be
destabilized at any frequency in this case. The designed bearing
takes an imaginary value of the whirl-frequency ratio for al the
eccentricity ratios as shown in Fig. 4, and, therefore, the whirl
instability does not occur for the designed bearing. This
conclusion is clearly limited to the case that the bearing length
is infinitely short and could be deteriorated for fluid-film
bearings with finite length. Equation (4) is numericaly solved
by a finite difference method to investigate stability
characteristics of a finite-length bearing with the optimal
configuration. Figure 5 shows the stability threshold speeds of a
rigid-rotor system [1] for the designed bearings, which is
computed by putting the static deflection 6 =0 in Eq. (24).
As is expected, the whirl instability occurs for a finite-length
bearing, and, however, the instability region is limited to a
narrow range of Sommerfeld number for D/L =0.1. Moreove,

the whirl-frequency ratios are also computed as shown in Fig.
6. Asis mentioned in the previous section, the whirl-frequency
ratio isinversely proportional to the stability threshold speed of
a Jeffcott rotor with a very flexible shaft. The whirl instability
also occurs in the same range of Sommerfeld number as the
rigid-rotor system. For D/L =0.1, the dimensionless stiffness

and damping coefficients of the designed bearing are shown in
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Fig. 7 Dimensionless stiffness coefficients for the

optimal and circular bearings (L/D =0.1)

Figs. 7 and 8, respectively. In contrast to the stiffness and
damping coefficients of afull circular bearing, one of the direct

=
o
N
T

—— Optimal Bearing
----- Circular Bearing

=)
T T

Dimensionless Damping Coefficients
[
o

0 0.5 1
Eccentricity Ratio
Fig. 8 Dimensionless damping coefficients for

the optimal and circular bearings (L/D =0.1)

stiffness terms, k,,, takes a negative value at small eccentricity

ratios, and the cross-coupled damping coefficients are positive
for some eccentricity ratios. Furthermore, load capacity and
friction torque of the designed bearing are computed and
compared with those of afull circular bearing. Figures 9 and 10

show dimensionless force F, and friction coefficients ¢ ,

respectively, for the optimal and circular bearings. It is shown
in the two figures that the designed bearing has nearly the same
magnitude of load capacity and friction torque as the full
circular bearing. Figure 11 compares the attitude angles
between the optimal and circular bearings. The optimal bearing
causes the attitude angle steeply to decrease for higher
Sommerfeld numbers, whereas the attitude angle monotonically
incresses as Sommerfeld number increase for the circular
bearing. Figure 12 shows centerline pressure profiles for the
optimal bearing a £=0.2 and 0.5. The positive pressure is
primarily developed at the lower part of the designed bearing.
Figure 12 shows an effect of truncating the Fourier coefficients
on the whirl-frequency ratios. The order of Fourier series is
reduced from 6th to first by truncating higher terms
incrementally by two. The whirl-frequency ratios of the
designed bearing have no notable difference between K =5

T . .
Optimal (J) Circular

0.8f

0.6

0.4r

Eccentricity Ratio

0.2

Ol vl i

Sommerfeld Number

Fig. 9 Eccentricity ratios for the optimal and
circular bearings
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[
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T T T

Dimensionless Force ( Fy)

—57 . 1 . 1 . 1 L I L

0 02 04 06 08 1
Eccentricity Ratio

Fig. 10 Dimensionless force for the optimal

and circular bearings

and 6, and are thus insensitive to the truncation. In other words,
the machining tolerance for manufacturing the designed bearing
does not need a significantly small value to keep the cd culated
values of the whirl-frequency ratio.

Swanson [14] found an optimal clearance configuration
that minimizes the maximum value of the whirl-frequency
ratios in a wide range of bearing loads at a specific rotating
speed, whereas the designed bearing minimizes the squared
sum of the whirl-frequency ratios from 0.03 to 1.0 of
eccentricity ratios in dimensionless form. Swanson’s clearance
configuration [14] contains nonsymmetrical upper and lower
lobes, and departs substantially from a full circle, and the sides
are pinched in. This configuration is significantly different from
the present one because the designed bearing is enforced by
Egs. (22) and (31) to have a rotationally symmetric
configuration close to a full circle and no load capacity when
the journal is situated at the bearing center in the present study.
Moreover, Swanson's bearing (L/D =0.75) is free from the

whirl instability over al the bearing loads at a specific rotation
speed, whereas the designed bearing is not for finite-length
cases in the present study.
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CONCLUSIONS

A clearance configuration of fluid-film journal bearings is
optimized to increase the stability threshold speed of a Jeffcott
Rotor. The performance index is chosen as the sum of the whirl
frequency ratios over a region of eccentricity ratio. The whirl-
frequency ratios are inversely proportional to the stahility
threshold speeds of a very flexible Jeffcott rotor. It is shown
that the designed bearing cannot destabilize the Jeffcott rotor
for the short-bearing model. The stability threshold speeds are
also computed for a fluid-film bearing with finite length. It is
shown that the designed bearing significantly reduces the size
of the unstable region for a small length-to-diameter ratio when
compared with afull circular bearing.
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