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The GenLOT: Generalized Linear-Phase 
Lapped Orthogonal Transform 

Ricardo L. de Queiroz, Troung Q. Nguyen, Member, IEEE, and K .  R. Rao, Senior Member, IEEE 

Abstract- The general factorization of a linear-phase parau- 
nitary filter bank (LPPUFB) is revisited. From this new per- 
spective, a class of lapped orthogonal transforms with extended 
overlap (generalized linear-phase lapped orthogonal transforms 
(GenLOT’s)) is developed as a subclass of the general class 
of LPPUFB. In this formulation, the discrete cosine transform 
(DCT) is the order-1 GenLOT, the lapped orthogonal transform 
is the order-2 GenLOT, and so on, for any filter length that 
is an integer multiple of the block size. The GenLOT’s are 
based on the DCT and have fast implementation algorithms. The 
implementation of GenLOT’s is explained, including the method 
to process finite-length signals. The degrees of freedom in the 
design of GenLOT’s are described, and design examples are 
presented along with image compression tests. 

I. INTRODUCTION 
HE discrete cosine transform (DCT) [l]  is used in most T of the international standards for image compression and 

for several signal processing tasks. The signal is generally seg- 
mented in blocks of M samples, and each block is transformed 
and processed in the DCT domain. This segmentation process 
sometimes leads to discontinuities across the block boundaries 
after the processed signal is inverse transformed [l]. The 
lapped orthogonal transform (LOT) [2]-[4] was developed 
as a competitive alternative because of its extended basis 
functions, which overlap across traditional block boundaries, 
thus eliminating the blocking effect. One of the reasons for 
the growing popularity of the LOT is the fact that it possesses 
a fast implementation algorithm and good performance. In 
addition, its algorithm is based on the DCT, which is highly 
popular in image coding and for which a large number of fast 
algorithms, VLSI chips, and computer programs have been 
developed [l]. 

It is well known that the DCT and the LOT are partic- 
ular choices of finite impulse response (FIR) linear-phase 
paraunitary filter banks (LPPUFB’s) [5],  [ 101. Linear-phase 
filter banks have been studied extensively, and several design 
approaches can be found in the literature [5]-[9]. However, 
fast implementation algorithms were usually ignored. Very 
recently, a minimal structure to implement all LPPUFB’s 
(where the filters’ lengths are the same) was developed in 
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11. GENLOT AND THE GENERAL LPPuFB 

A. LOT 

The DCT is implemented by segmenting the input signal 
into blocks of M samples and transforming each one inde- 
pendently. The LOT allows overlap of the basis functions, as 
shown in Fig. l(a). In this figure, two different segmentation 
strategies of the input signal into blocks of M samples are 
shown, where they differ only in the displacement of the 
blocks. The top one refers to the block segmentation used 
for the DCT; thus, the basis functions of the LOT would 
be imposed over the position of the basis functions but 
overlapping M / 2  samples on each side over adjacent blocks. 
However, in terms of implementation, the block positions used 
for the DCT are of little importance. The appropriate block 
segmentation for the LOT is at the bottom of Fig. l(a). As 
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Fig. 1. LOT: (a) Basis functions of the LOT overlap across block boundaries 
so that each basis function has the length of two blocks of length M ;  (b) 
flowgraph for implementation of the LOT for blocks of M = 8 samples. The 
ordering of input-output coefficients for both DCT and LOT are indicated. 

an example, for M = 8, the implementation algorithm for the 
LOT is shown in Fig. l(b). In Fig. l(b), we can see that the 
LOT is implemented by postprocessing the output of the DCT. 
Therefore, it is clear that the block segmentation for the DCT 
alone and for the DCT stage of the LOT are separated by a 
delay of M / 2  samples. 

The resulting transform matrix for the LOT, assuming 
blocks of M samples, is nonsquare and is given by 

where De is the M/2 x M matrix with the even-symmetric 
basis functions of the DCT, and Do is the matrix with the 
odd-symmetric ones. U1 and VI are M / 2  x M / 2  orthogonal 
matrices. The design suggested for the LOT [2], [lo] uses 
U1 = I n f p  and approximates VI by MI2 - 1 plane rotations 
[21, [lo]. 

It is well-known [ lo] that the LOT is an M-channel uniform 
FIR filter bank, where the filters have length L = ZM, 
and their coefficients are formed by the coefficients of the 
basis functions. Hence, as the basis functions are symmetric, 
the LOT can be regarded as a linear-phase filter bank. It is 
also easy to show that the corresponding filter bank is also 
paraunitary so that the LOT is a particular LPPUEB [lo]. 

B. Linear-Phase Puraunituary Filter Bunk 

Consider the uniform maximally decimated M-channel FIR 
filter bank described in Fig. 2, for which we impose some 
restrictions. First, we assume that M ,  which is the number of 
channels, is even and that the filters have linear phase. Second, 
we assume the filters have length L, which is an integer 
multiple of M as L = N M .  Third, the filter bank is assumed to 
be paraunitary. Hence [51, [lo], we have g,(n) = f,(L-1-n), 
for 0 5 i 5 M - 1 and 0 5 n 5 L - 1. In addition, from 
[ll], [12], we know that M / 2  filters (in analysis or synthesis) 

Fig. 2. Critically decimated uniform filter bank Analysis (left) and synthesis 
(nght) sections are shown. 

have symmetric impulse responses, and the other M / 2  filters 
have antisymmetric impulse responses. 

Alternatively, we can develope the filter bank by segmenting 
the signal into blocks of M samples. For this, let the input 
signal ~ ( n )  be expressed by its M polyphase components 
~ ( m )  PI,  WI, as 

IG,(m) = z (mM + i) (3)  

where 0 5 i 5 M - 1. For a given instant m, the M polyphase 
samples form the mth block of M samples. The subband 
signals yk(m) in Fig. 2 are directly related to the polyphase 
components by a multi-input multi-output discrete transfer 
matrix with FIR filter entries [5] known as the polyphase 
transfer matrix (FTM), as shown in Fig. 3 .  In this figure, in the 
analysis section, the input is segmented into blocks of M sam- 
ples and processed by a PTM E(z). In the synthesis section, 
for perfect reconstruction (PR) causal systems using uniform 
FIR paraunitary filter banks, the subbands are processed by 
the PTM E(z) = x - ( ~ - ' ) E * ( x - ~ ) .  The blocks are put 
back into serial form, reconstructing the signal sequence. The 
devices to segment the signal into blocks and its counterpart 
to reconstruct the signal, in Fig. 3 ,  are called blocking and 
unblocking devices, respectively. 

Under the assumptions on L ,  M ,  and on the filters symme- 
try, we know that [ l l ] ,  [12] E(x) for the LPPUFB of degree 
N - 1 can be decomposed as a product of orthogonal factors 
and delays as 

E(z) = SQTN-ih(X)TN--2A(Z) .  . .h(x)ToQ (4) 

where 

(5 )  

where SO and S1 can be any MI2 x M / 2  orthogonal matrices, 
and T, are M x M orthogonal matrices described as 

A, B, 
T,= [B, A,]. 
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Fig. 3. Filter bank as a transfer matrix applied to the polyphase components 
of the signal. The matrix E(%) is called a polyphase transfer matrix and, for 
paraunitary filter banks, it is a paraunitary Fatrix, i.e., its inverse is ET(zP1). 
For a PR causal system, we must choose E(z) = ~ - ( ~ - ' ) E ~ ( z - l ) .  

(b) 

Fig. 4. (a) Flowgraph for the implementation of the PTM E(z) describing 
the analysis section of the LPPUFB. Each branch carries M / 2  samples, and e 
and o stand for even and odd output subband coefficients. In this factorization, 
the stages T, can be factorized as in part (b). 

We will abbreviate the notation for (4) as 

Let 

where U, and V, can be any M / 2  x M / 2  orthogonal matrices. 
The implementation flowgraph of the LPPUFB is shown in 
Fig. 4. Note that T; can be expressed as 1111, 1121 

for Ai = (U; + Vi)/2 and Bi = (U; - V;)/2. Then, it is 
easy to see that SQTN-~ can be simplified to 

As U N - ~  and SO are generic orthogonal matrices, and 
the product SOUN-1 is also a generic orthogonal matrix, we 
can discard the term So without any loss of generality. The 

(C) (4 
Fig. 5. Flowgraph for implementation of GenLOTs. Each branch carries 
M / 2  samples, and e and o stand for the even and odd transform coefficients, 
respectively, of output (analysis) and input (synthesis) for both DCT and 
GenLOT. Even and odd coefficients also correspond to symmetric and 
antisymmetric basis functions (which are the filters' impulse responses), 
respettively. p is a scaling factor incorporating all scaling factors present 
in W so that /3 = 2-(N-1): (a) Analysis; (b) synthesis; (c) details of the 
analysis stages IC:; (d) details of the synthesis stages IC',". 

same is valid for S1 with regard to V N - ~ .  Therefore, we get 
SQTN-~ = @N-IW, and (9) reduces to 

E(z) = <PN-~W ( fi A(z)W@~W)Q (13) 
a ~ N - 2  

or to 

where EO = @oWQ is a general M x M orthogonal matrix 
with symmetric basis functions, i.e., the PTM of order 0 of 
a LPPUFB. Since an order-n FTM leads to filters of length 
(n + 1)M, a LPPUFB with filter's length nM + M can be 
obtained from one with filters' length nM by adding a stage 
to the PTM of the later. If E,(z) denotes an order-n PTM, 
then we can state that 

where 

Therefore, for any N > 1, any PTM of a LPPUFB can be 
expressed as 

C. Altemative Forms 

As a remark, if we let 
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Fig. 7. 
The detal of each plane rotation IS shown on the nght. 

Implementation of a 4 x 4 orthogonal matrix through plane rotations. 

Fig. 8. 
three plane rotations. 

Implementation of a constrained 4 x 4 orthogonal matrix using only 

Fig. 6.  
M = 8. 

Details of (a) analysis stage K: and (b) synthesis stage K r ,  for 

D. Transfonn Matrix 

It is useful to consider the lapped transform matrix P 
associated with the LPPUFB [IO]. This matrix has size M x L 
and elements p,, given by 

then T, can also be expressed as 

Hence, we can say that 

) @N-IW~&)W~--~ @oWoQ (21) 

where W, can be either W or W R ,  such that T; is as in 
(11) or (18). Suppose we violate this rule, for example, by 
reversing only one W matrix, as in (19) or (20). Then, we 
will obtain a PTM EL(z), which is related to the original one 
by EL(z) = fZE,(x). Therefore, EL(z) also corresponds to 
a LPPUFB, although the sign of some of the filters is inverted. 
Odd-symmetric filters are not affected because the sign change 
is equivalent to time-reversion of the coefficients. For even- 
symmetric filters, the sign change can be compensated by 
inverting the signs of the elements of the last matrix Q, 
because the odd-symmetric flters are not significantly affected 
by the overall sign change. As a conclusion, the stage K,(z) 
can be expressed as 

where W1 and Wz can be either W or W R ,  independently. 

PZj = gz(j) = f,(L - 1 - j )  (23) 

for 0 5 i 5 M - 1 and 0 5 j 5 L - 1. In this way, the filters 
can be found from P and vice versa. For LPPUFB’s, P can 
be found from the following recursion: 

E. The GenLOT 
The GenLOT is defined as a LPPUFB obeying (17), where 

E0 is chosen to be the DCT matrix [l], which we denote as 
D. The output of the DCT is then separated into the groups of 
even and odd coefficients. The GenLOT with N - 1 stages after 
the DCT has basis functions (filters) with length L = N M  
and has its PTM defined as 

E( 2 )  = K N -  I ( z ) K N - ~  ( 2 )  K,(z)D. (27) 

The implementation flowgraphs for the analysis and synthesis 
sections are shown in Fig. 5. In this figure, each branch carries 
MI2 samples, and one analysis stage is shown in detail in 
Fig. 6 for M = 8. 

The class of GenLOT’s, defined in this way, allow us to 
view the DCT and LOT as special cases, respectively, for 
N = 1 and N = 2. The degrees of freedom reside on the 
matrices U, and V,, which are only restricted to be real 
M/2 x M / 2  orthogonal matrices. Thus, each one can be 
parameterized into a set of M ( M  - 2)/8 plane rotations. Each 
plane rotation represents one degree of freedom in the design 
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Fig. 9. Basis functions fk(n) (filters' impulse responses) of a GenLOT with M = 8 for different designs: (a) N = 4, maximum GTC; (b) N = 5 ,  
maximum GTC; (c) N =.6, maximum GTC; (d) N = 4, maximum stopband attenuation; (e) N = 6, maximum stopband attenuation; (f) N = 6, 
maximum GTC but with polyphase normalization. 

and can be implemented with either three additions and three 
multiplications or two additions and four multiplications. In 
either case, the total number of floating-point operations (flops) 
is 6. For N - 1 stages after the DCT, this results in a total of 
M ( N  - 1)(M - 2)/4 degrees of freedom. For example, for 
M = 8, U,, and V, are 4 x 4 orthogonal matrices. Hence, 
each one can be parameterized as a cascade of six plane 
rotations, as shown in Fig. 7. U, and V; can be implemented 
with 3M(M - 2 ) / 4  flops, each, using plane rotations, or 
( M  - 1)M/2 flops using direct matrix multiplication. Note 
that for M > 4, it is advantageous to use direct matrix 
multiplication to implement each factor (U, or V,) than to 
use plane rotations. For M = 4, the number of flops is the 
same, and there are no LPPUFB's for M = 2 [ 5 ] .  Therefore, 

plane rotations are just useful for the design of QZ and not 
for their implementation. One can achieve a reduction in the 
implementation cost by forcing each matrix to be composed 
by a reduced set of plane rotations, let us say (A4/2)  - 1. 
For M = 8, a matrix with only three plane rotations is 
shown in Fig. 8. Using only matrices parameterized in this 
form, the total number of degrees of freedom is reduced to 
( N  - 1)(M - 2), which is a reduction of a factor of M/4. 
Each matrix can be implemented with 3M - 6 flops compared 
with (A4 - 1)A4/2 flops in direct matrix multiplication. 

111. IMPLEMENTATION OVER FINITE-LENGTH SIGNALS 

The input signal is processed as described in Fig. 5 .  The 
mth output block has the lcth coefficent as a sample of the 
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Fig 10 Filters' frequency responses (2010glo lFk(e3")I). given in decibels, of the GenLOT with M = 8 for different designs (a) N = 4, maximum 
GTC, (b) N = 5, maximum GTC. (c) N = 6, maximum GTC, (d) N = 4, m m u m  stopband attenuation, (e) N = 6, maximum stopband attenuation; 
(f) N = 6, maximum GTC but with polyphase normalization 

kth subband signal yk(m) as shown in Figs. 2 and 3. It is a 
clocked system, where at each instant (block index), a block 
of M samples in the time domain is input and tranfomed 
into another block of same dimensions with subband samples. 
In addition, internal states (corresponding to the delays) left 
from the previous iteration are used in the process, and they 
are actually responsib'le for differentiating a lapped transform 
from a block transform. The time reference in this docked 
system is the index of the block of M samples in the input 
signal. For a signal with very large (or infinite) number of 
samples, such as speech and audio, the delay to process a 
block is generally unimportant, and the signal after synthesis 
can be reconstructed with a delay of approximately N blocks, 
compared with the original signal before analysis. 

Consider a finite-length signal z(n) of N,  samples so 
that N, = NBM, i.e., NB is the number of blocks in the 
signal and is an integer. As the transform overlaps across the 
block boundaries, we expect to use more than Nz samples to 
calculate the NB transform-domain blocks. Hence, the extra 
samples are located outsided the signal support region and 
have to be guessed. The choice for these samples may ensure 
that no abrupt change occurs across the image boundaries. 
In addition, the initial internal states will affect the analysis 
or synthesis processes. One of the first solutions to this 
problem (assuming M-channel filter banks) was used by 
Malvar [4] when developing the algorithm for the LOT [2], 
[4], [lo] and is tailored for the LOT only. However, several 
authors studied the problem of processing images with linear- 



DE QUEIROZ et al.: GenLOT GENERALIZED LINEAR-PHASE LAPPED ORTHOGONAL TRANSFORM 503 

phase filter banks, avoiding the use of periodic convolution 

We need an algorithm independent of the initial states and 
we will show how to perform analysis and synthesis, indepen- 
dent of the initial internal states, and assuming the signal is 
continuous across the signal borders using a symmetric exten- 
sion of the boundary samples inside the support region of the 
signal. Furthermore, perfect reconstruction of the signal can 
be achieved (assuming no processing/quantization of the sub- 
bands) using only NE samples in each subband. The approach 
used here is a consequence of the results presented in [14]. As 
the main difference between a general LPPUFB and a GenLOT 
is in the design and on the choice of the first stage as the DCT, 
the results of this section apply to any M-channel ( M  even) 
uniform FIR LPPUFB by replacing the DCT matrix by Eo. 

[ 14]-[ 191. 

A. Analysis 

Let x(O), . . . , x(N,  - 1) be the samples in the input signal. 
Extend the signal through a mirror-image reflection applied to 
the last X = ( L  - M ) / 2  samples on each border, resulting in 
a signal Z(n) with N, -t 2X = N, + L - M samples, as 

5 ( X  - l), . . . ,z(O),x(O), . . * , 5 ( N ,  - l), 
z (N ,  - l), . . . , x(N,  - A). 

Process this signal, which corresponds to NB + N - 1 blocks. 
Discard the first N - 1 output blocks, obtaining NB transform- 
domain blocks corresponding to NE samples of each subband. 
The internal states in Fig. 5 can be initialized in any way. 

B. Synthesis 

The general strategy to achieve PR without great increase 
in complexity or change in the implementation algorithm 
is to extend the samples in the subbands, generating more 
blocks to be inverse transformed, in such a way that after 
synthesis, assuming no processing of the subband signals, the 
signal recovered is identical to the original at the borders. 
The extension of the kth subband signal depends on the 
symmetry of the kth filter. Let f k ( n )  = vkfk(L - 1 - n) 
for 0 5 k 5 M - 1 and 0 1. n 5 L - 1, i.e., v k  = 1 if f k ( n )  

is symmetric and v k  = -1 if &(n) is antisymmetric. Before 
synthesis, for each subband signal yk(m) of NB samples, fold 
the borders of &(m) (as in the analysis section) in order to 
find a signal y (m) and invert the sign of the extended samples 
if fk(n) is antisymmetric. For s samples reflected around the 
borders, then the kth subband signal will have samples 

N odd Reflect s = ( N  - 1)/2 samples around each 
border, thus getting NB + N - 1 blocks to be processed as 
in the synthesis flowgraph in Fig. 5. To obtain the inverse 
transformed samples ?(n), initialize the internal states in 
any way, run the synthesis process over the NB + N - 1 
blocks, and discard the first N - 1 reconstructed blocks, 
retaining the N, = N B M  remaining samples. 
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Fig. 11. PSNR (in decibels) difference among GenLOT’s optimized for 
maximum GTC and the DCT for several bit-rates using test images “Lena” 
and “Barbara.” PN stands for the GenLOT with N = 6 and with polyphase 
normalization (design #6). 

N even: Reflect s = N / 2  samples around each border, 
thus getting NE + N blocks to be processed as in 
the synthesis flowgraph of Fig. 5. To obtain the inverse 
transformed samples ?(n), initialize the intemal states in 
any way, and run the synthesis process over the NB + N 
blocks. Discard the first N - 1 reconstructed blocks and 
the first M / 2  samples of the Nth block. Include in the 
reconstructed signal the last M / 2  samples of the Nth 
block and the subsequent (NB - l)M samples. In the last 
block, include the first M / 2  samples in the reconstructed 
signal, and discard the rest. 

This approach will assure the PR property and orthogonality 
of the analysis and synthesis processes [20]. The price paid is 
to run the algorithm over extra N or N - 1 blocks. As it 
is common to have NB >> N ,  the computational increase is 
only marginal. 

IV. DESIGN 

The LOT can be obtained from the DCT by direct deter- 
mination of cP1 [lo]. In this case, U1 and VI are determined 
in a general form, without obeying any particular structure. 
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Optimization, in this case, i s  carried solely to determine an 
approximation to the matrices U1 and V1 found through the 
techniques described in [lo]. For the LOT, U 1  is approximated 
to IM12, and V1 is approximated by a cascade of - 1 
plane rotations [2] through optimization routines. Therefore, 
for the LOT, the optimization is only necessary to find faster 
implementation algorithms. However, for N > 2, there are 
no techniques available to find directly all matrices a%. The 
design of a GenLOT is the determination of the q free 
parameters (angles for the plane rotations). This number can 
be q = M ( N  - 1)(M - 2)/4 for the full set of rotations or 
q = ( N  - 1) ( M  - 2) for the reduced one. The q-dimensional 
space of solutions is searched through optimization routines 
in such a way as to minimize a particular cost function. 
However, due to the highly nonlinear relationships among 
the angles and the cost functions, there is no guarantee of 
obtaining a global minimum. All GenLOT examples presented 
here were obtained using unconstrained nonlinear optimization 
and simplex search, using the routines provided by MATLAB' 
version 4.0. 

Examples of features we can try to maximize in the design 
are the transform coding gain (GTc) [21] or a measure of 
the atenuation in the stopband region of each filter, or a 
combination of both. Other features can be considered as well. 
Thus, the cost function can be selected as the inverse of any 
of these functions. 

A. Coding Gain 
Let the autocorrelation matrix for this process be R,, . Then, 

the transformed signal has an autocorrelation matrix given by 
P I  

R,, = PR,,PT (28) 

with elements r g ( i , j ) .  The cost function J to be minimized 
is the inverse of the coding gain [21] as 

(29) 

If the full set of angles is used, we can speed up the 
optimization by not optimizing the last stage, i.e., Q N - ~ .  This 
is possible by using the method applied by Malvar 121 for the 
LOT. For this, in the recursion to find P, assume that 

P 

W P N - 2  O M  1 
so that P = @N-~P.  The matrix Q N - ~  for maximum 
decorrelation of the input signal (given matrices iP1 through 
@ ~ - 2  and a statistical model for the input) is given by the 
matrix whose rows are the M eigenvectors of FR,,PT [2]. 

* MATLAB is a trademark of The Math Works Inc. 

Thus, for N = 4 (three times the overlap amount present in 
the LOT), it is only necessary to optimize two out of four 
stages (because the first stage is DCT, and the last stage is 
determined by the remaining ones). For a reduced set of angles, 
this method does not make sense because it would force us to 
run a second optimization to approximate U N - I  and V N - ~  
by a series of M / 2  - 1 plane rotations each. 

B. Stopband Atenuation 

Another criteria for the design of the GenLOT can be the 
maximization of the stopband atenuation of the filters f k  (n)  
(0 5 k M -  1, and 0 5 n 5 L-  1). Let Fk(e3'") be the Fourier 
transform of fk(n), which is a bandpass filter with low and 
high cutoff frequencies denoted by W k , L  and w ~ , H .  Let the 
filters be sorted by their frequency slots so that 

w k , L  = kn/M,  W k , H  = ( k  + 1) 7rlM. 
The stopband region RI, corresponding to f k ( n )  is defined by 

GO E {w I \w\ E [WO,H 

GI, E {w I 
€ 1  r)} 

E ( [ O ,  w k , L  - €1 U [Wk,H f 6, r))} (30) 
~ M - I  E {w I IuI E [ O , W M - I , L  - E ] }  

where E is a small positive real number used to reduce the 
influence of the transition region into the stopband region. 

A possible cost function to be minimized can be the energy 
of the filters frequency response in the stopband region, which 
is defined as 

M-3 " 

C. Polyphase Normalization and DC Leakage 
For a constant input, it is sometimes desirable that only 

one transform coefficient is nonzero. Such a coefficient is, 
therefore, called the DC coefficient. This property is commonly 
referred as polyphase normalization and when it does not 
hold the filter bank i s  said to have DC leakage (leakage to 
other coefficients other than the dc one). As the filter bank is 
paraunitary, the power-complementary property implies 

M-1 

k=O 

In frequency domain, polyphase normalization means that 

Fk(ejw)Iw=0 = F ~ ( I )  = o IC > 0, (32) 
Fop)  = m. (33) 

Note that one of the above equations implies the other. In this 
case, we can translate (33) to the time domain as 

L-1 

fa(n) = JM 
n=O 

and define a cost function as 
I T,-I I 

(34) 

(35) 
I n=O I 

The above condition may not be used as a cost function by 
itself. It may actually be used in conjuction with other cost 
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Fig. 12. 
(bottom left) using DCT at 0.4 b/pel; (bottom right) using a GenLOT with N = 6 (design #6) at 0.4 b/pel. 

Reconstructed versions of image “Barbara”: (top left) using DCT at 0.25 b/pel; (top right) using a GenLOT with N = 6 (design #6) at 0.25 b/pel; 

functions as 

J = % J G A I N + ~ ~ J D C  Or J = aiJs~op+(YzJ~c (36) 

where at are simple weights for the respective cost functions. 

D. Design Examples 

Several GenLOT’s were designed and tested. We will 
present a small but illustrative set of GenLOT’s. We have 
selected M = 8 for illustrative purposes, and we present six 
GenLOT examples: 

1) optimized for maximum GTC with N = 4 (32-tap 
filters) 

2) optimized for maximum GTC with N = 5 (40-tap 
filters) 

3) optimized for maximum GTc with N = 6 (48-tap 
filters) 

4) optimized for maximum stopband attenuation with N = 
4 (32-tap filters) 

5) optimized for maximum stopband attenuation with N = 
6 (48-tap filters) 

6) optimized for maximum GTC with N = 6 (48-tap fil- 
ters), but including the cost function JDC (i.e., polyphase 
normalization). 

The coding gain was calculated assuming the input signal as 
a zero mean AR(1) signal with adjacent sample correlation 
coefficient 0.95 (i.e., its autocorrelation function is r,(n) = 
0.951nl). The impulse responses fk(n) of these filters are plot- 
ted in Fig. 9. Their respective frequency responses IFk(eJw)l 
are shown in Fig. 10. 

We tested the performance of the GenLOT using the max- 
imum GTC design in image coding. The coder algorithm 
used is the P E G  baseline system [22], merely replacing the 
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. .  
TABLE I11 

N = 6, DESIGNED FOR MAXIMUM GTC. 
TABLE I 

N = 6, DESIGNED FOR MAXIMUM GTC, 
CONSTRAINED TO HAVE POLYPHASE NORMALEATTON 

fo(n)  fi(n) fz(n) f d n )  f4(n) fdn) f&) f d 4  
-0.000530 -0.000596 -0.000454 -0.000463 -0.000673 0.000574 0.000273 0.000342 
-0.000457 0.000902 -0.000476 0.000857 0.001225 0.000732 -0.000399 0.000114 
0.003066 -0.002729 0.004887 -0.000943 -0.003088 -0.005685 0.000219 -0.001485 
0.000949 0.000980 0.000816 0.000300 0.000942 -0.001196 0.000205 -0.000128 

0.002707 0.001569 0.002403 0.000003 0.001203 . -0.003537 0.000794 - 0 . W 5 5  
0.006701 0.001928 0.007774 0.002266 0.002072 -0.009485 -0.001396 -0.003572 
0.002226 0.010035 0.001748 0.006722 0.011839 -0.002111 -0.001483 -0.000138 

0.005916 -0.026386 0.003612 -0.019953 -0.039914 -0.021234 0.007586 0.000643 
-0.004552 -0.027360 -0.025185 -0.025006 . 0.019764 0.050310 -0.008128 0.w8131 
-0.014804 -0.001890 -0.005886 0.010839 0.015341 0.007971 -0.012466 -0.009244 
-0.028875 0.011958 0.006381 0.042207 -0.059065 -0.082959 0.033648 -0.Ooa)ZO 
-0.050474 -0.009635 -0.026121 0.022157 0.038625 0.047133 -0.027038 -0.016220 
-0.052974 -0.054295 -0.076701 -0.012207 0.051332 0.062341 0.011183 0.038324 
-0.041136 -0.106574 -0.048255 -0.057312 -0.098980 -0.053651 -0.006360 -0.023082 
-0.029504 -0.151656 0.081177 -0.079048 0.119873 -0.064979 0.069196 0.029360 
0.028973 -0.137742 0.208095 0.043694 0.033750 0.186027 -0.106130 -0.012807 
0.079061 -0.035396 0.168522 0.240059 -0.264146 -0.095672 0.039440 -0.031329 
0.160365 0.155557 -0.089954 0.007153 0.040556 -0.162141 0.129591 0.138515 
0.240193 0.334046 -0.354118 -0.371751 0.374019 0.357922 -0.309000 -0.257022 
0.323746 0.409128 -0.325729 -0.157785 -0.177828 -0.262903 0.425901 0.354909 
0.365394 0.339754 0.038501 0.388145 -0.367310 -0.117174 -0.401403 -0.391886 
0.402053 0.148177 0.412559 0.336892 0.294525 0.441633 0.159009 0.361495 

-0.004275 0.008698 -0.00888i 0.003916 o.009709 0 . ~ 9 9 9 8  -0.001589 0.001725 

0.020445 . 0.005747 0.0~5283 -0.000747 -0.003772 -0.024037 -0.ooi651 - 0 . ~ 9 8 6 0  

TABLE I1 
N = 4, DESIGNED FOR MAXIMUM GTC 
; 
0.004799 0.004829 0.002915 -0.002945 0.000813 -0.000109 O.ooO211 0.000483 
0.009320 -0.000069 
0.006394 -0.005997 

-0.011794 -0.007422 
-0.032408 -0.009604 
-0.035122 -0.016486 
-0.017066 -0.031155 
0.000288 -0.035674 

-0.012735 -0.053050 
-0.018272 -0.090207 
0.021269 -0.054379 
0.126784 0.112040 
0.261703 0.333730 
0.357269 ’ 0.450401 
0.383512 0.369819 
0.370002 0.140761 

-0.005744 
-0.011121 
-0.001800 
0.008083 
0.001423 

-0.027246 
-0.043266 
0.007163 
0.131531 
0.109817 

-0.123484 
-0.358887 
-0.292453 
0.097014 
0.478277 

-0.010439 0.001454 0.003206 
-0.010146 0.000951 0.004317 
0.009462 -0.001945 -0.001342 
0.031409 -0.005262 -0.007504 
0.030980 -0.005715 -0.006029 
0.003473 -0.003043 0.005418 

-0.018132 -0.000459 0.013004 
-0.083325 0.047646 0.011562 

0.224818 -0.224522 0.136666 
-0.032818 -0.035078 0.107446 
-0.379088 0.384874 -0.378415 
-0.126901 -0.129558 0.344379 
0.418643 -0.419231 0.045807 
0.318691 0.316307 -0.433937 

0.046926 0.072761 -0.130875 

0.000390 
0.000232 

-0.000531 
-0.001326 
-0.001554 
-0.000789 
-0.WO165 
0.048534 

4.089467 
0.022488 
0.147727 

-0.339368 
0.439129 

-0.371449 
0.146036 

-0.001691 
-0.002826 
O.M)028 
0.003163 
0.001661 

-0.005605 
-0.010084 
0.043066 

-0.028611 
-0.025219 
0.109817 

-0.216652 
0.317070 

-0.392556 
0.427668 

8 x 8 DCT by a 8 x 8 GenLOT ( N  > 1) obtained through 
separable implementation of the 1-D transform (as is the case 
for the 2-D DCT). For the 8 b/pel 512 x 512-pels images 
“Lena” and “Barbara,” we tested the P E G  coder comparing 
the GenLOT’s with N = 1 (DCT), N = 2 (optimal LOT 
[ 2 ] ,  [lo]), and GenLOT’s with N = 3 through N = 6. 
For N = 6, two versions were included in the tests, and 
both were optimized for maximum GTC. However, one has 
polyphase normalization. The reason for the inclusion of 
the two types of GenLOT’s is because without polyphase 
normalization, one can achieve higher GTC and, perhaps, 
higher peak signal-to-noise ratio (PSNR) after decompressing 
the image. However, the design with polyphase normalization 
apparently yields decompressed images with higher visual 
quality. The difference in PSNR (in decibels) among the 
GenLOT’s and the DCT is shown in Fig. 11. Reconstructed 
versions of image “Barbara” coded at 0.25 and 0.4 b/pel, using 
GenLOT’s with N = 1 (regular PEG) and N = 6 (replacing 
the DCT by a GenLOT with polyphase normalization) are 
shown in Fig. 12. 

The coefficients of some eight-channel GenLOT’s used as 
examples are shown in Tables I-V. Only half of the filter taps 
are shown because the bases are (anti) symmetric. 

The maximum GTC design is not necessarily the best one 
for image coding, even considering that the AR(1) process 

q 
-0.000137 -0 000225 0.000234 0.000058 -0 000196 -0 000253 0 000078 0.000017 
-0 000222 -0.000B8 0.000388 0.000471 0.000364 0,000163 -0 000220 -0 000283 
0.001021 
0.000536 

-0.001855 
0.001429 
0.001440 
0.001056 
0.w9734 

-0.005196 
-0.000137 
-0.007109 
-0.011238 
-0.020287 
-0.028214 
-0.034379 
-0.029911 
-0.004282 
0.058553 
0.133701 
0.231898 
0.318102 
0.381693 
0.417648 

0.000187 
O.oo0689 
0.000515 
0.001778 
o.Go1148 
0.001893 
0.W2899 

4.013699 
-0.m1344 
-0.002130 
-0.002219 
-0.006775 
-0.018286 
-0.055004 
-0.106776 
-0.107167 
-0.026759 
0.147804 
0.330343 
0.430439 
0.368335 
0.144412 

0.002439 
0.000029 

-0.006584 
-0.000243 
O.ow698 
0.002206 
0.018592 

-0.008359 
-0.027993 
0.002484 
0.033554 
0.003214 

-0.059401 
-0.048827 
0.070612 
0.197524 
0.144748 

-0,123524 
4 376982 
-0.312564 
0 061832 
0.409688 

0 001211 0 000853 0 002360 0 000157 0 000823 
0 000535 0 000572 0 000056 0 000633 0 000502 
0 002809 0 003’177 0 006838 -0 000886 0 001658 
0 000834 0 000977 0 000056 0 001687 0 001429 
0 000383 0 000109 0 000561 0 000751 0 001165 
0 005386 0 005220 0 001676 0 001673 0 000792 
0 004888 0 006600 0 018889 -0 000261 0 006713 

-0 021094 -0 020406 0 009059 0 012368 0 005263 
-0 028046 0 026048 0 024169 0 001643 0 000402 
0 013289 0 013063 0 002655 -0 002180 0 006836 
0 062616 -0 058899 0 031538 0 001404 0 004060 
0 019082 0 018132 0 004219 -0 006828 -0 019040 
0 023539 0 024407 0 056646 0 009849 0 021475 
0 052703 0 051123 -0 048429 

-0 088796 0 086462 0 066383 0 097006 0 031014 
0 049701 0 051188 0 193302 -0 104953 0 006324 
0 241758 0 239193 0 143627 0 020370 0 048085 
0 026563 0 025910 -0 125263 0 147501 0 130959 
0 365965 0 366426 0 377886 0 332858 -0 228016 
0 174852 -0 174803 -0 314092 0 431705 0 317994 
0 393949 -0 395534 0 060887 0 369244 0 384842 
0 318912 0 319987 0 411214 0 145256 0 419936 

TABLE IV 
N = 6, DESIGNED FOR MAXIMUM STOPBAND ATENUATION 

fob) fi(n) f z ( n )  f d n )  f4(n) f5(n) f s ( n )  h ( n )  
-0 000137 -0 000225 0 000234 0 000058 0 000196 -0 000253 0 000078 0 000017 
0 000222 4 000228 0 000388 0 000471 0 000364 0 000163 -0 000220 -0 000283 
0 001021 0 000187 0 002439 0 001211 0 000853 0 002360 0 000157 -0 000823 
0 0 0 0 s ~  0000689 0000029 0000535 0000572 ooooo56 0000633 0000502 

-0.001855 
0.001429 
0.001440 
0.001056 
0.009734 

5.005196 
-0.000137 
-0.007109 
-0.011238 
-0.020287 
-0.028214 
-0.034379 
-0.029911 
-0.004282 
0.058553 
0.133701 
0.231898 
0.318102 
0.381693 
0.417648 

0.000515 -0.006584 
0.001778 -0.000243 
0.001148 0.000698 

0.002899 0.018592 

-0.001344 -0.027993 
-0.W2130 0.002484 
4.002219 0.033554 
4.006775 0.003214 
-0.018286 -0.059401 
-0.055004 -0 048827 
-0.106776 0.070612 
-0.107167 0.197524 
-0.026759 0.144748 
0.147804 -0.123524 
0.330343 -0.376982 
0.430439 -0.312564 
0.368335 0.061832 
0.144412 0.409688 

0.001893 0.002206 

-0.01~99 -0.00~59 

0002809 0003177 0006838 -0000886 0001658 
0 000834 0 000977 0 000056 0 001687 0 001429 
0 000383 0 000109 -0 000561 0 000751 0 001165 
0 005386 0 005220 0 001676 0 001673 0 000792 
0 004888 -0 006600 -0 018889 0 000261 0 006713 
0 021094 -0 020406 0 009059 -0 012368 -0 005263 
0 028046 0 026048 0 024169 0 001643 -0 000402 
0 013289 .O 013063 0 002655 -0 002180 -0 006836 
0 062616 0 058899 0 031538 0 001404 0 004060 
0 019082 0 018132 0 004219 0 006828 -0 019040 
0 023539 0 024407 0 056646 0 009849 0 021475 
0 052703 -0 051123 0 048429 0 049853 -0 031732 
0 088796 0 086462 0 066383 0 097006 0 031014 
0 049701 0 051188 0 193302 -0 104953 -0 006324 
0 241758 0 239193 -0 143627 0 020370 -0 048085 
0 026563 0 025910 -0 125263 0 14750 
0 365965 0 366426 0 377886 -0 33285 
0 174852 -0 174803 -0 314092 0 431705 0 317994 
0 393949 0 395534 0 060887 0 369244 -0 384842 
0 318912 0.319987 0 411214 0 145256 0 419936 

TABLE V 
N = 4, DFSICNED FOR MAXIMUM STOPBAND ATENUATION 

f o b )  
-0.Cml195 
0.002427 
0.001285 
0.000963 
0.001294 
0.000254 
0.009307 
0.020214 
0.061866 

4.003180 
-0.033868 
-0.117796 
4 2255.W 
-0.324735 
-0.382887 
-0.421573 

f I @ )  
-0.001281 
4.001444 
0.W4539 
0.002747 

-0.003426 
0.007906 
0.013898 
0.005003 
0.081866 
0.079320 
0.031999 

-0.138045 
-0.335@45 
-0.446667 
-0.367919 
-0.139535 

id.) 
O.OOD648 
0.002063 

-0.003097 
-0.001935 
0.002757 

-0.006468 
-0.008095 
0.003092 

-0.022559 
-0.141730 
-0.134430 
0.084738 
0.375433 

0.345393 
-0.049095 
-0.437439 

fdn) 
-0.000474 
-0.002005 
0.003373 
0.001426 

-0.004287 
0.005203 
0.006922 

-0.005164 
0.063402 

-0.074203 
-0.199122 
0.028858 

0.130278 
-0.426039 
-0.312747 

0.391870 

f4(n) 
0.000738 
0.002636 

-0.004595 

0.005447 
-0.007619 
-0.010181 
0.005173 

-0.063648 
-0.067788 
0.212518 
0.023472 
0.388178 
0.133268 
0.423327 

-0.311387 

-o.o02zo2 

f 5 b )  
-0.000506 
0.0 0 2 2 2 5 

-0.000607 
-0.000265 
0.002474 

-0 002536 
0.002481 
0.012652 
0.022184 

-0.159205 
0.126809 
0.088267 
0.381880 
0.340326 
0.047013 

-0.431468 

fa(n) fdn) 
-0.000501 0.002004 -0.000724 0.003171 

0 000112 -0 000155 
0 000456 0 000275 
0 000912 0 001883 
0 000658 -0 002094 
0 003553 0 004603 
0 014885 0 021325 

-0 071325 0 063950 
0 073406 0 003704 
0 024039 0 020479 

-0 140896 0 116246 
0.333016 0 217549 

-0 445176 -0 323426 
0 368276 0 386332 
0 141824 -0 424600 

is, in general, a good model for images. For example, the 
“smoothness” of the basis functions is an important issue 
because in low bit-rate coding, only few coefficients are 
nonzero, and thus, the signal is reconstructed using only few 
basis functions. If these basis functions are very concentrated 
or present “bends” or “edges,” then these will produce visible 
patterns in the reconstructed image. Such image could have 
a better aspect if the lowest frequency basis functions were 
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smoother, even though they could lead to a GenLOT with 
lower GTc andor DC leakage. 

V. CONCLUSION 
The general factorization of LPPUFB’s is revisited, leading 

to a new perspective from which the GenLOT’s emerged as a 
trivial particularization. One of the most interesting properties 
is that the procedure to increase the overlap (filters’ length) is 
identical for any order n by applying a post-processing stage 
K,(x). The elegance of the factorization and the fact that it 
is a linear-phase filter bank with a fast algorithm based on the 
DCT are important attributes for GenLOT’s. 

The large number of degrees of freedom forced us to use 
nonlinear optimization procedures in the design of GenLOT’ s. 
This is not very desirable because we cannot guarantee a global 
minimum of the cost function but only a local one. However, 
for most of our tests, several different initializations led to the 
same resulting angles, even when very distant starting points 
were used. This leads us to believe that the optimized solutions 
are reasonably stable. 

In dealing with optimization for signal compression, the 
major problem is the definition of the cost function. Further 
research may be concentrated on design issues aimed at 
specific applications. 
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