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Abstract

Contour-based corner detectors directly or indirectly es-
timate a significance measure (e.g. curvature) on the points
of a planar curve and select the curvature extrema points
as corners. While an extensive number of contour-based
corner detectors have been proposed over the last four
decades, there is no comparative study of recently proposed
promising detectors. This paper is an attempt to fill this
gap. We present the general frame-work of the contour-
based corner detection technique and discuss two major
issues – curve smoothing and curvature estimation, which
have major impacts on the corner detection performance. A
number of promising detectors are compared using an au-
tomatic evaluation system on a common large dataset. It is
observed that while the detectors using indirect curvature
estimation techniques are more robust, the detectors using
direct curvature estimation techniques are faster.

1. Introduction

The terms ‘dominant point’, ‘critical point’ and ‘corner’
are used as equivalents in the literature to indicate the de-
tected corners on a planar curve (open or close contour)
[29]. Although the notion of a ‘corner’ seems to be intu-
itively clear, no generally accepted mathematical definition
exists for digital curves [11]. In fact, different approaches
give different but conceptually related computational defi-
nitions to a visual phenomenon. For example, Guru et al.
[12] defined a corner as the intersection of two adjacent rel-
atively straight curve-segments, i.e. That is a corner point is
found at a location where the direction of the curve changes
significantly and abruptly.

Although the terms ‘interest-point’ and ‘corner’ are
sometimes used equivalently in the literature, corners are
a special subclass of interest-points. Interest-points include
not only corners, but also T-junctions, blobs as well as lo-

cations of significant texture variations. In general, corners
offer many advantages over interest-points [4]. Firstly, cor-
ners are visually distinguishable and more robust than their
interest-point counterparts. Secondly, in an image, the num-
ber of corners is much lower than that of interest-points.
This can significantly speed up feature matching algorithms
if corners are used. Thirdly, corners can be ranked based on
their strength like the curvature value, or the number of cor-
ners can be controlled by changing the detection thresholds.
In contrast, it is very difficult to rank interest-points since
their descriptors are of higher dimension. Finally, corner
detection requires less time than interest-point detection.

Contour-based corner detectors, in general, either use a
polygonal approximation to search for intersection points or
look for curvature maxima points along the extracted con-
tours from the gray-scale image. Algorithms using polyg-
onal approximation obtain a piecewise linear polygonal ap-
proximation of the curve subject to some constraints on the
goodness of fit. The actual or extrapolated intersections of
the adjacent line segments in the approximated polygon are
then detected as dominant points [19]. Algorithms using
curvature estimation use a significant measure, e.g. curva-
ture [22, 23], on the planar curve. They then look for curva-
ture extrema points as corners. This paper focuses on these
detectors.

Recently, a number of promising contour-based detec-
tors have been proposed. However, a comparative study to
judge them on a common platform has not as yet been un-
dertaken. This paper is an attempt to fill this gap. Note
that the earlier comparative work by Mokhtarian and Mo-
hanna [16] is almost five years old. Moreover, they used
a small database and their evaluation system was manual
and consisted of flawed evaluation metrics [5]. In this pa-
per, we present a comparative study of seven promising de-
tectors using an automatic evaluation system [6] on a large
database.

The rest of the paper is organized as follows. In Sections
2 and 3, we present the general frame work of contour-based
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Figure 1. A flow chart for general corner detection technique.

corner detection techniques and discuss two major issues,
namely curve smoothing and curvature estimation, which
have major impacts on the corner detection performance.
In Section 4, we first summarize the results from the litera-
ture and then a number of promising detectors are compared
using an automatic evaluation system on a common large
dataset. Finally, the paper is concluded in Section 5.

2. General Framework of Contour-based Cor-
ner Detection

As shown in Fig. 1, common contour-based corner de-
tection techniques consist of five steps: edge extraction
and selection, curve smoothing, curvature estimation, find-
ing corners and coarse-to-fine corner tracking. The ‘corner
tracking’ step in the dotted rectangle is an optional step and
therefore is not used by many detectors. The shaded rect-
angles for the ‘curve smoothing’ and ‘curvature estimation’
steps indicate that these two steps are sometimes integrated,
for example, for detectors estimating indirect curvature with
indirect smoothing technique (see Section 3.3).

• Edge extraction and selection: Given a grey-scale im-
age, a corner detector first extracts edges using a se-
lected edge detector. Most of the corner detectors in
the literature do not detail this step since edge extrac-
tion is a separate algorithm, commonly used by all cor-
ner detectors. However, Awrangjeb and Lu [5] showed
that extraction of strong edges and elimination of short
edges, which may be large in number, can increase the
performance of a detector.

• Curve smoothing: Slope and curvature evaluation of a
discrete curve is not simple, since the position (coor-
dinates) of a curve-point is quantized. Moreover, there
may be noise and local variation on the curve. There-
fore, some smoothing should be carried out before or

during the curvature calculation in order to make the
curvature extrema points more distinguishable from
other curve-points.

There are two kinds of smoothing: direct and indirect.
A direct smoothing, e.g. the Gaussian smoothing [17],
removes noise and changes the curve-point locations,
while an indirect smoothing, e.g. the region of support
(RoS) [22] or the chord-length [19], does not change
the curve-point locations at all. As the size of RoS or
chord is increased, the curvature estimation technique
overlooks the fine details of the curve without substan-
tially changing the curve-point locations. Both kinds
of smoothing have a similar effect in the sense that us-
ing a low value of the smoothing parameter may not
reduce the effect of noise completely and may detect
many spurious corners, while using a large value of
the smoothing parameter may overlook important de-
tails of the curve.

Since detectors using indirect smoothing do not phys-
ically remove noise from the curve, they may de-
tect spurious corners and thus cannot localize the cor-
ners well. Successful corner detection requires some
direct curve smoothing to be performed beforehand
[2]. The importance of direct curve smoothing (Gaus-
sian smoothing with scale σ) has also been noted in
[22, 23], though smoothing was not applied. Awrang-
jeb and Lu [6] applied a small Gaussian smoothing-
scale (direct smoothing) before the estimation of cur-
vature using chords (indirect smoothing). In addition
to using a fixed Gaussian smoothing, He & Yung [13]
used a dynamic (adaptive) RoS to calculate the vari-
able curvature-threshold.

• Curvature estimation: A corner detector then estimates
a significance measure, i.e. curvature, on each point of
the smoothed curve. The estimated curvature is some-
times referred to as ‘corner strength’ or ‘cornerity’ [4].

There are two types of curvature estimation techniques
in the literature: direct and indirect. In direct curva-
ture estimation techniques, an algebraic or geometric
estimation such as cosine, local curvature or tangen-
tial deflection [17, 23] on each curve-point is used as
the significance measure. Such algebraic or geometric
estimations are measured on each point with its neigh-
boring points. For example, Mokhtarian and Suomela
[17] estimated the Euclidean curvature (local curva-
ture) at each point considering two neighboring points
on each side.

In contrast, an indirect measure is used as the signif-
icance measure in indirect curvature estimation tech-
niques. For example, Masood and Sarfraz [14] counted
the number of curve-points lying inside three rectan-
gles moving along the curve. Ramer [19] used the



perpendicular distances from the chord connecting the
two end-points of the curve (segment) to curve-points.
Some other indirect measurements of the significance
measure are area [30] and distance [28] functions.
Since the direct curvature estimation techniques con-
sider a less number of neighboring points on each side
of a point, they are more sensitive to noise and local
variation of the curve than their indirect counterparts
[6] (see detail in Section 3.2).

• Finding corners: A corner detector gathers the curva-
ture maxima points on all of the smoothed curves in
the candidate corner set. A maximum point can either
be a strong, weak (also known as ‘round’ in the litera-
ture [17]), or false corner. The later two should not be
regarded as corners.

Thresholds are applied to remove weak and false cor-
ners [6]. He & Yung [13] used a curvature-threshold
to remove weak corners and an angle-threshold to re-
move false corners.

• Corner tracking: If corners are detected using high
Gaussian smoothing-scales (σ), their localization is
not good. A coarse-to-fine corner tracking is carried
out for the detected corners to improve their local-
ization. For example, Mokhtarian and Suomela [17]
detected corners at σ = 4 and tracked them through
σ = 3 and 2 to σ = 1. At each scale (say, σ = 2) the
curvature maximum point around a corner (which was
detected at the immediate higher scale, i.e. σ = 3) is
selected as the next tracked position for that corner.
The tracked position at σ = 1 is the final location for
that corner.

Note that the corner tracking step does not use any
threshold but changes the corner positions only, not
the number of corners. This corner tracking step is
optional for a number of detectors [13, 6], which use
low σ values for smoothing.

3. Major Issues of Corner Detection
Curve smoothing and curvature estimation are the most

critical steps in corner detection. In order to detect all true
corners at their correct locations and not detect any false or
weak corners on a curve, it is very important that the curve
should be smoothed with an appropriate smoothing-scale.
However, the selection of smoothing-scale for a given curve
is not an easy task.

On the other hand, curve-point locations are quantized
and there may be noise and local variations on the curve.
In addition, geometric transformations or signal processing
may affect the edge detection performance. As a result, it is
difficult to consistently estimate curvature at a curve-point
under different conditions.

Detectors estimating indirect curvature with indirect
smoothing techniques usually integrate (combine) the curve
smoothing and curvature estimation steps.

In this section, we discuss more on the selection of
smoothing-scale and curvature estimation techniques.

3.1. Smoothing-scale Selection

A smoothing parameter, which indicates the amounts of
direct or indirect smoothness for curvature estimation, sub-
stantially controls the overall corner detection performance.
We find three smoothing parameters in the literature: Gaus-
sian smoothing-scale σ [16], chord-lengh L [6] and RoS k
points on both sides of a curve-point [23]. Here, we call
them smoothing-scale. While the first one is called a direct
smoothing, the latter two are called indirect smoothing. A
corner detector may use one [17] or more [6] of these three
smoothing parameters.

In direct smoothing using σ [17], each curve-point P is
convolved using a Gaussian function whose window size
is determined by σ. While a large σ ensures a high de-
gree of smoothness by involving a high number of neighbor-
ing points on both sides of P in the convolution operation,
a small σ offers a low degree of smoothness. In indirect
smoothing using L [6], the parameter value indicates how
many neighboring points on both sides of P are considered
during curvature estimation. In indirect smoothing using k
[23], the parameter value indicates how many neighboring
points on both sides of P are considered during the search
for local curvature maxima.

In practice, real world images may have different types
of corners. They contain important details belonging to a
range of scales. Moreover, the human visual system (HVS)
shows two characteristics [11]. Firstly, human visual per-
ception treats images on several scales simultaneously. Sec-
ondly, when the signal to noise ratio decreases in an image,
the HVS automatically increases the scales at which it char-
acterizes the image. Therefore, it is preferable to detect cor-
ners using a multi-scale analysis.

Consequently, there are different kinds of detectors de-
pending on the selection of their smoothing-scales:

• Single-scale selection: Detectors using a single
smoothing-scale [1] suffer from the problem of select-
ing an appropriate value for σ, L or k for a given curve.
The reason is that there may be different types and
sizes of corners on a single curve. For examples, if σ
is small, many spurious points are detected as corners.
On the other hand, if σ is large, important details may
be smoothed out (since curve becomes flat and curva-
ture values decrease). In both of the cases, the detected
corners may also be ill-positioned [30].

• Full range of multi-scale selection: In order to detect
different types of corners, multi-scale corner detectors



have been proposed [17]. Detectors using a full range
of scales [20] are computationally too expensive. The
need to combine corners detected in different scales is
a further problem.

• Small range of multi-scale selection: In order to avoid
the heavy computational load associated with use of
a full range of smoothing-scales, recently developed
contour-based multi-scale detectors [17] detect corners
on each curve using a fixed or one of three medium
smoothing-scales. They then apply thresholds to re-
move weak and spurious corners. Finally, they may
track the detected corners to improve their localization
[17, 15].

• Significant-scales selection: Rosin [24] represented
curves at their natural (significant) scales to avoid
the expensive representation of each curve over a full
range of scales. This representation describes each part
of a curve at its significant scale (for which certain cri-
teria are met). As a result, each curve is represented
using many significant scales, instead of using the full
range of scales.

Gao et al. [10] proposed a multi-scale corner de-
tector based on local natural scale. However, local
approaches are computationally more expensive and
coarse scale features cannot be effectively detected us-
ing the local curve nature [24]. Beau and Singer [8]
suggested only coarse feature detection in the reduced
resolution curve to reduce computational complexity,
because large scale features are more stable in image
transformations and can be better used in different ap-
plications.

• Adaptive-scales selection: There are also adaptive
smoothing techniques (also known as non-linear fil-
tering or anisotropic diffusion of the signal) [21] for
corner detection. The idea behind adaptive smooth-
ing is to apply a versatile operator which can adapt to
the local topography of the signal. This is achieved
by repeatedly convolving the signal with a very small
averaging mask weighted by a measure of the signal
continuity at each point. The weights which are com-
puted as a function of the pixel gradient vary at each
pixel position and at each iteration.

Although the adaptive technique improves the lo-
calization of the detected corners without following
a tracking step, such an iterative adaptation of the
smoothing-scale is computationally demanding.

3.2. Curvature Estimation

Curve-point locations are quantized and may be affected
by noise introduced during an image processing operation,

Figure 2. Intrinsic definition of curvature.

Figure 3. Derivative-based (direct) curvature estimation within a
local variation of a curve.

as well as by the edge extractor. In addition, a curve may
contain different sized corners which may require different
amounts of smoothing. However, choosing or calculating
an appropriate value for σ, L or k is very difficult for a
given curve. As a result, no strict mathematical definition
of curvature exists for a discrete curve [30] and curvature is
only approximated [30].

As discussed in Section 2, there are two main types of
curvature estimation techniques – direct and indirect [30].
In this section, we discuss them in detail.

3.2.1 Direct curvature estimation

Early dominant point detectors estimated angle as a signif-
icant measure (curvature indicated by cosine angle or tan-
gential deflection) at each point P of the curve by consider-
ing a fixed RoS k. However, many modern dominant point
detectors calculate a variable k on both sides of P with
the expense of an additional computational cost. Depend-
ing on the above RoS determination criterion, dominant
point detection algorithms can be divided into two groups.
Firstly, algorithms with non-adaptive RoS keep k fixed for
all curves and points [22, 23]. Secondly, algorithms with
adaptive RoS calculate RoS for each point using the local
nature of the curve [25].

Many corner detectors [20, 17] use Euclidean curvature.
The Euclidean curvature at a point P is defined as the in-



Figure 4. CPDA (indirect) curvature estimation within a local vari-
ation of a curve.

stantaneous rate of change of ψ, that is the angle subtended
by the tangent at P with the x-axis, with respect to the arc-
length u [20] (see Fig. 2). This curvature estimation tech-
nique considers a very small neighborhood (2× 2) on both
sides of P to evaluate the curvature at P [6].

Consequently, the estimated curvature using the above
definition is very sensitive to the local variation and the
noise on the curve. In a region with a high local varia-
tion, ψ changes significantly from point to point within a
short curve segment. As depicted in Fig. 3, in a small but
highly variable curve-region, the derivatives of the curve
point-locations may lead to a high curvature estimation. As
a result, detectors using the direct curvature estimation may
detect many weak and false corners, if such local variation
and noise is not smoothed away using a high smoothing-
scale beforehand. However, smoothing has its own prob-
lems as we discussed in Section 3.1.

Detectors using cosine angle or tangential deflection [22]
were found more sensitive to noise and less robust than
those [17] using the Euclidean curvature [6].

3.2.2 Indirect curvature estimation

Since direct curvature estimation techniques are sensitive to
noise and local variation of the curve, there are a number
of detectors which use different curvature estimation tech-
niques. For example, the detector in [9] used the distance
from a curve-point to a chord of length L as a significance
measure on that point. The CPDA detector [6] followed
a distance accumulation technique using three chords as
shown in Fig. 4. Since it uses a large neighborhood, it is
less sensitive to noise and local variations on the curve [6].
Particularly, chord 1 (short) accumulates (sums) both posi-
tive and negative distances and chord 2 (long) accumulates
distances which are almost the same for all points inside and
outside this region. So the curvature product from the ac-
cumulated distances using three chords of different lengths
is almost the same for all the points in and out of the lo-
cal variation region. As a result, the CPDA detector detects
corners with a higher average repeatability.

3.3. Integration of Smoothing and Curvature Esti-
mation

Detectors using direct curvature estimation techniques
may use no smoothing [23], direct smoothing only [17, 28,
9] or both direct and indirect smoothing [13]. Similarly, de-
tectors using indirect curvature estimation techniques may
use direct smoothing only [28], indirect smoothing only [9]
or both [6].

Detectors estimating indirect curvature usually integrate
indirect smoothing technique with curvature estimation [9,
6]. Zhang et al. [28] estimated indirect curvature without
integrating or using an indirect smoothing technique.

Direct smoothing is mainly done before curvature cal-
culation [17, 28, 6, 16] and indirect smoothing is usually
used during curvature estimation. The aim of both of these
smoothing techniques is to reduce the effect of noise and
local variations [6]. In addition to a direct smoothing be-
fore curvature estimation, many detectors [15, 13, 23] also
used direct [15] or indirect smoothing [13, 23] after cur-
vature calculation. Mokhtarian and Mohanna [15] applied
direct smoothing on the estimated curvature function and
He & Yung [13] and Kitchen and Rosenfeld [23] applied
an indirect smoothing (RoS k) for obtaining local curvature
maxima points.

4. Performance of Promising Corner Detectors
Many of the contour-based detectors [17, 20] did not use

any evaluation metrics. Instead they showed the detected
corners on a small number of artificial and real images. In
this section, we first summarize the experimental results
from some recent papers [16, 27, 13, 5, 6, 28, 7]. Since
different authors evaluated them using different evaluation
metrics on different sets of databases, we then present an
empirical study on a number of popular corner detectors us-
ing the automatic performance evaluation system [5] on a
large database.

4.1. Summary of Existing Evaluations

Table 1 compares the evaluation systems and test results
for contour-based detectors in the literature. We see that
while many of the existing evaluation systems are manual
(M), that means they involved human judgement, Awrang-
jeb and Lu [5, 6] introduced the automatic evaluation sys-
tem (A) and included geometric sheared and lossy JPEG
compressed images into the test dataset. Many authors
[16, 27, 13] used a small set of images and He & Yung [13]
did not use any geometrically transformed or signal pro-
cessed images. This makes their evaluation outcomes less
reliable. While compared with five most promising detec-
tors, Awrangjeb and Lu showed that their CPDA detector
[6] offered the best effectiveness in terms of both average
repeatability and localization error.



Table 1. Comparisons of evaluation systems and test results for contour-based detectors in the literature. [Type: M = manual evaluation
system involving human judgement [16], A = automatic evaluation system [6]; Error: maximum distance (in pixels) between reference and
detected corners for a repeated corner, NA = not applicable; Database: number of original and test images; Attacks: how test images were
generated, US = uniform scaling, NUS = non-uniform scaling; Test results: CCN = Consistency of corner numbers [16], Acu = Accuracy
[16], TDR = true detection rate [27], FDR = false detection rate [27], Le = localization error [6], EI = error index [28], Ravg = average
repeatability [6].]

Year [Ref.] Type Error Database Attacks Detectors Test resultsOri. Test Geometric Signal

2006 [16] M 3 5 590

Rotation(90) CCN Acu
US(50) CSS [17] 51 72
NUS(150) ECSS [15] 60 78
Affine(300)

2007 [27] M 3 5 1365

Rotation(90) CCN Acu
US(75) CSS [17] 47 75
NUS(400) He & Yung [13] 59 77
Affine(800) MSCP [27] 73 84

2008 [13] M 4 2 –

TDR FDR Le

CSS [17] 93 21 1.53
ECSS [15] 92 14 1.33

He & Yung [13] 93 4 0.99

2008 [5] A 3 23 8694

Rotation(414) JPEG(460) Ravg Le

US(345) Noise(230) CSS [17] 64 1.36
NUS(2691) ECSS [15] 58 1.38
Affine(3450) ARCSS [5] 66 1.30
Shear(1104)

2008 [6] A 3 23 8694

Rotation(414) JPEG(460) Ravg Le

US(345) Noise(230) RJ [22] 52 1.37
NUS(2691) CSS [17] 65 1.36
Affine(3450) ARCSS [5] 66 1.30
Shear(1104) He & Yung [13] 70 1.23

MSCP [27] 71 1.26
CPDA [6] 73 1.18

2009 [28] M NA 20 7320

Rotation(320) Noise(200) Acu EI
US(200) CSS [17] 75 40
NUS(2200) Zhang [28] 78 33
Affine(4400)

2009 [7] A 3 23 8694

Rotation(414) JPEG(460) Ravg Le

US(345) Noise(230) CSS [17] 64 1.36
NUS(2691) ARCSS [5] 65 1.30
Affine(3450) He & Yung [13] 69 1.23
Shear(1104) MSCP [27] 70 1.25

CPDA [6] 75 1.14
Fast-CPDA [7] 74 1.15

Since evaluation results in Table 1 were carried out on
different platforms (different evaluation systems using dif-
ferent datasets and metrics), in the next section we have car-
ried out an automatic evaluation of seven popular corner de-
tectors using – average repeatability and localization error
for effectiveness evaluation [6] and running time for effi-
ciency evaluation. We aim to find out robust and efficient
corner detectors.

4.2. Performance Comparison

In our performance study, we follow the automatic eval-
uation system introduced in [5], rather than the manual sys-
tem in [16], which involves human judgement of corner de-
tection and thereby is not suitable for the performance eval-
uation when using a large dataset.

In the automatic system, corners detected in the original
images by a detector are considered as reference corners



and corners detected by the same detector in the test im-
ages which were signal processed and geometrically trans-
formed, are taken as test corners. Then, reference and test
corners are compared to evaluate the performance of that
detector.

We evaluated seven detectors namely CSS [17], ARCSS
[5], He & Yung [13], MSCP [27], Zhang et al. [28], CPDA
[6] and Fast-CPDA [7] detectors. All the detectors were set
at the default parameter settings indicated by their authors.

The database had a total of 25 different original
512× 512 grey-scale images including some artificial im-
ages like ‘Block’ and real world images like ‘Lena’, ‘Leaf’,
‘House’ and ‘Lab’. All of the above original images were
collected from standard databases [18, 26, 3] and corner de-
tection examples are available at [3]. The database had a to-
tal of 9450 transformed (test) images, which were obtained
by applying the following seven approaches of attacks on
each original image:

♦ rotation at 18 different angles θ in [−90◦,+90◦] at 10◦

apart, excluding 0◦;

♦ uniform (U) scaling factors sx = sy in [0.5, 2.0] at 0.1
apart, excluding 1.0;

♦ non-uniform (NU) scaling factors sx in [0.7, 1.3] and
sy in [0.5, 1.8], at 0.1 apart, excluding the cases when
sx = sy;

♦ combined transformations (rot.-scale): θ in
[−30◦,+30◦] at 10◦ apart, excluding 0◦, followed by
uniform or non-uniform scaling factors sx and sy in
[0.8, 1.2] at 0.1 apart;

♦ JPEG lossy compression at 20 quality factors in
[5, 100], at 5 apart;

♦ zero mean white Gaussian noise at 10 variances in
[0.005, 0.05] at 0.005 apart; and

♦ shearing factors shx and shy in [0, 0.012] at 0.002
apart, excluding the one when shx = shy = 0.0.

Therefore, the database had a total of 450 rotated, 375
uniform scaled, 2925 non-uniform scaled, 3750 rotated and
scaled transformed images. It also had 500 JPEG com-
pressed, 250 Gaussian noise induced and 1200 sheared im-
ages. Note that transformations comprising rotations were
also followed by cropping that removed the outer black
parts. Consequently, many detected corners in the original
images were cropped off in the test images for the transfor-
mations involving rotations.

From the evaluation results presented below we see that
while the detectors using indirect curvature estimation tech-
niques [6, 28] are more robust, the detectors using direct
curvature estimation techniques [27, 17] are more efficient.

Table 2. Ranking of detectors using average repeatability (Ravg

in percentage) and localization error (Le in pixels).

Ranks Detectors (Ravg) Detectors (Le)
1 CPDA [6] (74.74) CPDA [6] (1.14)
2 Zhang [28] (74.14) Fast-CPDA [7] (1.15)
3 Fast-CPDA [7] (74.10) Zhang [28] (1.20)
4 MSCP [27] (70.49) He & Yung [13] (1.23)
5 He & Yung [13] (69.97) MSCP [27] (1.26)
6 ARCSS [5] (65.36) ARCSS [5] (1.30)
7 CSS [17] (64.44) CSS [17] (1.36)

Table 3. Ranking of detectors using running time (per image).

Ranks Detectors (sec.)
1 Fast-CPDA [7] (0.0048)
2 MSCP [27] (0.0056)
3 CSS [17] (0.0084)
4 He & Yung [13] (0.0090)
5 CPDA [5] (0.0131)
6 Zhang [28] (0.0146)
7 ARCSS [5] (0.0156)

4.2.1 Effectiveness

As shown in Table 2, the CPDA detector performed the best
among the seven detectors in terms of both average repeata-
bility rate and localization error. The Fast-CPDA [7] and
Zhang et al. [28] detectors performed close to the CPDA
detector.

From Table 2, it is evident that the detectors using direct
curvature estimation techniques (CSS [17], ARCSS [5], He
& Yung [13] and MSCP [27]) are less robust (effective) than
those using indirect curvature estimation techniques (CPDA
[6], Fast-CPDA [7] and Zhang et al. [28]).

4.2.2 Efficiency

Table 3 compares the running time of different detec-
tors on a Windows XP machine with 3.00GHz of Intel(R)
Core(TM)2 Duo CPU and 3.23GB of RAM.

We see that the Fast-CPDA detector [7] is the fastest
among the seven followed by the MSCP detector [27]. The
reason is that the Fast-CPDA detector estimates curvature
only on a chosen limited number of curve-points and the
MSCP detector simply applies a curvature-threshold to the
curvature product function and both of them do not follow
any corner tracking step. On the other hand, He & Yung
[13], though a single-scale detector, is slow because it spent
much time in adaptive curvature-threshold calculation using
dynamic RoS. The ARCSS detector [5] is the slowest de-
tector, since unlike the others it required significant time for
affine-length parameterization of the curve. It also tracked
the detected corners.



5. Conclusion
In this paper, we have carried out a comparative study of

promising contour-based detectors. Experientially, we have
observed that while the detectors using indirect curvature
estimation techniques are more robust, the detectors using
direct curvature estimation techniques are faster.

The CSS-based detectors [16, 27, 13] suffer from two
problems: inappropriate smoothing-scale (sigma) selection
and use of derivative-based curvature estimation [6]. The
CPDA [6], Fast-CPDA [7] and Zhang et al. [28] detectors
overcome these problems to a great extent. However, they
are more robust but less efficient than their CSS-based coun-
terparts. The future work includes investigating more effi-
cient and effective indirect curvature estimating multi-scale
detectors.

References
[1] N. Ansari and K. W. Huang. Non-parametric dominant point

detection. Pattern Recognition, 24(9):849–862, Sep 1991.
[2] H. Asada and M. Brady. The curvature primal sketch. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 8(1):2–
14, Jan 1986.

[3] M. Awrangjeb. Image database and corner detection:
http://personal.gscit.monash.edu.au/ãwran/images.html.
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