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Abstract—Process mining is a technique for extracting process
models from event logs recorded by information systems. Process
mining approaches normally rely on the assumption that the log
to be mined is complete. Checking log completeness is known
to be a difficult issue. Except for some trivial cases, checkable
criteria for log completeness are not known. We overcome
this problem by taking a probabilistic point of view. In this
paper, we propose a method to compute the probability that
the event log is complete. Our method provides a probabilistic
lower bound for log completeness for three subclasses of Petri
nets, namely, workflow nets, T-workflow nets, and S-workflow
nets. Furthermore, based upon the complete log obtained by
our methods, we propose two specialized mining algorithms
to discover T-workflow nets and S-workflow nets, respectively.
We back up our theoretical work with empirical studies that
show that the probabilistic bounds computed by our method are
reliable.

Keywords—process mining, workflow management, event log,
Petri nets, probabilistic analysis.

I. INTRODUCTION

Many processes today are supported by computer systems
which log their events. Originally these logs were used to trace
back the events and to detect whether errors or exceptions
had occurred. Today the challenge has moved to the area
of deriving more sophisticated information from event logs.
Process mining is a branch of data mining that is focused on
the discovery of the underlying process model, i.e., the model
of the process that generated the event log [2–8, 12, 13].

Process mining algorithms are often based on the assump-
tion that the underlying process handles individual cases,
which can be handling a claim in an insurance company, the
application of a medical protocol to a patient in a hospital
or the maintenance of a car in a repair shop. A log typically
consists of events that can be grouped in sequences per case.
For mining purposes we often assume that these cases are
independent of each other, which means that the order of
events per case is only determined by the characteristics of
the case and not by the accidental presence of other cases.
Certainly the duration of an event, waiting times and the total
cycle time of a case might be influenced by the presence of
other cases due to queuing phenomena, but the specific event
order is not.

Given an event log and a process mining algorithm that
computes a process model from this log, an important question

is: “Can we claim that the discovered process model is iden-
tical (actually bisimilar) to the process model that generated
the events?”, which requires answering the question “Is my
event log complete?”. This question plays an essential role in
standard applications of process mining, when companies want
to find out with process mining what their actual processes
are, and this question becomes even more important in the
domain of automated and continuous audit, when the auditing
company checks that the process behaviour represented in the
log complies to the rules and the auditors want to be certain
that the log they have obtained contains enough information
about the behaviour of the process, i.e. that their compliance
check on the log implies that the process that generated the
log is compliant to the rules and no uncompliant behaviour
will be encountered if the organisation continues using this
process.

There are some theoretical results for log completeness, i.e.,
[3, 10, 17]. These works are, however, based on a number of
assumptions which cannot be verified in practice, for example,
the assumption that every two events that may happen directly
one after another according to the model implemented in the
system have also occurred in the log directly one after another.
One can only check this assumption if the process model is
known, but this is exactly the problem of process mining,
which results in the circular reasoning.

In this paper we take a probabilistic approach in order to
guarantee, with some probability, that the event log is complete
and the discovered process is bisimilar to the generating
process. We consider each case as a random variable and
each event log as a sequence of independent samples from
this random variable. We first investigate the problem of log
completeness in the context of the α-algorithm [3] for process
mining, which mines Petri nets, in particular workflow nets [1],
as process models. We derive a probabilistic bound for log
completeness for the class of structured sound workflow nets.

At the next step we try and improve the mining algorithm
and come up with a more precise probabilistic bound for com-
pleteness by taking into account available information about
the process structure. We consider two simple but important
classes of structured sound workflow nets: S-workflows and
T-workflows. While S-workflows do not support parallelism
but allow modeling choices, T-workflows do the opposite:
they provide support for modelling parallelism but do not



allow for having choices in the model. S-workflows model
in principle all sequential processes, which are often used for
processing cases in such organisations as insurance companies,
financial and governmental institutions. T-workflows are in
fact standardly used as project planning models in large
construction or maintenance projects in e.g. oil, building and
aircraft industries.

In case we know that the process that produced the log
works as an S-workflow, or a T-workflow, we can employ this
information in our mining procedure. Due to the use of this
information in computing the probabilistic bound, we achieve
more precise estimations and we are able to claim that the log
is complete with a significantly higher probability than in case
we would apply the probabilistic bound we have for structured
sound workflow nets to S-nets and T-nets.

The rest of this paper is organised as follows. Section II
gives basic concepts from probability and set theory. Section
III introduces concepts of Petri nets and process mining do-
mains. In Section IV we introduce our probabilistic framework
for process mining. In Section V we derive a probabilistic
bound for log completeness for the class of structured sound
workflow nets. In Section VI we define a mining algorithm
and give a probabilistic bound for log completeness for S-
workflow nets. In Section VII we do it for the class of acyclic
T-workflow nets. In Section VIII we empirically evaluate the
quality of the probabilistic bounds for these three classes of
workflow nets. Finally, Section IX discusses related works,
and Section X concludes this paper.

II. PRELIMINARIES

Let S be a set. The powerset of S is denoted by P(S).
We use |S| to denote the number of elements in S. The set
of all natural numbers is denoted as N. A bag (or multiset) b
over S is a function b : S → N. We denote a bag by listing
its elements with indications of their multiplicity witin square
brackets, e.g. in a bag [a, b2, c], a occurs once, b twice, and
c once. The set of all bags over S is denoted by B(S). A
set can be seen as a special kind of bag where all elements
only occur once. A sequence σ of length l ∈ N over S is
a function σ : {1, . . . , l} → S, which we denote as σ =
〈σ(1), σ(2), . . . , σ(l)〉. The length of a sequence is denoted
by |σ|. The set of all finite sequences over S is denoted as
S∗.

Let (Ω,F,P) be a probability space, where Ω is the set
of outcomes, assumed to be countable, F = P(Ω), and
P : F → [0, 1] such that P[∅] = 1 − P[Ω] = 0, and for
F1, F2, . . . , Fn elements of F which are pairwise disjoint,

P[
∞⋃
n=1

Fn] =
∞∑
n=1

P[Fn]. A random variable X is a function

X : Ω → R, where R is a set of values, and we define
P[X ∈ A] = P[{ω ∈ Ω|X(ω) ∈ A}] for A ⊆ R. In particular
P[X = x] = P[{ω ∈ Ω|X(ω) = x}]. So we have introduced
a probability measure π on R : π(x) = P[X = x] for
x ∈ R. In case R = R, we can compute the expectation
of X which is E[X] =

∑
x∈R

xP[X = x] and the variance

σ2(x) = E[X2]− E[X]2.

III. BASIC CONCEPTS OF PETRI NETS AND PROCESS
MINING

A Petri net is a 3-tuple N = (P, T, F ), where P and T
are two disjoint sets of places and transitions respectively,
F ⊆ (P ×T )∪ (T ×P ) is a flow relation. Elements of P ∪T
are the nodes of N , elements of F are the arcs. Given a node
n ∈ (P ∪ T ), we define its preset •n = {n′ | (n′, n) ∈ F},
and its postset n• = {n′ | (n, n′) ∈ F}.

Markings are states of a net. A marking m of a Petri net
N = (P, T, F ) is defined as a bag over P . A pair (N,m) is
called a marked Petri net. A transition t ∈ T is enabled in
a marking m ∈ B(P ) if •t ≤ m. An enabled transition may
fire. A transition firing results in a new marking m′ where
m′ = m − •t + t•, denoted by N : m t−→ m′. We say that
σ = 〈t1, . . . , tn〉 is a firing sequence of (N,m) if N : m t1−→
m1

t2−→ . . .
tn−→ mn for some markings m1, . . . ,mn ∈ B(P );

we write then N : m1
σ−→ mn. We write N : m ∗−→ m′ if

N : m σ−→ m′ for some firing sequence σ ∈ T ∗. The set of all
reachable markings of a marked Petri net (N,m) is denoted
by R(N,m) = {m′ ∈ B(P )|N : m ∗−→ m′}. The reachability
graph of a Petri net is a graph representation of its possible
firing sequences. It is denoted as G(N,m) = {(m′, t,m′′)|N :
m′ ∈ R(N,m)∧m′ t−→ m′′}. For an elaborate introduction to
Petri nets, the reader is referred to [9, 16].

A special class of Petri nets used for modeling workflows
are workflow nets [1].

Definition 1 (Workflow net). A workflow net is a 5-tuple
N = (P, T, F, i, f) where (P, T, F ) is a Petri net, i ∈ P is
the initial place, such that •i = ∅, f ∈ P is the final place,
such that f• = ∅, and each node n ∈ P ∪ T is on a directed
path from i to f .

The initial marking of a workflow net is [i] and the
designated final marking of a workflow net is [f ]. A firing
sequence σ ∈ T ∗ leading from the initial to the final marking,
i.e. N : [i] σ−→ [f ], is called a trace. An important property of
workflow nets is soundness [1], which means that the process
always has an option to terminate:

Definition 2 (Soundness of workflow nets). A workflow net
N is sound if N : m ∗−→ [f ] for any marking m ∈ R(N, [i]).

We further identify three special classes of workflow nets,
namely, S-workflow nets, T-workflow nets, and structured
workflow nets.

Definition 3 (S-workflow net). A workflow net N is a S-
workflow net if and only if ∀t ∈ T, |t•| = |•t| = 1.

Definition 4 (T-workflow net). A workflow net N is a T-
workflow net if and only if ∀p ∈ P , |p•| = |•p| ≤ 1.

Definition 5 (Structured workflow net). A workflow net N
is a structured workflow net if and only if for all (p, t) ∈ F ,
(1) |p•| > 1 implies |•t| = 1, (2) |•t| > 1 implies |•p| = 1.



Note that S-workflow nets and T-workflow nets both belong
to the class of structured sound workflow nets.

Workflow nets reflecting the actual behaviour of a system
can be discovered from event logs, which are sets of traces,
with every trace being a sequence of events for a completed
process instance.

A standard technique used in process mining for finding
a workflow model is the discovery of causal dependencies
between the events of the system: If a task is always followed
by another task it is likely that there is a causal relation
between them. In order to describe these log-based ordering
relations, we introduce the following notations:

Definition 6 (Log-based ordering relations). Let L be an
event log and a, b be events.

1) a .L b iff ∃σ ∈ L, i ∈ {1, 2, . . . , n} : σ(i) = a ∧ σ(i +
1) = b, i.e. a directly follows b in at least one trace,

2) a→L b iff a.L b and ¬(b.La), i.e. b is a possible direct
successor of a and not another way around,

3) a ‖L b iff a .L b and b .L a, which indicates potential
parallelism,

4) a#Lb iff ¬(a .L b) and ¬(b .L a), gives pairs of tran-
sitions that never follow each other directly, implying
that direct successor relations and parallelism are not
possible.

If we consider L to be the set of all possible traces of the
process, then we drop the subscript L in Definition 6, i.e., we
write a.L b as a.b. The set of all traces can contain an infinite
number of traces in case of loops in the process.

The α-algorithm (Algorithm 1) is a process mining algo-
rithm that is able to extract a workflow model based on a
complete log generated by a sound workflow net by examining
the log-based ordering relations observed between tasks [3]:

Definition 7 (Complete event log). Let N = (P, T, F, i, f)
be a sound workflow net. Let L be an event log of N . L is
complete if and only if (1) . ⊆ .L, and (2) for any t ∈ T
there is a σ ∈ L such that t ∈ σ.

Algorithm 1 Construct a workflow net by the α-algorithm
1: TL := {t ∈ T |∃σ ∈ L : t ∈ σ}
2: TI := {t ∈ T |∃σ ∈ L : t = σ(1)}
3: TF := {t ∈ T |∃σ ∈ L : t = σ(|σ|)}
4: XL := {(A,B)|A ⊆ TL ∧ B ⊆ TL ∧ ∀a ∈ A,∀b ∈ B :
a→L b∧∀a1, a2 ∈ A : a1#La2 ∧∀b1, b2 ∈ B : b1#Lb2}

5: YL := {(A,B) ∈ XL|∀(A′, B′) ∈ XL : A ⊆ A′ ∧ B ⊆
B′ ⇒ (A,B) = (A′, B′)}

6: PL := {p(A,B)|(A,B) ∈ YL} ∪ {iL, fL}
7: FL := {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪
{(p(A,B), b)|(A,B) ∈ YL ∧ b ∈ B} ∪ {(iL, t)|t ∈ TI} ∪
{(t, fL)|t ∈ TF }

8: α(L) := (PL, TL, FL)

If there is a log-based ordering relation between two tran-
sitions according to the event log, then there has to be a place
connecting these two transitions.

Theorem 1 (Log-based ordering relations imply connecting
places [3]). Let N = (P, T, F, i, f) be a sound workflow net
and L be a complete log. For all a, b ∈ T , a →L b implies
a• ∩ •b 6= ∅.

The following theorem shows that the α-algorithm is able
to rediscover sound structured workflow nets from complete
event logs:

Theorem 2 (Rediscovering ability [3]). Let N =
(P, T, F, i, j) be a sound structured workflow net and L be
a complete workflow log of N . If for all a, b ∈ T a• ∩ •b = ∅
or b• ∩ •a = ∅, then α(L) = N modulo renaming of places.

IV. PROBABILISTIC FRAMEWORK

In order to handle the choice construction in Petri nets we
make a realistic assumption that choices can be described by a
probabilistic mechanism. In order to define a probability space,
we extend the Petri net framework with a weight function
w : T → [0, 1] that allows to compute the probability of a
transition to fire, given a marking. For a reachable marking m
enabling transitions t1, . . . , tn, the probability of transition tk
to fire q(m, tk) equals w(tk)/(

n∑
i=1

w(ti)), i.e. the probability

is proportional to the weight of the transition. Applying this
formula to a firing sequence σ = 〈t1, . . . , tn〉 with m0

t1−→
m1

t2−→ . . .
tn−→ mn, we derive q(σ) =

n∏
i=1

q(mi−1, ti).

Next we define a probability space (Ω,F,P), where Ω =
{σ ∈ T ∗|∃m1 : m0

σ−→ m1} and m0 is the initial marking.
On F = P(Ω) we define the probability by P[{σ}] = q(σ).
Note that each trace corresponds to a firing sequence σ exactly.
On Ω we define random variables. One of such variables is
Y : Ω→ R, where R is the set of all |T | × |T | matrices with
entries in {0, 1}. For a, b ∈ T and 1 ≤ k ≤ |σ|,

Y (σ)(a, b) =
{

1 if ∃k : σ(k) = a ∧ σ(k + 1) = b,
0 otherwise.

We usually drop σ in Y (σ) if it causes no confusion. Thus we
have a probability function π with π(y) = P[Y = y], where y
is a |T | × |T | matrix over {0, 1}. Note that we do not know
π, we consider it as an unknown parameter.

In an event log L all the traces can be considered as samples
from Y . If |L| = n we denote them as Y1, . . . , Yn. They are
independent, identically distributed random variables, versions
of Y .

We introduce the second random variable Y n, the aggrega-
tion of Y1, . . . , Yn.

Y n(a, b) =
n⊕
k=1

Yk(a, b), (1)

where ⊕ is the logical OR operator (i.e., 0+0 = 0 and 0+1 =
1 + 0 = 1 + 1 = 1). We call Y n the log characteristic matrix.
Note that Y n(a, b) = 1⇔ a .L b.

Finally, we introduce the third random variable Z(σ)(a, b)
that reflects the ordering of a, b in a trace σ. For a, b ∈ T ,



k ∈ {1, 2, . . . , |σ|}, and l ∈ {1, 2, . . . , |σ|}.

Z(σ)(a, b) =


1 if ∃k, l : σ(k) = a ∧ σ(l) = b ∧ l > k + 1
2 if ∃k : σ(k) = a ∧ σ(k + 1) = b
3 if ∃k, l : σ(k) = b ∧ σ(l) = a ∧ l > k + 1
4 if ∃k : σ(k) = b ∧ σ(k + 1) = a

If |L| = n, we consider n independent, identically distributed
random variables Z1, . . . , Zn, versions of Z.

V. PROBABILISTIC BOUND FOR A COMPLETE LOG

In this section we consider logs of sound workflow nets,
and we will determine a probabilistic lower bound for such a
log to be complete. In Section III we have defined a log L to
be complete if . ⊆ .L and all transitions (events) possible in
the system occur in the log. If a workflow net is a structured
workflow net, given its complete log, the α-algorithm will be
able to reconstruct the generating net.

In Section IV, we introduced the characteristic matrix Y (σ)
for a trace σ, the characteristic matrix Y n over a log L, and a
probability π over characteristic matrices of traces. Although
π is unknown, we know it belongs to the set of all possible
probabilities Π over the characteristic matrices for traces. Next
we define a characteristic matrix of a workflow net, being a
structural property of the workflow.

Definition 8 (Structural characteristic matrix). The matrix-
valued function f over Π is defined by ∀a, b ∈ T ,

f(π)(a, b) =

 1 if qab =
∑
y

π(y)y(a, b) > 0,

0 otherwise.

A log L is complete iff the characteristic matrix of the log
(1) equals to the structural characteristic matrix, i.e. Y n =
f(π). Consequently, the probability for a log to be complete
is

Pπ[Y n = f(π)]. (2)

From (2) we can derive (see (21), (22), and (23) in Appendix)

Pπ[Y n = f(π)] ≥ 1−
∑

{(a,b)|qab>0}

(1− qab)n. (3)

If we impose a confidence limit, then we let (3) ≥ 1 − α.
Hence, we get ∑

{(a,b)|qab>0}

(1− qab)n ≤ α. (4)

In general, we do not know qab. However, qab can be estimated
by the two following approaches.

In the first approach, we suppose that we know that for
any π ∈ Π, the minimal value in {qab|qab > 0} is ε, and the
maximal number of |{(a, b)|qab > 0}| is m. Then (4) can be
written as

m∑
k=1

(1− ε)n = m(1− ε)n ≤ α. (5)

From (5), we can estimate a lower bound for the complete log
size n for a sound workflow net with certain confidence:

n ≥
log α

m

log(1− ε)
. (6)

The second approach is based on a sample of n traces in a
log. We consider two possible values of qab:

1) The average of Yn(a, b), such that

Ȳn(a, b) =
1
n

n∑
k=1

Yk(a, b). (7)

Based on (4) and (7), we derive∑
{(a,b)|Ȳn(a,b)>0}

(1− Ȳn(a, b))k ≤ α. (8)

2) Because Yn(a, b) has a binomial distribution with qab
and n, we have a confidence interval for qab, such that

qab ≥ Ȳn(a, b)− Zα

√
Ȳn(a, b)(1− Ȳn(a, b))

n
, (9)

where Zα is the α−percentile of the normal distribution.
From (4) and (9) we conclude∑

{(a,b)|Ȳn(a,b)>0}

(1−(Ȳn(a, b)−Zα

√
Ȳn(a, b)(1− Ȳn(a, b))

n
))k ≤ α.

(10)
In both (8) and (10), k is the size of a complete log. It should

be the smallest value satisfying (8) and (10), respectively. Thus
we keep generating sample traces of the log until k ≤ n, where
n is the sample size. This procedure is described in Algorithm
2. Such a procedure is in fact a stopping rule for a sequence
of random variables Y1, Y2, Y3, . . ..

Algorithm 2 Generate a complete log with certain confidence
for a sound workflow net

1: L := L0, n := 0, k := 0
2: repeat
3: L := L ∪ {σ}, n := n+ 1
4: apply (7) to compute Ȳn(a, b)
5: apply (10) to compute k
6: until k ≤ n

If we use (8) instead of (10), then we substitute (10) by (8)
in line 5 of Algorithm 2.

We are interested in the quality of the stopping rule. We con-
sider (8) as an estimator for (4). For a fixed log size k we can
compute the expectation of the estimator

∑
a,b

(1− Ȳn(a, b))k,

where the summation is over Ȳn(a, b) > 0, by the following
formula (see (24) in Appendix),

Eπ[
∑
a,b

(1− δ(0, Ȳn(a, b)))(1− Ȳn(a, b))k]

=
∑
a,b

((1− qab)k − (1− qab)n) ≤
∑

{(a,b)|qab>0}

(1− qab)k.

(11)

Consequently, our estimator is biased: it overestimates the
confidence. However, when n→∞ the estimator is unbiased.



Fig. 1. A choice fragment

VI. PROBABILISTIC BOUND FOR A COMPLETE LOG OF
S-WORKFLOW NETS

In this section we consider S-workflow nets, and we deter-
mine a probabilistic lower bound for a log of an S-workflow
net to be complete. As S-workflow nets are sound workflow
nets (see Section III), we can use Algorithm 2 to determine the
probabilistic lower bound for the size of a complete log. With
a complete log, the α-algorithm can discover the generating
process. However, if we consider the structural properties of
S-workflow nets, we can better estimate the probabilistic lower
bounds for their complete logs.

Suppose we know the set of all transitions T in an S-
workflow net, and a lower bound ε > 0 for the probabilities
of making choices in the net, i.e., qt for t ∈ T . For instance,
in a choice fragment (Figure 1) of some S-workflow net, the
probabilities to choose transitions A, B, and C are qA, qB , and
qC , respectively, and we assume them all to be at least ε > 0.
Recall that in our probabilistic framework, any t (t ∈ T ) has
a weight determined by w(t) (see Section IV). We assume a
lower bound l and an upper bound u for these weights, and
assume an upper bound f for the fanouts p• over p ∈ P . We
derive that qt ≥ l

uf . Then we may choose ε = l
uf .

To ensure that the log is complete, we require any transition
in an S-workflow net to occur at least k times in the log. Then
the highest possible probability that a direct successor of a
transition t in the process does not occur in the log is (1−ε)k.
Let c : T → N be a function mapping every transitions to the
number of times it occurs in the log. For a confidence limit
α for the occurrence of an arbitrary pair of transitions in the
log, we obtain: (1− ε)k ≤ α, Consequently, we treat a log as
a complete log if all transitions occur at least k times in the
log. This procedure is described in Algorithm 3. Once the log
is complete, we can apply the α-algorithm to reconstruct the
generating net.

Algorithm 3 Generate a complete log for an S-workflow net
with a certain confidence

1: L := L0, ∀t ∈ T : c(t) = 0
2: while ∃t ∈ T : c(t) < k do
3: Generate next trace σ
4: L := L ∪ {σ}
5: if t ∈ σ then
6: c(t) := c(t) + 1
7: end if
8: end while

Fig. 2. An acyclic T-workflow net

VII. PROBABILISTIC BOUND OF A COMPLETE LOG FOR
ACYCLIC T-WORKFLOW NETS

In this section we propose a mining algorithm for acyclic
T-workflow nets. Given an acyclic T-workflow net N =
(P, T, F, i, f), we assume T to be known. We also make an
assumption on the upper bound for parallelism in N . Note that
|T | can always be taken as such a bound, but in most cases it
is far too large.

As introduced in section IV, we consider a log L =
〈σ1, σ2, . . . .σn〉 to be a sample from the probability space,
and Zi(a, b) = Z(σi)(a, b). We define for a, b ∈ T predicates

1) Q1(a, b) ≡ ∃i ∈ {1, 2, . . . , n} : Zi(a, b) ∈ {1, 2},
2) Q2(a, b) ≡ ∃i ∈ {1, 2, . . . , n} : Zi(a, b) ∈ {3, 4},
3) Q3(a, b) ≡ ∃i ∈ {1, 2, . . . , n} : Zi(a, b) = 2,
4) Q4(a, b) ≡ |{i ∈ {1, 2, . . . , n}|Zi(a, b) = 2}| ≥ l,

where Q2(a, b) = Q1(b, a), Q3(a, b) ⇔ a .L b, and l is a
parameter to be determined later in this section.

We introduce a notion of log completeness targeted at the
T-workflow nets:

Definition 9 (T-complete log). A log L of an acyclic T-
workflow net N is T-complete iff for all a, b ∈ T , a ‖ b implies
Q1(a, b)∧Q2(a, b), and a→ b implies Q3(a, b)∧¬Q2(a, b).

Note that a ‖ b and a → b hold for all possible traces, so
the subscript L in Definition 6 is omitted.

Lemma 1. Completeness implies T-completeness but not vice
versa.

Proof: Suppose L is a complete log for an acyclic T-
workflow net N . By Definition 7, we have . ⊆ .L. Since .L ⊆
., we have . = .L. Therefore, for all a, b ∈ T , we have a ‖
b⇔ a.b, b.a⇔ a.L b and b.La implies Q1(a, b)∧Q2(a, b).
Further note that a → b ⇔ a . b, ¬Q2(a, b) ⇔ a .L b, and
¬Q2(a, b) implies ⇒ Q3(a, b) ∧ ¬Q2(a, b). So completeness
implies T-completeness.

In order to show that the converse does not hold, consider
log L1 = {〈A,B,C,D,E, F 〉, 〈A,D,E,B,C, F 〉} and Fig-
ure 2. For T-completeness we need . ⊆ .L, which is not true,
since D . C does not hold on L1, nor does B . E.

Hence, T-completeness is a weaker condition than com-
pleteness, which in fact also follows from the equivalence
a . b ≡ (a ‖ b) ∨ (a→ b).

Given a T-complete log of a net N = (P, T, F, i, f), we
present an algorithm for mining process. The algorithm uses
the fact that two tasks are connected if and only if their



causality can be detected by inspecting the log. Note that we
drop the dependency on N in the notation. Recall that i and
j are the initial and final places, respectively, and we assume
that T is known.

Algorithm 4 Construct an acyclic T-workflow net from a fixed
T-complete log

1: P ′ := {i, f}, T ′ := T , F ′ := ∅
2: for all a ∈ T ′ do
3: if ¬∃t ∈ T ′ : Q1(t, a) then
4: F ′ := F ′ ∪ {(i, a)}
5: end if
6: if ¬∃r ∈ T ′ : Q1(a, r) then
7: F ′ := F ′ ∪ {(a, f)}
8: end if
9: end for

10: for all a, b ∈ T ′ do
11: if Q3(a, b) ∧ ¬Q2(a, b) then
12: F ′ := F ′ ∪ {(a, p), (p, b)}
13: P ′ := P ′ ∪ {p} (for a fresh p)
14: end if
15: end for
16: reconstructed net N ′ = (P ′, T ′, F ′, i, f)

The following theorem proves that Algorithm 4 is able
to reconstruct (up to bisimilarity) a generating net N ′ =
(P ′, T ′, F ′, i, f) out of a given T-complete log.

Theorem 3. Let L be a T-complete log for an acyclic T-
workflow net N . Then the net N ′ computed by Algorithm 4 is
bisimilar to N .

Proof: Clearly, a .L b can only hold either in the case of
a→ b or in the case of a ‖ b. By Theorem 1, a→ b implies
that there is a place between transitions a and b. The second
case is not possible due to step 4 of Algorithm 4. Therefore,
N ′ contains a place between transitions a and b iff a→ b.

Algorithm 4 can discover the exact process model from T-
complete logs. In most cases, however, we cannot be sure that
the log is T-complete. In Algorithm 5 we propose a strategy
for dealing with the logs that are possibly not T-complete:
there we only add a place between two transitions a and b if
we are certain enough that there is a causal relation between
the two event, namely, b never happens before a in the log and
a happens immediately before b enough times. Enough times
is the parameter l in Q4(a, b).

Algorithm 5 is able to reconstruct (up to bisimilarity) a
generating net N ′ = (P ′, T ′, F ′, i, f) out of a given log. Our
decisions in Algorithm 5, however, have a probabilistic nature
and can lead to two kinds of possible errors, false positives
and false negatives.

False positive is an error such that the log inspection leads
to the conclusion a → b, but in fact we have a ‖ b in the
underlying net. Note that if a is indirectly in front of b in the
net (some transition c lies in between), we can never conclude
a→ b, since we will never observe Zi(a, b) = 2 because of the

Algorithm 5 Construct an acyclic T-workflow net from a fixed
log

1: P ′ := {i, f}, T ′ := T , F ′ := ∅
2: for all a ∈ T ′ do
3: if ¬∃t ∈ T ′ : Q1(t, a) then
4: F ′ := F ′ ∪ {(i, a)}
5: end if
6: if ¬∃r ∈ T ′ : Q1(a, r) then
7: F ′ := F ′ ∪ {(a, f)}
8: end if
9: end for

10: for all a, b ∈ T ′ do
11: if ¬Q2(a, b) ∧Q4(a, b) then
12: F ′ := F ′ ∪ {(a, p), (p, b)}
13: P ′ := P ′ ∪ {p} (for a fresh p)
14: end if
15: end for
16: reconstructed net N ′ = (P ′, T ′, F ′, i, f)

firing of other transition(s) in between. Consequently, we only
have to consider the case of a ‖ b. The probability of a false
positive is Pa‖b[¬Q2(a, b)∧Q4(a, b)]. An upper bound for this
probability is (see (25) in Appendix for detailed derivation):

Pa‖b[¬Q2(a, b) ∧Q4(a, b)] ≤ 1
2l
. (12)

To ensure a confidence limit α, we require 1
2l ≤ α. Therefore,

l can be computed as follows:

l ≥ −2logα. (13)

With (13), we are able to determine the minimal number l
of occurrences of a . b in Q4(a, b) for Algorithm 5. For each
pair a→ b, the probability of false positive is limited by α.

Now, knowing a probabilistic bound for the false positive
for a specific pair of transitions (a, b), let us consider the set R
of all pairs of parallel transitions in the net, i.e. R = {(a, b) ∈
T × T | a ‖ b}. Note that we do not know R.

If the random variables Zn(a, b) and Zn(c, d), for n =
1, 2, 3, . . . and (a, b) 6= (c, d), are maximally dependent, then
the probability for one false positive is the same as the
probability for at least one false positive for the pairs of R.
The other extreme is that all random variables Zn(a, b) for
(a, b) ∈ R are independent. Then ¬Q2(a, b) ∧ Q4(a, b) are
independent events. This is the worst case as we have to
investigate all the pairs. In this case, the probability of having
at least one false positive can be derived using Lemma 2 (see
Appendix):

PR[∃(a, b) ∈ R : ¬Q2(a, b) ∧Q4(a, b)]

= 1− (1− Pa‖b[¬Q2(a, b) ∧Q4(a, b)])|R|. (14)

Based on (12), we derive

PR[∃(a, b) ∈ R : ¬Q2(a, b) ∧Q4(a, b)] ≤ 1− (1− 1
2l

)|R|.

(15)



To ensure confidence limit α, we let (15) ≤ α. Conse-
quently, we choose l as the smallest value such that

l ≥ −
2
log(1− (1− α)

1
|R| ). (16)

We have to provide an estimate for the number of independent
pairs in R. One option for such an estimate is the maximal
parallelism of the process (estimated by a e.g. business ana-
lyst).

False negatives manifest themselves when the log inspec-
tion results in Q1(a, b)∧¬Q4(a, b) and we conclude that a is
indirectly in front of b in the underlying net, while in reality we
have a→ b in the net. Note that given a→ b, we never observe
Q2(a, b) as b can never be fired before a. The probability for
a false negative is:

Pa→b[|{i|Zi(a, b) = 2}| < l]. (17)

Given a → b, we can only observe Q1(a, b) in the
log (with n traces), implying that either Zi(a, b) = 1 or
Zi(a, b) = 2. Hence, probability (17) has a binomial distribu-
tion B(n,Pa→b[Zi(a, b) = 2]). Let p be Pa→b[Zi(a, b) = 2],
then (17) becomes:

Pa→b[|{Zi(a, b) = 2}| < l] =
l−1∑
m=0

(
n
m

)
pm(1− p)n−m.

(18)

In order to simplify the calculation in practice, we use the
normal distribution for approximating (18). We obtain:

l−1∑
m=0

(
n
m

)
pm(1− p)n−m = P[X ≤ l − 1]

= P[
X − np√
np(1− p)

≤ l − 1− np√
np(1− p)

]

≈ P[U ≤ l − 1− np√
np(1− p)

].

(19)

Let U have a standard normal distribution with zero mean and
unit variance, such that U ∼ N(0, 1). We require the proba-
bility P[U ≤ l−1−np√

np(1−p)
] ≤ 0.05. From the table of cumulative

standard normal distribution [15], we get P(U ≤ −1.64) =
0.05. Then we have l−1−np√

np(1−p)
= −1.64. Consequently, we

can compute n as follows.

n =
l + 0.3448− 1.3448p

p

+
0.82

√
2.6896p2 − (1.3792 + 4l)p+ 4l − 1.3104

p
(20)

If p decreases, then n increases accordingly.
Note that the structural properties of the net greatly influ-

ence the size of a log that is complete with a given confidence.
Here we only consider two extreme patterns:

Fig. 3. Pattern 1

Fig. 4. Pattern 2

Pattern 1. Figure 3 shows an acyclic T-workflow net
with k transitions. Initial transition A has k − 2 successors
(A → B). Suppose that when A fires, each of the k − 2
enabled transitions can be fired with the probability of 1

k−2 .
Consequently, PA→B [Zi(A,B) = 2] = 1

k−2 . We can estimate
the log size n using formula (20). For example, if l = 10 and
k = 30, then n ≈ 430. This implies that statistically we need
just 430 traces in the log to guarantee with the 95% probability
that the discovered model is the one that has generated the log.

Pattern 2. Figure 4 shows another acyclic T-workflow
net with k transitions. There are two parallel branches, one
with k − 3 transitions, the other one with just one transition
(transition A). To discover the exact process model, we need to
observe transition A immediately before the final transition B.
As transition A has to be fired after all the k−3 transitions of
the parallel branch, we derive PA→B [Zi(A,B) = 2] = 1

2

k−3.
We use (20) to estimate log size n. For instance, for l = 10 and
k = 30, then n ≈ 2.07×109. This implies that statistically we
need 2.07×109 traces in a log to guarantee with the confidence
of 95% that the discovered model is the one that has generated
the log.

We have introduced Algorithm 4 and Algorithm 5 to re-
construct an acyclic T-workflow net from a fixed log (i.e.,
no more new traces are added to the log). Now we consider
dynamic situations, when new traces may be added to a log
until for all pairs a, b ∈ T one of the following conditions
holds: 1) Q1(a, b) ∧ Q2(a, b), 2) ¬Q2(a, b) ∧ ¬Q3(a, b), 3)
¬Q2(a, b) ∧ Q4(a, b). Only with this information, we can
decide what kind of relation we have between transitions a and
b. We can conclude a ‖L b (even a ‖ b) from condition 1), and
a→L b from condition 3). Algorithm 6 generates T-complete
logs for acyclic T-workflow nets in dynamic situations.

Note that in Algorithm 6, we start with a non-empty log, σ is
a new trace, and the condition in the while loop is the negation
of the disjunction of the three aforementioned conditions
(i.e., ¬((Q1(a, b) ∧ Q2(a, b)) ∨ (¬Q2(a, b) ∧ ¬Q3(a, b)) ∨



Algorithm 6 Generate a T-complete log for an acyclic T-
workflow net with certain confidence

1: L := L0 6= ∅
2: while ∃a, b ∈ T : (Q2(a, b) ∧ ¬Q1(a, b)) ∨ (¬Q2(a, b) ∧
Q3(a, b) ∧ ¬Q4(a, b)) do

3: Generate next trace σ
4: L := L ∪ {σ}
5: end while

(¬Q2(a, b) ∧ Q4(a, b)))). The loop terminates when one of
the three conditions holds. Once a T-complete log has been
generated, we can apply Algorithm 5 to reconstruct the gen-
erating net.

VIII. EMPIRICAL RESULTS

In order to evaluate the quality of our probabilistic bounds
for log completeness empirically, we developed a software tool
to generate a random benchmark set of workflow nets. Then
we randomly generate a number of logs for every workflow
net. Note that all traces are independent random variables and
we are able to check for an arbitrary log whether this log is
complete since we know the generating workflow net. Due
to the limited space, we only show part of the results in this
paper.

A. Bounds for sound workflow nets

First, we focus on the probabilistic bounds for log complete-
ness obtained using Algorithm 2 both with formula (8) and
with formula (10). We generate structured Jackson nets [11],
which form a subset of sound workflow nets. We generated
100 structured Jackson nets, each with 30 transitions. We let
α = 2.5%. For each of the nets we generated 100 logs. In
order to compare the bounds computed using (8) and (10),
each log was generated in the following way: By Algorithm
2, we started with an empty log, and generated traces for the
log. After adding a new trace, we used both (8) and (10) to
check on-the-fly whether we could stop the log generation. If
one formula told us to stop, then we collected the statistics
of interest and continued generating traces until the second
formula told us to stop as well. Then we collected the statistics
again and stopped generating the log. Note that in some cases
the log generation stops before we have a complete log (we
do not provide 100% guarantee of log completeness), while
in other cases the generation still continues when we already
have a complete log, since we do not have enough confidence
in the log completeness yet. In the latter case we keep the
information about the minimal length of the complete log to
analyze the degree of redundancy we have on average with
our method.

For every generated net Ni and every generated complete
log lij (i.e., the jth generated complete log of Ni), where
i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, and k = m = 100 in this
experiment, we have the following test statistics:
• Number of causal pairs (Ci): the total number of causal

pairs in net Ni,

• Log size (Lij): the size of the log lij generated by
Algorithm 2 with either formula (8) or formula (10),

• Reliability (Rij): 1 when Lij is complete, and 0 when
not,

• Trace difference (Dij): Dij is the ratio of the size of the
minimal complete log forming a prefix of lij to the size
of lij .

• Missing pairs (Mij): if lij is not complete, then Mij is
the ratio of the number of causal pairs which are not
covered by lij to the number Ci of causal pairs.

• Log size for 80% of causal pairs (Eij): the ratio of the
number of traces in the minimal prefix of lij which covers
any 80% of all causal pairs to Lij .

For each net Ni, we take the average Ri, Li, Di,Mi, Ei over

Rij , Lij , Dij ,Mij , Eij , respectively, i.e., Ri = 1
m

m∑
j=1

Rij , etc.

The empirical outcomes for (8) and (10) are listed in Table
I and Table II, respectively. In both cases we used the same
benchmark of workflow nets. The main conclusions we can
extract are as follows.

The use of (10) instead of (8) in Algorithm 2 results in a
more reliable probabilistic bound. For each net, the value of
R in Table I is never above the one in Table II. The average R
is increased from 0.93 (by using (8)) to 0.96 (by using (10)).
Naturally, Algorithm 2 with (10) always results in a larger log
than using (8).

For complete logs generated by Algorithm 2 with (8), on
average all causal pairs are covered by the first 37% of all of
the traces in this log. The rest of the traces in the log do not
contribute any more in terms of completeness. For Algorithm
2 with (10), this percentage is 31%.

For incomplete logs (i.e., logs not covering all causal pairs)
generated by Algorithm 2 with (8), on average, 20% of all of
the causal pairs are missing in the log. For Algorithm 2 with
(10), this percentage is decreased to 15%.

Finally, in order to cover a majority (80%) of all causal
pairs in a net, on average we need just the first 11% of a
log generated by Algorithm 2 using (8). For Algorithm 2 with
(10), this percentage is 9%.

B. Bounds for S-workflow nets

In the next experiment we focus on the probabilistic bounds
for log completeness obtained for S-workflow nets with Al-
gorithm 3. We generated 100 S-workflow nets, each with 50
transitions. Note that S-workflow nets are always sound. We
take α = 5%, and for each of the generated nets we generate
100 logs using Algorithm 3. We use the same test statistics
in Subsection VIII-A, but we naturally change the definition
of Log size (Lij) to the size of the complete log generated by
Algorithm 3. Table III presents the empirical outcomes.

The average of R is 0.96. This implies that for an S-
workflow net Algorithm results in 96 complete logs out of
100 logs, on average. In a complete log, on average the first
44% (the average of D) of all of the traces in this log cover
all causal pairs, and the rest of the log does not contribute



TABLE I
EMPIRICAL RESULTS FOR 100 STRUCTURED JACKSON NETS BY ALGORITHM 2 WITH FORMULA (8)

Reliability Log Size Trace Difference Missing Pairs Log Size for
Number of (R) (L) (D) (M ) 80% Causal Pairs (E)

Causal Pairs (C) Mean Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
1 49 0.97 152 50 0.40 0.15 0.3265 0.4329 0.10 0.08
2 382 1 1583 291 0.44 0.12 0 0 0.06 0.01
3 44 1 38 13 0.40 0.18 0 0 0.13 0.08
4 66 0.69 127 70 0.27 0.14 0.0161 0.0054 0.07 0.04
5 58 0.73 190 110 0.28 0.14 0.0217 0.0111 0.05 0.03
6 103 0.92 2246 834 0.41 0.14 0.9903 0 0.08 0.01
7 41 0.91 176 71 0.38 0.15 0.9756 0 0.22 0.07
8 54 0.95 233 60 0.40 0.13 0.7333 0.3575 0.23 0.08
9 94 0.91 865 301 0.35 0.16 0.0130 0.0044 0.03 0.01
10 89 0.98 879 168 0.42 0.16 0.0112 0 0.06 0.02
...

...
...

...
...

...
...

...
...

...
...

100 148 0.99 3047 621 0.42 0.14 0.0068 0 0.07 0.02
Avg. 84 0.93 920 321 0.37 0.15 0.2042 0.0686 0.11 0.04

TABLE II
EMPIRICAL RESULTS FOR 100 STRUCTURED JACKSON NETS BY ALGORITHM 2 WITH FORMULA (10)

Reliability Log Size Trace Difference Missing Pairs Log Size for
Number of (R) (L) (D) (M ) 80% Causal Pairs (E)

Causal Pairs (C) Mean Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
1 49 0.99 184 50 0.33 0.14 0.0204 0 0.08 0.05
2 382 1 1828 246 0.38 0.10 0 0 0.05 0.01
3 44 1 47 13 0.33 0.16 0 0 0.11 0.06
4 66 0.77 178 91 0.22 0.12 0.0152 0 0.05 0.03
5 58 0.77 261 140 0.22 0.12 0.0202 0.0097 0.03 0.02
6 103 0.97 2839 723 0.34 0.12 0.9903 0 0.07 0.03
7 41 0.97 226 62 0.31 0.13 0.9756 0 0.17 0.05
8 54 0.97 282 64 0.34 0.12 0.9136 0.0087 0.19 0.06
9 94 0.98 1090 311 0.31 0.16 0.0106 0 0.02 0.01
10 89 0.98 1065 194 0.35 0.14 0.0112 0 0.05 0.02
...

...
...

...
...

...
...

...
...

...
...

100 148 0.99 3625 593 0.35 0.12 0.0068 0 0.06 0.02
Avg. 84 0.96 1148 336 0.31 0.13 0.1519 0.0290 0.09 0.03

TABLE III
EMPIRICAL RESULTS FOR 100 S-WORKFLOW NETS BY ALGORITHM 3

Reliability Log Size Trace Difference Missing Pairs Log Size for
Number of (R) (L) (D) (M ) 80% Causal Pairs(E)

Causal Pairs (C) Mean Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
1 81 1 1022 258 0.33 0.16 0 0 0.05 0.01
2 137 0.92 417 107 0.62 0.19 0.0082 0.0024 0.09 0.02
3 128 0.86 179 25 0.66 0.15 0.0078 0 0.14 0.04
4 135 0.97 380 61 0.43 0.16 0.0074 0 0.08 0.02
5 86 0.86 263 56 0.55 0.22 0.0116 0 0.07 0.02
6 84 1 671 126 0.25 0.1 0 0 0.04 0.01
7 95 1 1833 383 0.26 0.12 0 0 0.04 0.01
8 91 0.98 1163 214 0.49 0.19 0.011 0 0.06 0.02
9 88 1 276 54 0.44 0.15 0 0 0.1 0.03

10 136 0.82 577 71 0.72 0.13 0.0086 0.0027 0.17 0.03
...

...
...

...
...

...
...

...
...

...
...

100 106 1 853 156 0.30 0.14 0 0 0.04 0.01
Avg. 95 0.96 847 153 0.44 0.16 0.0098 0.0004 0.07 0.02



anymore in terms of log completeness. For an incomplete log,
on average just 1 causal pair (the average of M ) is missing in
the log. On average, the first 7% of all of the traces in a log
cover a majority (80%) of all causal pairs in a net. Therefore,
we conclude that the probabilistic bound for log completeness
given by Algorithm 3 has a good quality.

We compared the results obtained for the S-nets using
Algorithm 2 and using Algorithm 3. Algorithm 2 required
the construction of logs that were on average 20% longer
than Algorithm 3. Note that with algorithm 3 we achieve
the targeted reliability of 0.95—it is 0.96 on average on our
benchmark. Thus we succeeded in improving the probabilistic
bound for the log size, taking into account the net structure
indeed.

C. Bounds for acyclic T-workflow nets

In the last experiment, we concentrate on the probabilistic
bound obtained with Algorithm 6 for acyclic T-workflow
nets. We generated 100 acyclic T-workflow nets, each with
30 transitions. We take l = 10. We generate 100 logs
by Algorithm 6 for each of the generated nets. For every
generated net Ni and every generated T-complete log lij ,
where i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, and k = m = 100
in this experiment, we have the following test statistics:
• Number of direct successor pairs (Si): the total number of

pairs of transitions that have the direct successor relation
(Definition 6) in Ni,

• Log size (Lij): the log size for lij computed with
Algorithm 6,

• False positive (Aij): the number of pairs of transitions
that do not have direct successor relation in reality the
net but considered to have direct successor relation in lij
by Algorithm 6,

• False negative (Bij): the number of pairs of transitions
that do have direct successor relation in the net but
considered not to have it in lij by Algorithm 6,

• Reliability (Rij): whether or not lij covers exactly the
direct successor pairs of Ni, i.e. it is both false positive
free and false negative free.

For each net Ni, we compute the averages Ri, Li, Ai, Bi of

Rij , Lij , Aij , Bij over j, respectively, i.e., Ri = 1
m

m∑
j=1

Rij ,

etc.
The empirical outcomes are shown in Table IV. The average

result of R is 0.93, which is above 0.90 we aimed at in this
series of experiments. The average result of A (0.016) is much
smaller than the average result of B (1.166). This implies that
if a log generated by Algorithm 6 is not complete, then it is
much more likely that the log misses some direct successor
pairs (a false negative) than that that we erroneously diagnose
pairs as being in the direct successor relation (a false positive).

We compared the results obtained for the T-nets using
Algorithm 2 and by Algorithm 5. Algorithm 2 required the
construction of logs that were on average 6 times longer than
Algorithm 5. Note that with algorithm 5 we achieved the

targeted reliability (and even overperformed it) on average.
Thus taking into account the information about the structure of
T-workflow nets significantly improves the probabilistic bound
for the log size.

We also observe a number of outliers with respect to the
Reliability (R). Consider the 9th net in Table IV as such an
example. For this net only 52 of the 100 generated logs are
complete, and in every of the 48 incomplete logs there is
exactly one direct successor pair missing. By inspecting the
net, we found a variant of Pattern 2 for false negative (see
Section VII). Figure 5 shows a part of net 9 and highlights
this pattern in a black rectangle. As l is 10 and there are
13 transitions in this highlighted subset, from (20) we get
n ≈ 15812. This implies that in theory we need a log with a
minimal size of 15812 to determine t29 → t23. On the other
hand, our empirical results show that on average the log size
for net 9 is 7962 (standard deviation is 7707). Our assumptions
for this net are thus overoptimistic. Consequently, t29 → t23

cannot be determined from many logs, resulting in incomplete
logs. The same pattern was observed in all other outliers.

Interestingly, this pattern reflects the situation that can also
be observed in real life. When one of the parallel branches
is shorter then the other(s) (possibly not in the terms of the
number of transitions but in the sense of execution time), the
probability to observe the pair of type (A,B) (see Figure 4) is
extremely low, or even 0 (when a timed process is considered).

IX. RELATED WORKS

In [5], a finite state machine method, a neural network
method, and a Markov approach were proposed for process
discovery in case of software engineering processes. These
methods concentrated on sequential processes. The methods
were extended in [6] to detect concurrent processes by a
number of specific metrics, i.e., event type counts, periodicity
and causality. In [13] and [12], a hidden Markov model was
employed in the context of workflow management, in the case
of sequential processes and concurrent processes, respectively.
In the works aforementioned, the focus was on identifying the
dependency relations between events.

It is obvious that the mining algorithms proposed in this
paper are adopted from control-flow mining algorithms, i.e.,
Alpha algorithm. In [14] a method for genetic process mining
was proposed. Such a process mining algorithm is capable of
discovering all common control-flow structures (i.e. sequences,
choices, parallelism, loops, non-free-choices, invisible tasks,
and duplicate tasks as well) while being robust to noisy logs.
This method, however, has more difficulties to mine models
with constructs that allow for many interleaving situations.
These two algorithms both assume the event log is complete.

In [17] and [10], a heuristic mining approach and a fuzzy
mining approach were proposed, respectively. They both em-
ploys heuristics to limit the set of precedence relations in-
cluded in a model. The heuristic miner is a practical applicable
mining algorithm that can handle noise. It includes three
steps: construction of dependency graph, construction of input
and output expressions for each activity, and search for long



TABLE IV
EMPIRICAL RESULTS FOR 100 ACYCLIC T-WORKFLOW NETS BY ALGORITHM 6

Reliability Log Size False Positive False Negative
Number of (R) (L) (A) (B)

Direct Successor Pairs (S) Mean Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
1 35 0.98 1803 684 0 0 1.5 0.5
2 36 0.99 2201 645 0 0 2 0
3 36 0.94 4878 2544 0 0 1 0
4 37 1 9589 4243 0 0 0 0
5 38 1 2514 2360 0 0 0 0
6 37 1 3067 1004 0 0 0 0
7 37 0.99 1862 1280 0 0 1 0
8 34 0.99 845 403 0 0 1 0
9 32 0.52 7962 7707 0 0 1 0

10 37 0.97 14925 5160 0.33 0.47 1.33 0.47
...

...
...

...
...

...
...

...
...

100 37 0.86 4333 2085 0 0 1 0
Avg. 35 0.93 11648 6521 0.016 0.0185 1.166 0.0788

Fig. 5. Part of net 9 resulting in low reliability

distance dependency relations. The fuzzy miner assumes that
problems in mining large scale processes are caused by mis-
match between fundamental assumptions of traditional process
mining and the characteristics of real-life processes. In this
approach, the authors developed an adaptive simplification and
visualization technique for process models, which is based on
two metrics, significance and correlation. The two metrics are
similar to the concept of data clustering domain where a binary
distance metric is inferred to find related subsets of attributes.
Significance can be determined both for tasks and precedence
relations over them. It measures the relative importance of
behaviour. As such, it specifies the level of interest in tasks
and their control dependency. Correlation is only relevant
for precedence relations over tasks, which measures how
closely related two events following one another. The heuristic
miner and the fuzzy miner only express the main behaviours
registered in an event log. They lose absolute precision and
cannot describe the complete behaviours.

X. CONCLUSION

In this paper, we address the problem of log completeness
in the context of process mining. Our method give a prob-
abilistic bound of log completeness, also implying the same
probabilistic bound that the model discovered on the process
log is an exact representation of the process that has generated
this log. We considered three classes of nets: sound structured
workflow nets, S-workflow nets, and T-workflow nets. While
for the first two classes we use the α-algorithm for model
discovery, we propose a new algorithm for the discovery of

T-workflow nets. In our empirical studies, we showed that our
method provides the promised quality of model discovery.

In the future we plan to find patterns of “dangerous” net
structures (like our Pattern 2) that would allow us to improve
the probabilistic bounds for the subclasses that currently mani-
fest themselves as outliers. We are also interested in “positive”
patterns, which would allow us to lower the probabilistic
bounds for nets matching these patterns, since our probabilistic
bound can clearly be further lowered for some classes of
nets. We also want to investigate the applicability of Bayesian
methods for the log completeness problem
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APPENDIX

In this final part we present a lemma and detailed derivation of (3), (11),
(12) in this paper.

Lemma 2. P[∃i ∈ {1, 2, . . . , n} : Ai] = 1− (1− P[Ai])
n, where Ai are

independent events.

Proof:

P[∃i ∈ {1, . . . , n} : Ai] = 1− P[∀i ∈ {1, . . . , n} : ¬Ai]

= 1−
n∏
i=1

P[¬Ai] = 1− (1− P[Ai])
n

Formulae (21), (22), and (23) derive (3).

Y n = f(π)

≡ ∀a, b : f(π)(a, b) = 0⇒ Y n(a, b) = 0

∧ ∀a, b : Y n(a, b) = 0⇒ f(π)(a, b) = 0

≡ ∀a, b : Y n(a, b) = 0⇒ f(π)(a, b) = 0

≡ ¬(¬∀a, b : Y n(a, b) = 0⇒ f(π)(a, b) = 0)

≡ ¬(∃a, b : ¬(Y n(a, b) = 1 ∨ f(π)(a, b) = 0))

≡ ¬(∃a, b : Y n(a, b) = 0 ∧ f(π)(a, b) = 1) (21)

Pπ [Y n = f(π)]

= Pπ [¬(∃a, b : Y n(a, b) = 0 ∧ f(π)(a, b) = 1)]

= 1− Pπ [∃a, b : Y n(a, b) = 0 ∧ f(π)(a, b) = 1]

≥ 1−
∑
a,b

Pπ [Y n(a, b) = 0 ∧ f(π)(a, b) = 1] (22)

Pπ [Y n(a, b) = 0 ∧ f(π)(a, b) = 1]

=

{
Pπ [Y n(a, b) = 0] if π with f(π)(a, b) = 1

0 if π with f(π)(a, b) = 0

=


n∏
k=1

Pπ [Yk(a, b) = 0] if f(π)(a, b) = 1

0 otherwise

=

{
(1− qab)n if qab > 0

0 otherwise
(23)

Formula (24) derives (11).

Eπ [
∑
a,b

(1− δ(0, Ȳn(a, b)))(1− Ȳn(a, b))k]

=
∑
a,b

(Eπ [(1− Ȳn(a, b))k]− Eπ [δ(0, Ȳn(a, b))(1− Ȳn(a, b))k])

=
∑
a,b

(Eπ [(1− Ȳn(a, b))k]− Pπ [Ȳn(a, b) = 0])

(due to Jensen’s inequality, we derive)

≥
∑
a,b

((1− Eπ [Ȳn(a, b)])k − Pπ [Ȳn(a, b) = 0])

=
∑
a,b

((1− qab)k − Pπ [

n⋂
l=1

Yn(a, b) = 0])

=
∑
a,b

((1− qab)k − (1− qab)n) ≤
∑

{(a,b)|qab>0}
(1− qab)k (24)

Formula (25) derives (12).

Pa‖b[¬Q2(a, b) ∧Q4(a, b)]

= Pa‖b[|{i|Zi(a, b) ∈ {3, 4}}| = 0 ∧ |{i|Zi(a, b) = 2}| ≥ l]
≤ Pa‖b[|{i|Zi(a, b) = 4}| = 0 ∧ |{i|Zi(a, b) = 2}| ≥ l]

=

n∑
m=l

Pa‖b[|{i|Zi(a, b) = 4}| = 0 ∧ |{i|Zi(a, b) = 2}| = m]

=

n∑
m=l

Pa‖b[|{i|Zi(a, b) = 4}| = 0 ∧ |{i|Zi(a, b) ∈ {2, 4}}| = m]

=
n∑

m=l

Pa‖b[|{i|Zi(a, b) = 4}| = 0||{i|Zi(a, b) ∈ {2, 4}}| = m]

× Pa‖b[|{i|Zi(a, b) ∈ {2, 4}}| = m])

=

n∑
m=l

1

2m
Pa‖b[|{i|Zi(a, b) ∈ {2, 4}}| = m]

≤
1

2l

n∑
m=l

Pa‖b[|{i|Zi(a, b) ∈ {2, 4}}| = m] =
1

2l
(25)

Note that we assume in an acyclic T-workflow net, choices of all the
enabled transitions are made with equal probabilities. Therefore, a and b are
simultaneously enabled if Zi(a, b) = {3, 4}, and one transition is chosen
with probability 1

2
.


