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Abstract

The dynamics of quantum Brownian particles in a cosine periodic potential
are studied using the phase space formalism associated with the Wigner
representation of quantum mechanics. Various kinetic phase space master
equation models describing quantum Brownian motion in a potential are
compared by evaluating the dynamic structure factor and escape rate from
the differential recurrence relations generated by the models. The numerical
solution is accomplished via matrix continued fractions in the manner
customarily used for the classical Fokker—Planck equation. The results of
numerical calculations of the escape rate from a well of the cosine potential are
compared with those given analytically by the quantum-mechanical reaction
rate theory solution of the Kramers turnover problem for a periodic potential,
given by Georgievskii and Pollak (1994 Phys. Rev. E 49 5098), enabling one
to appraise each model.

PACS numbers: 05.40.—a, 03.65.Yz, 82.20.—w

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum dissipation, in particular quantum Brownian motion, poses one of the most
interesting and topical problems in the quantum mechanics of open systems, especially in
the study of the passage to the classical limit, prompting inter alia the development of diverse
methods for the theoretical treatment of the dynamics of quantum dissipative processes. These
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include representations in terms of the reduced density matrix [1-5], path integrals [2] and
master equations in phase space [6, 7]. Now, in the phase space or Wigner representation
(also known as the Moyal quantization [8]), the translational quantum Brownian motion
can be formulated in terms of a quasi-probability density W (x, p,t) in the phase space of
the positions and momenta (x, p). This representation, originally devised by Wigner [9] for
closed systems in order to obtain quantum corrections to the Maxwell-Boltzmann distribution,
contains only such features that are common to both quantum and classical statistical mechanics
and formally represents (as emphasized by Moyal) quantum mechanics as a statistical theory
on the classical phase space [8]. Therefore, it is especially suited to semiclassical methods of
solution, providing a natural quantum—classical correspondence, since in the classical limit
h — 0 (h is Planck’s reduced constant), the Wigner function becomes the classical phase
space distribution function.

As far as the description of the closed system is concerned, the quantum master equation
for the distribution function W (x, p, t) has the form

3 R
W+ My W =0. (1

Here, the operator My is the evolution operator for the closed system (which is the quantum

analog of the classical Liouville operator) defined by

9 pow 9V oW Z (ih/2)Y 9>+ g2+l
= @2r+1)! A2+l gprr+l”

Equation (1) is known as the Wigner—Moyal equation and applies to the non-dissipative closed
system dynamics of both pure and mixed states. Clearly, quantum effects arise from the terms
containing h. The stationary solution of equation (1) is the equilibrium Wigner distribution
Wo(x, p), which satisfies MWWQ =0.

Now, in order to treat the dynamics of quantum dissipative processes, i.e. open systems,
in particular quantum effects in the Brownian motion, Caldeira and Leggett [2] used the
influence functional (or real-time path integral) method of Feynman and Vernon [10] to obtain
an evolution equation for the relevant reduced density matrix p. The model for the dissipative
interaction of a particle with its surroundings consists of a continuum of harmonic oscillators,
comprising a boson bath, where a specific form (namely one ensuring Markov behavior so
that a master equation description is possible) for the product of the density of bath modes
and the square of the coupling coefficient is assumed. The resulting evolution equation for
p is valid in the weak-coupling and high-temperature limit and is obtained by tracing over
the bath variables. Furthermore, it may be transformed to the phase space representation via
the overlap integral definition of the Wigner function W (x, p, t), resulting in the phase space
evolution equation

ow - . d m oW

—+MWW=y—[pW~I-— —:| 3)

ot ap
Here B = 1/(kgT), where kgT is the thermal energy and y is a damping parameter (measure
of the strength of the coupling to the bath). Equation (3) is simply the master equation
for the closed system augmented by the classical collision kernel of Brownian motion. We
remark that if only the lowest order quantum term in MW is considered, equation (3) is often
referred to as the semiclassical version of the Klein—Kramers equation. The Wigner function
approach has resulted in a large body of work [11-20], where the main objective has been to
study semiclassical corrections to the theory of the Brownian motion by forming the master
equation

2)

d N N
EW + MyW = MpW. 4
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Here, the operator M), accounts for effects due to the coupling to the environment (dissipation
and fluctuations) and, as one would expect for an almost classical system [21, 22], has the
form of a Kramers—Moyal expansion truncated at the second term:

A a aw oW a oW
MDW = a_p |:DppW +DI’P§ +Dp\§:| + 5 |:Dxx¥1| . (5)
The coefficients D, D,,, Dpc and D,, are coordinate, momentum and time-dependent
parameters which are to be determined. In the classical limit z — 0, equation (4) reduces
to the Klein—Kramers (Fokker—Planck) equation [23, 24] for the joint distribution function,
which now becomes a true probability distribution of positions and momenta of point particles

with separable and additive Hamiltonians, so that the Kramers—Moyal coefficients are
D, =y, D,, =ym/B, D, =0, D, =0.

The main advantage of the phase space approach now becomes apparent, namely it provides
a master equation that may be solved using the methods [18, 23, 24] associated with the
classical theory of the Brownian motion in a potential, allowing one [14, 16] to study the
quantum—classical correspondence for dissipative systems.

Now, an essential requirement for a density matrix p is that it must be positive definitive.
Thus, when the density operator is represented in a Hilbert space basis set and brought into
diagonal form, its eigenvalues must be positive [11]. In other words, when the operator is
transformed to the position representation, it must represent the correct quantum-mechanical
probability for the displacements. However, as is well known [6], solutions of the reduced
density operator version of the Caldeira—Leggett equation (3) are not guaranteed to preserve
this property during time evolution, even if they commence in this way. Such behavior is in
contrast to that of quantum master equations for the density matrix evolution, which can be
expressed in the so-called Lindblad form [25]. These have time-dependent solutions which
always remain positive. Thus, in order to ensure positivity of the solutions of the reduced
density operator evolution equation at all times, Di6si [3, 4] included two additional smoothing
terms in the Caldeira—Leggett equation (see equation (9) below). A particular simplification of
Diési’s equation leads to the density matrix evolution equation of Vacchini [5], and Vacchini
and Hornberger [26]. In particular, in [26] it has been shown how Vacchini’s equation may be
obtained as the diffusion limit of a quantum linear Boltzmann equation, while other questions
concerning the derivation of the various master equations and their complete positivity have
been discussed in detail in [26].

Yet another form of the master equation for the quantum Brownian motion of a particle in
a potential V' (x) has been proposed by Coffey er al [14—16]. In order to determine the explicit
form of the coefficients D, Dpp, Dpy, Dy, in equation (5), they used Wigner’s equilibrium
distribution Wy (x, p). The distribution Wy (x, p) satisfies Wigner’s equation (1). On the other
hand, Wy(x, p) must also be the equilibrium solution of the generic master equation (5),
i.e. it must also satisfy MpW,y = 0. The imposition of the (canonical) Wigner phase space
distribution W (x, p) as the equilibrium solution of the master equation (5) by them appears
to be the exact analog of the ansatz of a Maxwell-Boltzmann stationary distribution in
order to calculate diffusion coefficients in the Fokker—Planck equation of the classical theory
of the Brownian motion [24]. In other words, the condition MpW, = 0 is entirely equivalent to
the condition St(Wj) = 0 of classical kinetic theory, where St (W) is the collision kernel and
Wo(x, p) ~ exp[—B(p?/2m+V (x))] is the equilibrium distribution function. Here, W (x, p, t)
is the phase space distribution obeying the kinetic equation

oW aWw oV oW
W DWW
ot m 0x dx dp
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In particular, this condition is satisfied for the Klein—Kramers equation, where St(W) =
Yo, [pW + (m/ ﬂ)BPW]. In the quantum case, this idea has been used before, e.g. by Gross
and Lebowitz [27] in their formulation of quantum kinetic models of impulsive collisions.
According to [27], for a system with a time-dependent Hamiltonian H, the equation governing
the time behavior of the density matrix p is

ap i

5 7 el =5t(), ©)

where St(p) is the collision kernel operator satisfying the condition St(py) = 0, po =
e PHo /Tr(e=PH0) is the equilibrium density matrix and Hy is the time-independent Hamiltonian.
The distribution Wy (x, p) corresponds to the canonical density matrix py.

Recalling that the phase space evolution equation is simply the Fourier transform of the
density matrix evolution equation written in overlap form as given by Wigner [9], it is then
possible to compare the predictions of each particular evolution equation. As far as such a
comparison is concerned, one should also refer to another class of kinetic models, namely
extended diffusion models, long familiar in the kinetic theory of gases and fluids [27-29]. In
contrast to models based on a Brownian motion Stosszahlansatz, it is assumed in extended
diffusion that a particle moves freely in space until interrupted by instantaneous collisions. In
other words, the duration of a collision is assumed to be much smaller than the average time
between collisions. The impact approximation (i.e. the infinitesimal duration of collisions)
and free motion of particles between collisions are features common to all extended diffusion
models. The collisions take place at random times governed by a Poisson distribution and they
randomize both the position and momentum of a particle. Extended diffusion models have been
successfully used to interpret experimental spectra of both classical and quantum systems [30].
However, a drawback associated with them is the ad hoc introduction of a phenomenological
parameter, namely the time between collisions. Nevertheless, if this parameter is known or
can be calculated from an independent approach, such simple kinetic models may yield a
reasonable description of the quantum dissipative process in the semiclassical limit.

Here, in order to appraise the various models, we compare the dynamical structure factor
and escape rate evaluated from the modified Caldeira—Leggett equations proposed by Didsi
[3, 4], Vacchini [5], Coffey et al [14—17] and the Lorentz model (a particular case of the
extended diffusion models) [27-30]. The comparisons will be made in the Wigner—Moyal
phase space representation by considering a particle moving in the periodic potential [15, 16]

V(x) = =Vpcos(x/xp), @)
where x is the position of the particle and xj is a characteristic length. Both the classical and the
quantum Brownian motion in this potential have been used, for example, to model the diffusion
in solids, pre-melting materials, films and surfaces [31-33]. Here, we shall compare the results
for the escape rate for the various models (as adapted to periodic potentials) with those yielded
by generalizing the classical solution of the Kramers turnover problem, i.e. the calculation of
the escape rate for all values of the dissipation to include quantum effects as accomplished
by Mel’nikov [34, 35], Pollak et al [36] and Rips and Pollak [37]. Regarding escape from a
cosine periodic potential, Georgievskii and Pollak [38] have obtained the quantum escape rate
above the crossover temperature between tunneling and thermal activation. The escape rate
from a single well of a periodic potential like equation (7), where the period of the potential
coincides with the domain of a well, is qualitatively different from the escape rate from a
metastable well because the periodic potential is multistable. Thus a particle, once it has
escaped a particular well, may again be trapped due to thermal fluctuations in another well.
Moreover, jumps of either a single lattice spacing or of many lattice spacings are possible.
Thus from a mathematical point of view one has to take into account the nonperiodic solution
of the various master equations.

4
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2. Quantum master equation in phase space

Wigner’s representation of quantum mechanics can be formally defined [8, 39] as a means
of associating a c-number (or classically meaningful) function in the classical phase space of
positions x and momenta p with every operator that is a function of position and momentum
operators (X, p) in a Hilbert space. It is in effect the inverse of Weyl’s rule [8, 39], which is
used to interpret quantum-mechanical operators in terms of their classical equivalents. The
Wigner phase space distribution W (x, p, t), which is real but not everywhere positive (i.e. it may
exhibit [11] negative basins) so that it must be regarded as a joint quasi-probability distribution,
allows one to calculate quantum-mechanical expectation values using the concepts of classical
statistical mechanics. Moreover, notwithstanding that it is a quasi-probability distribution, it
yields the correct marginal distributions for position and momentum. Wigner [9, 11, 39-41],
by first introducing a density matrix for a pure state p (x,, x;) = ¥*(x;)v¥ (x2) and the overlap
coordinates x = (x; +x)/2 and y = x, — x1, inferred that the Wigner function can be written
as
1

1 % 1 .
w )= — —y, x— =y | e /gy, 8
(x, p, 1) 2nh/wp<x4r2y,x 2y> e y ®)

Equation (8) is simply the Fourier transform or overlap integral (we note that at y = 0,
the overlap is just the familiar quantum-mechanical probability density function) of the
spatial correlation function ¥*(x — y/2)¥ (x + y/2). It is also valid for a mixed state where
the density operator can be written in terms of a linear combination of density operators.
Thus, if either the density operator evolution equation (independent of representation) or that
equation in the coordinate representation is known, the Wigner distribution can be found by
Fourier transformation and vice versa, as illustrated by equations (5.10)—(5.14) of Caldeira and
Leggett [2].

As far as the Caldeira-Leggett model is concerned, the Wigner phase space representation
of their density operator evolution equation, namely equation (3), is simply the master equation
for the closed system equation (1), augmented by the classical collision kernel of Brownian
motion. Now, according to Caldeira and Leggett, equation (3) is valid at relatively high
temperatures and for Markovian coupling to the heat bath. However, the corresponding density
operator evolution equation is not of the Lindblad form so that positivity of the density operator
is not preserved. One should remark that positivity of the density operator does not in itself
imply that the underlying physics is realistic. Moreover, a positive density operator does not
necessarily lead to phase space quasi-distributions that lack negative basins, as demonstrated
by Wyatt [11]. Prompted by these considerations, Didsi [3, 4] in a more refined derivation (cf
equation (29) of [3]) of the density operator form of the Caldeira—Leggett equation found two
additional smoothing terms, rendering the time-dependent solution of the evolution equation
for the density operator p(¢), namely

p=—~[H. p] — ~yle. {p. p}] — yz—m[x [x, p]] — Vﬁ[l? [p. P11 = y%[x [p, pll
I/ A g 6m 30

completely positive [6, 7], where 2 is regarded as a cutoff frequency for the harmonic bath.
Later, Vacchini [5] derived yet another equation which reads as

p= —i[H, pl— iy[x, {p. p}] — J/Z—m[x, [x, p11 — yﬁ[p, [p. P11

h h h*B 8m

The corresponding phase space forms [6, 11] of these modified Caldeira—Leggett equations
are

3 [ m 8W} yR2B W yQR*B *W ©)

3 .
wamyw =y | w4+ 2 2L ,
g T =y PV o T o e T e apin
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(for the Diési model) and

2 2
3 [ m BW} yh2B 9*W (10)

d N

EW'FMWW—V% pW+E£ 16mﬁ
(for the Vacchini model). As briefly mentioned above, by postulating the Wigner equilibrium
distribution Wy (x, p) as the stationary solution, Coffey et al [14—16] obtained the phase space
master equation

ow . d m oW yBR* . *W

W—FMWW:)/@[p i|+TV (x)a—pz.

Here, only terms of order A? are included, although the method may be carried on to
any order in h* [14-16]. A systematic method for calculating higher order corrections to
equation (11) has been given in [14]. Such corrections may be calculated, in principle, to any
desired order in h2. This perturbation procedure is directly analogous to that used by Wigner
[47] to calculate quantum corrections to the distribution function of the closed system. Here,
the distribution function is expanded in Hermite polynomials in the momentum where the
coefficients involve the derivatives of the potential.

Equation (11) has been derived [14-16] in the high-temperature limit and in the
approximation of Ohmic damping, where D, D, D,,, in equation (5) are time independent.
The evolution equation for the density matrix p corresponding to equation (11) is (again to
order 7i%)

=Ll p1- L <1[ (.ol = | ]]—ih—ﬁ[ [d—v ]D
p_ h 710 hy z-xv pvp hﬁ X, x’IO 6 X, dxvp .

Equation (11) and equations (9) and (10) obviously reduce to the Caldeira—Leggett equation
in the high-temperature limit (8 — 0). However, for finite 8, differences between the results
predicted by the various models exist and it is the understanding of these deviations that is the
subject of this paper.

For comparison, we shall also treat a particular extended diffusion model, namely the
Lorentz or t-approximation [27-30]. This model assumes that collisions change the state of a
particle in such a way that the probability of finding the particle in a new state is proportional
to the equilibrium density operator py = e "0 /Tr (¢7#). Thus, a collision integral of the
Lorentz model in the single relaxation time approximation can be written as

St(p) = =22, (12)
where t is the phenomenological parameter, characterizing relaxation processes.
Consequently, the phase space evolution equation for the Lorentz model is

Dy yitgw = LMo, (13)

at T
where W, is the corresponding Wigner stationary (i.e. the canonical) distribution function
satisfying MyW, = 0. Equation (12) describes relaxation of the density operator p to pg with
relaxation time t, which is the mean time between collisions.

Now in each of the master equations, we make the following rescaling to the normalized
variables [16]:

Y

X/xg — X, pn/mxg — p, t/n —t, ny — vy, nQ/mr — Q,

BV (x) = V (v), =/ Bmxg/2, g =BV, A = B1%/(48n%).
We then have from equations (9) to (11)

oW W 1aVew  y d
=—p—t-— ot

aw
o 20w + 22|+ pw, 14
o1 ox T2axap T 2ap PN ]+ (14

ap
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where the potential is now V (x) = —gcosx. Equation (14) represents the classical Klein—
Kramers equation written in terms of normalized variables plus a quantum correction term
DW, which for the Didsi, Vacchini and Coffey et al kinetic models is, respectively,

pw = (- VoW + il + oW (15)
- 490 app e T 00 )
193V °W 3y 3*W
DW=A(—-——m—+ = — ). (16)
493 9p? 2 9x?
ow — A f_] 3V W N %V 3°W an
N 4 9x3 9p3 e apr )’

First, we discuss the stationary solutions of the master equation (14).

3. Stationary distributions

The stationary solution of equation (14) with the correction given by equation (17) is the
Wigner distribution function [14-17]

Wolx, p) =Z e 7 V{1 + A[(V)? = 3V/+2pV"]}, (18)

where the partition function Z is

2
Z=Jn / [14+ AV () =2AV"(0)]e”" W dx = Zy[1 — Agli (9)/Io(2)], (19)
0

where Zy = 2m3/%Iy(g) is the classical partition function and I,(z) is the modified Bessel
function of the first kind of integer order. This solution is of course independent of the
dissipation. Clearly, the distribution W, is also a stationary solution of the Lorentz model
equation (13).

In contrast, the stationary solution Wy (x, p) of the Diési model (equation (14) with the
quantum correction term given by equation (15)) depends on the damping parameter y and is
given by

Wp(x, p) = Z' e VL + ALV =3V 422V + 4y (y +2Q)V — 4pyV']}, (20)

where

2 -1
Zy' = (ﬁ /O {1+ ALV (0)? = 2V"(0) + 4y (v + 22V ()] e dx)

=Z7"H{1+ Al +4y (y +292)1gli (9)/10()}. 1)

In the zero dissipation limit, y — 0, Wp(x, p) becomes the Wigner distribution W (x, p).
Obviously, equation (21) holds only at relatively low damping

All+4y(y +22)]8h(9)/lh(g) K 1 (22)

to ensure the validity of the perturbation expansion.

Now, the stationary solutions for the Caldeira—Leggett and Vacchini models cannot be
presented in the analytic form of a series of powers of A. Nevertheless, they can be calculated
numerically using matrix continued fractions [14, 15]. However, because for 2 = 0 the
only difference between the Didsi and Vacchini models lies in the coefficients 2 and 3/2,
respectively (cf equations (15) and (16)), so that their solutions then have similar behavior, we
may consider the Diési model with = 0 as a simplified version of the Vacchini model.
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4. Solution of the time-dependent master equation

The foregoing discussion refers purely to the time-independent solutions of the master
equations. We now consider time-dependent solutions. To investigate the process whereby the
particle traverses the periodic potential, we must obtain as explained above the nonperiodic
solution [16, 23] of equation (14). Thus, we make the ansatz

1/2 )
Wx, pt) = / w(k, x, p,t) e " dk, (23)
—1/2

where w is periodic in x with period 27 and it is assumed [23] that the wave vector & is
restricted to the first Brillouin zone, —1/2 < k£ < 1/2. The periodic function w can then be
expanded in a Fourier series in the position x and in orthogonal Hermite functions H,(p) in
the momentum p, viz, [16, 23, 32]

e—p2+(8/2)cosx o0 Cn,q(k,t)

273/2 Z /2

n=0 g=—00

wk,x, p,t) = H,(p)e %, (24)
By substituting equations (23) and (24) into equations (14)—(17), we find by orthogonality,
after some algebra involving the recurrence relations of the Hermite polynomials, that the
Fourier coefficients ¢, 4(k, t) for the various kinetic models satisfy the following differential
recurrence relations: we have for the Diési (B = 2) and Vacchini (B = 3/2 and 2 = 0) master
equations,

g

d
acn,q +v |:” +B <(f1 + k)2 - g) A:| Cn,q

. n
1[5 [@+0 (1482 Ay o+ 5 (1 =82 8) (crtgt = Carm1) |

Cn+1

+1 2 [(CI + k)C;H—l,q - i (Cn+1,q+l - Cn+l,q—1)]
. nn—=1)(n—2)

+iAg I E— (Ca=3.g+1 — Cn=3.g—1)

B 1 1 g
+ ]/AgE q + k + 5 Cng+1 — | 4 + k — 5 Cng—1— g (C'n,q+2 + Cn,q—2) 5

(25)

while for the master equation (11) given by Coffey et al
d
_Cn,q + y[ncn,q - Ag\/ }’l(l’l - ])(Cn72,q+1 + Cn72,q71)]

dr
= i\/ ”/2[(61 + k)cnfl,q + g(cnfl,q+l - Cnfl,qfl)/4]
+i\/ (n+1)/2[(q + k)cn+1,q - g(cn+1,q+1 - Cn+1,q71)/4]
+iAgy/n(n—1)(n = 2)/8(cu-3.gs1 — Cu-3.g—1)- (26)

Finally, for the Lorentz master equation (13), the Fourier coefficients c, ,(k, t) satisfy the
differential recurrence relation

d
acn,q = _T_l (cn,q - Cn’q(())) + i\/ n/2[(qg + k)cn—l,q + g(cn—l,q-H - Cn—l,q—l)/4]
+i\/ (n+1)/2[(qg + k)cn-'rl,q - g(cn+l.q+l - Cn+l,q—1)/4]
+idgyn(n—1)(n —2)/8(ca3 441 — Ca-3g-1)- @7)

All the foregoing differential recurrence relations, each involving two indices, may now be
arranged (details are given in the appendix) as matrix three-term recurrence relations. These

8
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recurrence relations can be solved in terms of matrix continued fractions [15-17, 32]. Thus,
one may evaluate any desired observable such as the dynamic structure factor, etc.

5. Dynamic structure factor

We can evaluate the intermediate scattering function S(k, ¢), i.e. the characteristic function of
the displacement of the particle as it wanders through the wells, as a linear combination of the
Fourier coefficients ¢ 4 (k, t) [16]:

Sk, 1) = (@ OO = 3™ a6k, 1) (28)
-

The a, are the Fourier coefficients of the expansion of e /2 where for convenience we
have written e/ = e (/2 37% 14, ¢l@+Hr® and the angular brackets denote equilibrium
ensemble averages. By using the orthogonality properties of the circular functions {ei"x}, we
have from equation (28) the Fourier coefficients in terms of the modified Bessel functions

1
a 2 0
Thus we ultimately have for the structure factor, which is simply the one-sided Fourier
transform of the intermediate scattering function,

Sk, w) = Z:io 1y (8/2)@0.4 (k, ). (30)

T
. e V2 dy = 1,,(g/2). >

Hence, one can calculate the decay rate I' &~ t~! as the inverse of the average longest

relaxation time, which is defined as follows [16]. The intermediate scattering function S(k, ¢)
can be approximately represented at long times as the single exponential S(k, t) = h(k) e /7%
or in the frequency domain as the Lorentzian structure factor:

h(k)

Sk, w) = —————. 31
ko) = 1)
Thus, 7! as a function of the wave number can be extracted as
S(k, 0) — S(k,
(k) = lim &9 =Sk @) 32)
o—0 iw Sk, w)
Hence, we have for the average decay rate
172
= 2f 7! (k) dk. (33)
0

The average jump rate accounts for the possibility mentioned above that, in a periodic potential
(which is of course multistable), the particle having escaped a particular well may again be
trapped due to thermal fluctuations in another well. Moreover, jumps of either a single lattice
spacing or of many lattice spacings are possible. Thus, the escape rate in a periodic potential is
called the jump rate [32]. The foregoing result pertains to the Caldeira—Leggett, Di6si, Vacchini
and Coffey e al kinetic models allowing us to estimate the average greatest relaxation time for
these. In contrast, for the Lorentz kinetic model, which has nothing to do with Brownian motion
per se, the intermediate scattering function S(k, w) can also be approximately presented as

h(k)
iw+ Tt
where the quantity t in this instance is regarded as a phenomenological parameter and in order
to determine it, we use Mel’nikov’s estimate [34—38] of the greatest relaxation time ty;.

Sp(k, ) ~ (34)
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6. Mel’nikov equation for the greatest relaxation time

We saw that Mel’nikov [34, 35] has extended his solution of the classical Kramers turnover
problem, which is of course based on the theory of classical Brownian motion, to include
quantum effects in a semiclassical way. He effected the generalization by simply inserting
[34] the quantum-mechanical transmission factor for a parabolic barrier into the classical
integral equation for the energy distribution function yielded by the Wiener—Hopf method in
the Kramers turnover region, where the energy dissipated per cycle of the almost periodic
motion of a particle on a noisy trajectory corresponding to the barrier energy is of the order
of the thermal energy. In the approximation of Ohmic damping, he was then able to write

a universal formula for the quantum rate 'V = rﬁgl valid for all values of damping at
temperatures above the crossover temperature between tunneling and thermal activation
™ = up Y. (35)

Here, I'yp is the quantum escape rate from an isolated well in the intermediate to high damping
(IHD) region (y > 1) and Y is the quantum depopulation factor. Later Rips and Pollak [37],
following earlier work of Pollak er al [36], gave a consistent solution of the quantum Kramers
turnover problem, demonstrating how the Mel nikov equation (35) can be obtained without
his ad hoc interpolation between the weak and strong damping regimes. Finally, in the context
of our problem, Georgievskii and Pollak [38] treated the escape rate problem in a periodic
cosine potential, which is qualitatively different from that for a metastable well because the
periodic potential is multistable, showing that the quantum depopulation factor Y in equation
(35) is given by the integral

1
T=4 f sin? (wk)F (k) dk. (36)
0

The function F(k), which takes into account both the multistable nature of the potential and
the Kramers turnover between the very low damping and IHD regimes, is (in our notation)

asina [ 1 — e 2RW dx
F (k) =exp In —RG T )
T Jos 1 + e 2RW) — 2 e~RW cos(2k) | cosh(2ax) — cosa

Ty % cosh(v/Ay) — cos(2v/Axy)
V3A J-s ysinh(v/Ay) cosh’[my/(24/68)] Y

Here, a = v/3A(/y2+2g—7y) and § = 8y./2g is the dimensionless classical action
associated with the path of a particle librating in a well of the cosine potential with energy
equal to the barrier energy, i.e. the critical energy trajectory on which escape may take place
by dint of a thermal fluctuation [42]. In the classical limit [34] R(x) — 8(x> + 1/4), we have
FM(k) — ea(k,S)—a(O,Z(S)ﬂ’ where

R(x) =

o0
ok, 8) =2 Z n~'erfc(v/nd/2) cos (2mnk) .
n=1
In calculating the escape rate in the IHD limit only for the cosine potential given by
equation (1) it is sufficient [16] to consider the escape rate from an isolated well. The IHD
quantum escape rate I'iyp from such a well is [14, 16]

Wyr+2g—y)e ™, (37)

=
)

r =
IHD o n

10
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Figure 1 Inverse stationary distributions of the Didsi (dash-dotted lines) kinetic model
(equation (20) with € = 0) versus the coordinate x for various values of the momentum p =
0, p =0.7 and y = 1 and various values of the damping parameter y = 0.1, y = 1, y = 2, and
y =3 and p = 0.7, with g = 2 and A = 0.02. The inverses of the Wigner stationary distribution
1/Wy (x, p) (solid lines) and of the classical Maxwell-Boltzmann distribution (dashed lines, A =
0) are also shown.

where

00 2 2
Z_ 1—[ ws” + Q2an/hB)” + 2wny /hp (38)
n=1

—w2 + 2un/hB)? + 2mny /hB

is the quantum correction factor [1, 43] and w. = /[V"x)[/m = w, = /V"(x,)/m are
the saddle and well angular frequencies. If the conditions Ay <« 27 and gA « 1 are
fulfilled and if only leading quantum correction terms (of order h?) are taken into account,
equation (38) reduces to the well-known result & = 1 + g*A* (o? + ?2) /24 + --- [1].
Equation (35), combined with equations (36)—(38), now yields an estimate for the inverse
of the greatest relaxation time. Comprehensive reviews of applications and developments of
Kramers’ escape rate theory have been given by Mel nikov [34], Hanggi et al [44], Coffey
et al [45] and Pollak and Talkner [46].

7. Results and discussion

The inverse stationary distributions for the various kinetic models versus the position x for
different values of the momentum p are shown in figure 1. Clearly, the Didsi stationary
distribution function agrees with the Wigner function Wy (x, p) only for small damping y <
0.1. For large y, the deviation of the Didsi and by inference the Vacchini distribution from
Wo(x, p) is significant. In the classical limit A — 0, all semiclassical stationary distributions
reduce to the classical Maxwell-Boltzmann distribution.

The real and imaginary parts of the normalized dynamic structure factor S(k, w)/S(k, 0)
versus the dimensionless frequency ne for damping y = 0.5, 5 and 20 are presented in
figure 2 for the various kinetic models. The results for the Lorentz model, with the relaxation

11
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Figure 2 The real and imaginary parts of the normalized dynamic structure factor S(k, @) /S (k, 0)
versus nw for various values of damping parameter y = 0.5, 5, 20 and the barrier parameter g = 4
and the wave number k = 0.4. Solid and dashed lines: the matrix continued fraction solution with
A =0.02 and A = 0 (classical case), respectively. Closed and open circles: the Lorentz model.
Dotted lines: the Di6ési model with A = 0.02 and €2 = 0.

time calculated from Mel’nikov’s equation (35), as applied to the cosine potential, are shown
alongside the classical results (A = 0) for comparison. Clearly, both the Coffey et al and
the Lorentz models for all damping and the Didsi model for low damping (y < 1) differ
only slightly from the classical theory based on the Klein—Kramers equation. This is of course
consistent with an almost classical treatment of the problem [22]. However, in the IHD range, y
> 1, the Di6si model predicts a pronounced deviation from the classical results. In particular,
in figure 2(a) the negative excursions in the real part of the dynamic structure factor are
reminiscent of a resonance absorption, which becomes more and more pronounced as the
dissipative coupling to the bath is increased. The same behavior is reflected in the imaginary
part, where for large dissipation the behavior is symptomatic of a resonant peak, rather
than the Lorentzian behavior associated with the other models. This behavior in IHD arises
because the perturbation solution for S(k, w) for the Diési model is no longer valid for y > 1.
(Recall that the first-order quantum correction term increases as Ay2 for y > 1, see, e.g.,
equation (21).)

Turning now to the greatest relaxation time t, shown in figure 3 as a function of the
damping parameter y, it is apparent that the numerical solution of the master equation (11)
is closely followed by the quantum reaction rate theory solution embodied in equations (35)
and (36). Moreover, that solution is consistent with the expected lowering of the potential
barrier due to quantum effects anticipated by Wigner [47] on the basis of his generalization
of classical transition state theory to quantum mechanics. The Di6si model (for 2 <« 1) also
agrees with the quantum reaction rate theory results for weak coupling y < 0.1. This is so

12
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Figure 3 Greatest relaxation time t/n versus dimensionless damping parameter y for the barrier
parameter ¢ = 5. Solid lines: the turnover equation (35) for A = 0 (classical case; curve 1)
and A = 0.02 (curve 2). Dashed lines: the IHD equation (37) for A = 0 (curve 1) and A =
0.02 (curve 2). Open circles: master equation (11). Filled circles: the Caldeira—Leggett master
equation (3). Asterisks: the Diési master equation (9) with € = 0 (fittings for other values of 2 #
0 yield substantial deviations from the predictions of the escape rate theory).

because the stationary distribution function for the Didsi model for y < 0.1 is very close
in this range of damping to the Wigner function Wy (x, p) (see figure 1). However, the Didsi
model yields 7 at variance with escape rate theory in regions of damping higher than those
characterizing the Kramers turnover region. These deviations appearing in figure 3 at IHD
arise because the perturbation solutions for S(k, ) used in the calculation of the escape rate
are simply not applicable there. However, in contrast to all the other models which yield
results more or less in accord with reaction rate theory, the Caldeira—Leggett model in the
form of the semiclassical Klein—Kramers equation (3) yields classical results for high damping
and predicts decrease of the escape rate for low damping, apparently, because the first-order
correction in the quantum parameter is retained in the conservative term, while it is assumed
[11] that the collision term is still given by the classical Fokker—Planck operator. However,
it is quite evident in the first place from the discussion given by Caldeira and Leggett that
retention of the quantum term in the conservative part of their equation (5.14) is inconsistent
with retaining the classical Fokker—Planck operator on the right-hand side of that equation.
We reiterate that the dependence of the diffusion coefficient on the derivatives of the potential
arising from the imposition of the Wigner stationary distribution is crucial. If this dependence
is not taken into account, e.g., regarding the diffusion coefficient as a constant (cf [21]), the
characteristic lowering of the barrier produced by the quantum tunneling near the top of the
barrier cannot be reproduced, neither can one regain the results of quantum reaction rate theory
[36-38, 47].

To conclude, using the master equation in the phase space representation, we have
evaluated quantum effects in the Brownian motion in a cosine periodic potential for various
kinetic models grounded in different physical assumptions. Our method uses the techniques
previously developed for the classical Fokker—Planck equation [23, 24] facilitating a simple
treatment which allows one to study the interplay of tunneling, thermal fluctuations and
dissipation in the quantum Brownian motion. In particular, we have been able to evaluate,
in semiclassical fashion, quantum effects in the relevant quantities (stationary distribution,
dynamic structure factor and escape rate) and the influence of quantum tunneling on their
high-temperature behavior. We have shown that the model master equations (9) for Q <« 1

13
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(Di6si model), (10) (and by inference the Vacchini model) and (11) (Coffey et a/ model)
yield similar results for low damping (y < 0.1). Furthermore, the master equations (11) and
(13) (Lorentz model) provide a reasonable description of the quantum dissipative process for
intermediate damping, unlike the master equations (9) and (10), which are not applicable in
the IHD region (because the perturbation solutions depend on the damping, e.g., equation (21),
and so are no longer valid for y > 1). We remark that we have illustrated our results using
a periodic cosine potential. However, this is purely for the sake of convenience as similar
behavior may be expected for other potentials, e.g., for a 2—4 double well potential (cf the
calculation of the greatest relaxation time for this potential carried out in [17]), tilted periodic
potential etc.

Finally, we emphasize that in the derivation of the master equation (11), the equilibrium
Wigner function Wy (x, p) for vanishing damping (y — 0) has been used to determine the
explicit form of the coefficients D, D,,, D, in equation (5). However, it is known from the
theory of quantum open systems [48] that the equilibrium state in general may deviate from
the canonical distribution pg; the latter describes the thermal equilibrium of the system in the
weak coupling and high-temperature limits only. Hence, the stationary distribution may also
differ from the canonical distribution pp; in particular, it may depend on the damping [48]. For
a periodic potential, the damping dependence of the stationary distribution is unknown. Thus,
the conditions under which the stationary distribution may be approximated by the Wigner
distribution Wy (x, p) are important in establishing a possible range of validity for the kinetic
model embodied in equation (11). Certainly, the model may be used in the high-temperature
limit because the stationary distribution then always reduces to Wy (x, p). Moreover, one would
expect that the master equation (11) is a reasonable approximation for the kinetics of a quantum
Brownian particle in a periodic potential V (x), when Ay <« 1. Finally, the extension of our
approach [49, 50] to spin dynamics governed by the SU(2) rotation group (rather than the
Heisenberg—Weyl group of translations), which contains the same assumption concerning the
canonical distribution as the equilibrium distribution, can also be used to calculate the integral
relaxation time of the magnetization etc. The ensuing results are in agreement with those
predicted by alternative methods such as the quantum Hubbard operator representation of the
evolution equation for the spin density matrix [51, 52].
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Appendix. The matrix continued fraction solution of equations (25)—(27)

We seek perturbation solutions of equations (25) (for B = 2) and (26) in the form
Cng =2 (k1) + Ac, (k. 1). Thus, we introduce the column vectors C%(t) and C} (¢):

cgfl,fl(k,t) c! 1k, 1)

n—1,—
Cly=| & k1) and Cy=| ch_ ok

Cgfl,l(k’ t) C,l,_l,l(kst)

14
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Now, by seeking a perturbation solution as C,(¢) = CB ) + AC,ll (t), equations (25) and
(26) can be rearranged in the zero order and first order of perturbation theory as the set of
matrix three-term recurrence equations

d
Ecs(m =Q, C)_ (1) —y(n—DCL1) + QS C, (). (A.1)

%C;(n =Q,C,_ (1) —y(n—DCy(t) + QfC,, (1) + RI(®), (A2)

where
k—1 Fg/4 0

| e ek Fes
0 +g/4 k+1

+ .
Qn =1

The vector RB (¢) for the Didsi kinetic model is then

R) (1) =s,C)_, (1) + p.C,(t) +1,C)_5 (1)
and for that of Coffey ez al

R)(1) = q,C)_, (1) +1,C)_5(0),
where s, = 8Qy /T — 1/nQ;,

01 0
q,=ye/(n— D(n—2) 10 1 :
01 0
.\/<n—1>(n—2)(n—3> o 10
r, =ig —1 1 ,
8 0 -1 0
0
Q-1 —g/4)  gk—1/2) —¢/8 0
Pe=v| . —gh—1/2) -k — /4 g(k+1/2)
0 —/8 —g(k+1/2)  —Qk+1)2— &/4)

0

The initial conditions follow from the stationary distribution in the phase space. The initial

conditions ¢, 4(0) = cgq /0 + Ac},, 4(0) are evaluated as
1

Cn,q (0) = «/W

00 2
/ H,(p) €4V OWo (x, p) dxdp.
—o0 JO
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For the classical Boltzmann distribution, c (O) =0( > 0)and

2
c0,4(0) = v7Z)' / VIR dy = 277271, (g/2).

Thus, CO (0) # 0and C°(0) = 0, n > 2. The first-order perturbation initial conditions c,ll 40
differ from model to model. For that of Coffey et al, they are

2w
b = vz [ @) -2 e R a

= 277" 1(29)* — gl1(9)/10()4(8/2),

2
,(0) =v2rZ] f V" (x) V02 gy = €0.411(0) 4+ ¢0 41 (0)),

ﬁ(
so that the vector initial conditions are C|(0) # 0, C3(0) = 0, C}(0) # 0. For the Didsi
model, they are

¢h,4(0) = g_ V12 [v’z W Ay (y 29 + (L +4y (y +22))3 lg} ax
cl Y0
2 ®
-z, H - (1+4y(y+29))gll( )]Iq(g/Z)

+ 2y (y +29Q)gll,+1(8/2) +Iq1(g/2)]},
2 .
c1,0) = —2v2rZ3'y /0 V() eV O 4y = —i4(27)¥?Z gy 1, (g/2),

2
3,(0) =v2rZ' / V" (x) el V2 gy = (c(, o110) 0,1 (0)),
0 V2
and the vector initial conditions are C} ) #0, C% ) #£0, C% (0) # 0. All other vectors are
zero C1(0) =0, n>4. ]
Taking the Laplace transform of equation (A.1), namely C{(s) = [~ C(t) e~dr and
applying the general matrix method of solution of three-term recurrence equations [16, 23,

241, we have the zero- and first-order vectors

CY(s) = A1(5)CY(0),

Cls) =S, C0_(5)=S,S, ,-..S;A1(5)C(0), n=2,

n~n—1"-

Cl(s) = A9 | (C10) +R)()) +Z[HQ Ak+1(Y)] L) + R () |

j=1

Ch(5) = Au(9)Q, C)_, (5) + Au(s) | (C1(0) + RY(s)) +Z []‘[ Qi m(s)]

j=1

x ( n+J(O)+Rn+/(S))]
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where S, = A, (5)Q;,, S = ;IL_] A, (s), and the matrix continued fraction A, (s) is defined
by the recurrence equation

Ays) = {[s+yn—DI—Qf A1 (Q;,, ]
Taking into account the initial conditions, the expression for C} (s) simplifies to
Cl(s) = Ai(s) [C1(0) + RY()] + A1 (s)ST [C2(0) + RI(s)] + A1 (5)SFST[C}(0) + F,
where

F = RJ(s) + S][R}(s) + ST[RIs) +---]].

For the Lorentz model, equation (27) can be rearranged as

d
aCg(z) =Q,C)_, (1) —t7'CUt) + 7' CY(0)8,1 + QFCL, (1),

d
EC}?(Z) =Q,C,_, (1) —t'CLH) + QS CL, (1) + T 'C{(0)8,1 + T 'C}(0)8,5 + RL(1),

where RQ 1) = r,,C273 (t). The above equations have the following solution for zero- and
first-order vectors

Cl(s) = [1+ (1) '] A1 (5)CY(0),
ClUs)=8,Ch_1(s) =[1+ (s1)7']S, S, ... 85 A1 (5)C(0), n>=?2,

Ci(®) =[14 (1) 'JA1(9)C(0) + A1 ()85 ST [[1 + (s7)"'] C}(0) +F]I,
where 8, = A,()Q;, S'F = QF | A'(s), F = ST[R}(s) + S'T[R%(s) + - ]]. and the
matrix continued fraction A’,(s) is defined by the recurrence equation

Ao ={[s+t " 1-QF A (9Q;,,}
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