
1

t
s
t
c
o
m
a
t
i
h
R
r
l
t
b
s
a
r

p
s
c
b
c
m
p
s
t
h
c
f
q
a
m
t
n

i
2
A

J

Downloaded From:
T. J. Delph
Department of Mechanical Engineering

and Mechanics,
Lehigh University,

Bethlehem, PA 18015

D. L. Berger
PPL Generation,

2 North 9th Street,
Allentown, PA 18101

D. G. Harlow

M. Ozturk

Department of Mechanical Engineering
and Mechanics,

Lehigh University,
Bethlehem, PA 18015

A Probabilistic Lifetime
Prediction Technique for Piping
Under Creep Conditions
We outline here a simple approximate method of lifetime prediction for high-temperature,
internally pressurized piping components that takes into account the very large scatter
present in the creep data for commonly used piping materials. This scatter is so large as
to make deterministic methods of life prediction quite problematic. The method presented
here is based upon the well-known Monte Carlo technique, and makes use of the standard
damage fraction as the basic measure of creep damage. The method yields predictions of
the probability of failure after a fixed operating time, assumed to be large.
�DOI: 10.1115/1.4001266�
Introduction
One of the most vexing problems encountered in making life-

ime predictions of high-temperature piping components is the
catter in the creep and creep rupture data under nominally iden-
ical testing conditions. This scatter can be quite substantial. In the
ase of creep rupture times, it can amount in the worst cases to an
rder of magnitude or more difference in failure times for speci-
ens tested under nominally identical conditions. To a consider-

ble extent, this is brought about by product form variations, heat-
o-heat differences, and random variations in test conditions, but it
s present, even in data from tensile specimens taken from single
eats of material and tested under carefully controlled conditions.
eference �1�, for example, reports the results of a number of

eplicated creep failure tests on specimens of AISI type 316 stain-
ess steel, taken from a single heat of material. Here, variations in
he failure times of as much as a factor of 4.5 were noted. Tests on
icrystals loaded normal to the grain boundary have produced
imilar variations in the creep failure times �2�. Comparable
mounts of scatter can be observed in the measurements of creep
ate properties �1�.

The existence of this scatter leads to the conclusion that the
rediction of creep lifetime is best viewed from a probabilistic
tandpoint. In this context, then, one would not ask at what time a
omponent would fail in creep under a given loading conditions,
ut would rather inquire as to the probability of failure after a
ertain period of time. We outline here a simple methodology for
aking probabilistic creep failure predictions of high-temperature

iping under plane strain conditions that takes into account the
catter in the available creep and creep rupture data. The basis for
his methodology is the well-known Monte Carlo method, which
as seen extensive use in many diverse applications, e.g., creep
rack growth in high-temperature pipe components �3�. Creep
ailure is predicted by the damage, or time, fraction, a widely used
uantitative creep damage measure. We give an example of the
pplication of this methodology to an internally pressurized pipe
ade of ASME SA-335 P11 �1.25 Cr–0.5 Mo� steel. Hereafter,

he term “Grade 11” will be used to denote the material of this
ominal composition in all product forms.
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2 Analysis of Experimental Data
We begin by analyzing the available experimental creep and

creep rupture data for Grade 11 steel, a material that is in common
use in pressure vessel and piping systems. Reference �4� contains
an extensive compendium of creep and creep rupture data for this
material at various temperatures in the creep range. Similar com-
pendia, although perhaps not quite so extensive, exist for other
materials, e.g., A-106B steel �5�. From the available data �4�, a
total of four sets of creep data and ten sets of creep rupture data at
various stress levels for Grade 11 steel at 1000°F �538°C� were
selected for analysis. The criterion for selection was that each data
set contain a minimum of four data points, so that the data fits to
be discussed subsequently would be of reasonable quality. Each
data set represents data taken using tensile specimens fabricated
from a particular heat of the indicated steel and a particular prod-
uct form �plate, bar, etc.�.

The data were analyzed in the context of two widely used
power-law relationships for modeling creep and creep failure data
�6�

�̇c = C� �

�o
�n

�1�

and

tf = A� �

�o
�−�

�2�

or in logarithmic form

ln �̇c = ln C + n ln��/�o�

ln tf = ln A − � ln��/�o� �3�

In Eq. �1�, �̇c is the axial �secondary� creep rate experienced under
a constant uniaxial stress �, while �o is an arbitrarily chosen
reference stress, taken to be �o=1000 lbs / in.2 �6.89 MPa�. Like-
wise, tf in Eq. �2� is the time to creep failure under a constant
uniaxial stress �. The quantities �C ,n� and �A ,�� are typically
taken to be material constants, although, as Figs. 1 and 2 demon-
strate, the experimental data, from which their values are derived,
exhibit large amounts of scatter. These figures show, respectively,
log-log plots of all of the selected data sets for Grade 11 steel for
creep times-to-failure and creep rates versus stress. The scatter in

the experimental data for the creep rate and the failure times at
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onstant values of stress is clearly evident. As an example, nine
reep failure data points are available at a stress level of
5,000 lbs / in.2 �241 MPa�. The mean time-to-failure for these
ine values is 490 h, with a large standard deviation of 250 h. The
mallest time-to-failure at this stress level is 140 h, while the
argest is 932 h, a difference of nearly a factor of 6.6. There are
ndications, moreover, that the scatter becomes greater with in-
reasing failure times. For example, Ref. �4� gives a total of 14
ata at a stress level of 20,000 lbs / in.2 �138 MPa�, most of which
re not shown in Figure 1. For these points, the mean failure time
s 3820 h, with a standard deviation of 2780 h and minimum and

aximum failure times of 799 h and 10284 h, respectively. The
traight line in Fig. 1 is a least-squares fits of Eq. �3� to the data.
t can be seen that these relationships represent the mean trends in
he data fairly well, but that the scatter in the data is substantial,
ith values of r2=0.84 for the creep failure data and r2=0.77 for

he strain rate data, where r is the correlation coefficient for the
east-squares fit.

We assume, for the purposes of analysis, that the scatter arises
rom two independent sources: the first, due to variations in
hemical composition �heat-to-heat variation� and in product
orm, and the second, to variations present within a given heat and
roduct form. To quantify the first of these, we conducted stan-
ard least-squares linear fits of Eq. �3�, to each of the sets of creep
nd creep rupture data. This procedure yielded as many values of
he parameters �ln C ,n� and �ln A ,�� as there were data sets, i.e.,

ln(�/�o)

2 3 4 5

ln
(t f
)~
hr
s

4

5

6

7

8

9

10

11

tf = A(���o)
�

A = 3.60 x 108 hrs
� � 3.79

Grade 11 steel
1000o F

ig. 1 Experimental creep failure data for Grade 11 „1.25 Cr–
.5 Mo… steel †1‡
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ig. 2 Experimental creep strain data for Grade 11 „1.25 Cr–0.5

o… steel †1‡
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four values of �ln C ,n� and ten values of �ln A ,��. The means,
variances, and covariances for the resulting �ln C ,n� and �ln A ,��
values were then calculated using standard statistical formulae.
We note in passing that more sophisticated methods are available
for this purpose, e.g., Ref. �7�. The mean values were ln C=
−28.30, n̄=5.72, ln A=21.98, and �̄=4.46, with the corresponding
variance-covariance matrices being

Gln C,n = � 43.43 − 16.12

− 16.12 6.10
�

Gln A,� = �15.84 4.75

4.75 1.44
� �4�

We now assume that the pairs �ln C ,n� and �ln A ,�� are depen-
dent random variables governed by a joint normal distribution,
with �ln C ,n�, �ln A ,�� independent of each other. That the pairs
�ln C ,n� and �ln A ,�� are dependent variables is, of course, ap-
parent from the rather large covariances. The assumption of a joint
normal distribution implies that the marginal distribution func-
tions for ln C ,n , ln A, and � are normal. The assumption that these
variables are, in fact, distributed in this fashion requires some
verification. One common means of doing this, at least for the
marginal distribution functions, is to plot the values of the vari-
ables on normal probability paper. Plotted in this way, a random
quantity, dependent or not, that has a marginal normal distribution
will plot as a straight line. Figures 3–6 show such plots for
ln C ,n , ln A, and �, respectively, along with the straight line that
results from the assumed marginal normal distribution. In general,
the data can be seen not to depart too far from linearity, providing
reasonable justification that the pairs �ln C ,n� and �ln A ,�� are, in
fact, distributed in the assumed fashion.

Using a considerably more sophisticated statistical treatment,
Evans and Ward �8� carried out similar characterizations of the
minimum creep rate and the creep failure times in terms of gen-
eralized three-parameter gamma distributions, of which the log-
normal distribution is a special case. If the pairs �C ,n� and �A ,��
are assumed to be governed by a joint log-normal/normal cumu-
lative probability distribution function, then Eq. �3� imply that
both �̇c and tf should be log-normally distributed. The distribu-
tions obtained by Evans and Ward for �̇c and tf do not differ too
greatly from a log-normal distribution, providing additional sup-
port for the forms of the distributions adopted here.

Although this treatment adequately characterizes the scatter be-
tween mean trends in data sets, it does not take account of the

ln(C) ~ hr-1
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Fig. 3 Values of ln„C… for four data sets on normal probability
paper. The normal distribution corresponding to the calculated
mean and variance is shown as a straight line.
scatter within a given data set, which may be significant. To deal
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ith this source of scatter in the creep rupture data, we examine
he variations � ln tf between individual data points in a given
reep rupture data set and the predicted value of ln tf obtained by
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ig. 4 Values of n for four data sets on normal probability
aper. The normal distribution corresponding to the calculated
ean and variance is shown as a straight line.
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ig. 5 Values of ln„A… for ten data sets on normal probability
aper. The normal distribution corresponding to the calculated
ean and variance is shown as a straight line.
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the least-squares linear fit to the data �see Fig. 7�. The values of
� ln tf obtained from the ten creep rupture data sets are shown in
Fig. 8, plotted on normal probability paper. Even though the re-
sulting plot has a slight S-shaped variation, the assumption that
the individual variations � ln tf are normally distributed is not a
bad one. The straight line in Fig. 8 shows a normal distribution fit
to the data, based upon zero mean and a standard deviation of
0.2576.

3 Monte Carlo Simulation and Lifetime Prediction
As outlined in Sec. 2, we assume that the variability in creep

and creep failure data arises from two sources: variations between
data sets due to variations in product form and chemical compo-
sition, and variations within a given data set due to random fea-
tures within the creep and creep failure processes themselves. The
first of these may be characterized by variations in the parameters
�ln C ,n� and �ln A ,�� from data set to data set. The second source,
at least with regard to the creep failure times, is characterized by
individual specimen variations in the failure times �tf about the
mean data set trends given by the second of Eq. �3�. We assume
that the parameters �ln C ,n� and �ln A ,��, as well as the specimen
variation �tf, are constant for a given Monte Carlo realization, but
vary randomly from realization to realization, with the random
variation being governed by the distribution functions described in
Sec. 2. Given this, our goal is to make inferences about the sta-
tistical creep failure behavior of high-temperature piping.

ln(���o)
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ln
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}�tf

Fig. 7 Deviation in individual specimen failure times �tf within
a given data set from the data set mean trends

��ln tf)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

P
ro
ba
bi
lit
y

0.1

1

10

30

50

70

90

99

99.9

Fig. 8 Individual specimen deviations �tf on normal probabil-

ity paper

OCTOBER 2010, Vol. 132 / 051206-3

of Use: http://www.asme.org/about-asme/terms-of-use



c
c
i
C
t
t
n
t
v
e
e
u
d
t
R
t
z

p
t
s
t
c
�
i
a
t

w
i
i
o
v
s
f

o
b
t

a
�
=
�

s
d
r
�
b
w
fi
e
r

0

Downloaded From:
The Monte Carlo simulation is a very attractive means of ac-
omplishing this goal, primarily because it is able to handle fairly
omplex situations, and is at the same time relatively simple to
mplement into a computer code. The basic tool for the Monte
arlo simulation is a numerical pseudo random number generator

hat is capable of generating large quantities of random numbers
hat are uniformly distributed on the interval �0,1�. Pseudo random
umber generators are now widely available that will carry out
his task quickly and efficiently. In the present case, the random
ariables are the parameters in the creep rate and failure time
quations �3�, ln C, n, ln A, and �, and the quantity � ln tf. Ref-
rence �9� gives a detailed description of how the output of a
niform random number generator may be used to generate ran-
om pairs of �ln C ,n� and �ln A ,�� that have a joint normal dis-
ribution with the desired means and variances, using the standard
osenblatt transformation. Likewise, the Rosenblatt transforma-

ion may be used to generate uncorrelated pairs of � ln tf, having
ero mean and the specified variance.

Before proceeding further, we need to say something about the
iping stresses. We assume that plane strain conditions hold, and
hat a constant internal pressure p is applied to the pipe. The initial
tresses are then given by the well-known elastic solution, but as
ime progresses, creep effects modify the stress distribution, espe-
ially the ��� component. If the creep strains are described by Eq.
1�, then the pipe stresses approach a limiting distribution. At the
nner radius r=a, where the stresses can be expected to be highest
nd where creep failure typically initiates, this limiting distribu-
ion is given by �6�

�rr�r = a,t → �� = − p

����r = a,t → �� =
p

� b
a�2/n − 1

�1 +
2 − n

n
�b

a
�2/n�

�zz�r = a,t → �� =
p

� b
a�2/n − 1

�1 +
1 − n

n
�b

a
�2/n� �5�

here b is the outer radius and n is the creep exponent appearing
n Eq. �1�. A basic assumption of the methodology described here
s that the piping system has been in service for a sufficient length
f time so that the inner radius stresses over the bulk of the ser-
ice period are well-approximated by Eq. �5�. This is quite a rea-
onable assumption for piping systems that have been in service
or hundreds of thousands of hours.

There are several possibilities for the multiaxial generalization
f the uniaxial stress � that appears in Eq. �1�, which we denote
y �m. Among the most commonly used are the von Mises effec-
ive stress �̄ defined by

�̄ =	1

2
���rr − ����2 + ��rr − �zz�2 + ���� − �zz�2� �6�

nd the maximum principal tensile stress, which in this case is
��. Depending upon which of these is chosen, we then set �m
�̄ or �m=���. In either case, the multiaxial generalization of Eq.

2� becomes

tf = A��m

�o
�−�

�7�

We are now in a position to describe the basic Monte Carlo
imulation procedure. On each Monte Carlo trial, a pseudo ran-
om number generator was used to generate four independent
andom numbers that are uniformly distributed on the interval
0,1�. These were then transformed into two pairs of random num-
ers �ln C ,n� and �ln A ,�� that have joint normal distributions
ith the desired means, standard deviations, and correlation coef-
cients. The value of ln C was discarded, as it does not appear in
ither Eq. �5� and �7�, and hence, was not required. Likewise, a

andom value for the quantity �tf was generated.

51206-4 / Vol. 132, OCTOBER 2010
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A consideration of the means and variances for the parameters n
and � indicates that, in approximately 1% of the trials, this pro-
cedure will generate negative values of n and �, which are not
allowed by the physics of the situation. To deal with this situation,
only those Monte Carlo trials that generated positive values of n
and � were accepted, and trials resulting in negative values of
these parameters were discarded. This resulted in a slight skewing
of the Monte Carlo values, but one that can be expected to have a
negligible effect on the subsequent results. A more accurate analy-
sis would have involved a joint normal/truncated normal distribu-
tion for �ln C ,n� and �ln A ,��, but would have been much more
difficult to implement.

For fixed values of internal pressure p, ratio of outer to inner
radius b /a, and a value of creep exponent n that changes on each
Monte Carlo trial, explicit values for the stresses, and hence, the
value of �m, were calculated from Eq. �5�. Then a time to creep
failure tf for each Monte Carlo trial was obtained from

ln tf = ln A − � ln��m

�o
� + � ln tf �8�

The value of tf computed here, of course, changed randomly from
trail to trial. The actual time-to-failure of the component Tf, on the
other hand, is both unknown and unknowable, else there would be
no need for the Monte Carlo estimation procedures described
here.

We now describe how the lifetime prediction was done, using a
procedure that follows the prescriptions laid down by the ASME
Boiler and Pressure Vessel Code �10�. In the simplest case, all
conditions are constant throughout the lifetime of the component,
and the remnant lifetime was estimated from the well-known
damage fraction f given by

f =
tc

tf
�9�

where tc is the total component operating time. By definition, a
value of f �1 signals creep failure, with values of f �1 denoting
a failed component. For f 	1, the quantity 1− f is the fraction of
the remnant lifetime. On each Monte Carlo trial, a random value
of tf was computed from Eq. �8� and the resulting Monte Carlo
time fraction f calculated from Eq. �9�. We use lower case f for
the damage fraction here to denote the values calculated from the
Monte Carlo trials, which we wish to distinguish from the actual
damage fraction for the component, denoted by F. As is the case
with the actual component failure time, F is unknown and un-
knowable.

This was done repetitively for a total of N trials, where N is a
large number, taken to be N=105 here. The N values of f , thus
obtained, were then ordered from lowest to highest, say f i , i
=1, . . . ,N, and a probability estimator Pri �in percent� assigned to
each f i. A commonly used estimator, the one that we employed
here, is

Pri =
100i

N + 1
; i = 1, . . . ,N �10�

The significance of the probability estimator Pri corresponding to
f i is that it represents the Monte Carlo estimate that the actual �but
unknown� life fraction F for the component is less than or equal to
f i, i.e., Pri=Pr
F
 f i�. Of particular interest is the value of Pr
corresponding to f =1. This is exactly the estimated survival prob-
ability Prs, in other words, the probability that the true damage
fraction F
1 after an operating period tc, and hence, the prob-
ability that the component will survive for a period of time tc.
Conversely, Prf =1−Prs is the estimated failure probability, the
probability that F�1, prior to tc.

If conditions, e.g., temperature and internal pressure, are not
constant throughout the lifetime of the component, but may be

assumed to be piecewise constant over a period of time tcj

=njtc,
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j 	1, then we may make use of a relationship known as the
obinson’s rule �6�, similar to Miner’s law in fatigue, to calculate

he damage fraction f

f = �
j

tcj

tf j

= �
j

nj

tf j

tc �11�

here tf j
is the creep failure time under condition j.

As an example, we outline briefly here how piecewise constant
emperature histories might be handled. This is done through the
se of the Larson–Miller parameter PLM��� defined by �6�

PLM��� = T�20 + log10 tf� �12�

here T is the temperature in degrees Rankine and tf is the failure
ime in hours. The Larson–Miller parameter is the most widely
sed of a number of methods for estimating the creep failure time
t a given temperature, given the failure time at another tempera-
ure at the same stress level. For example, suppose that the
arson–Miller parameter has been determined for a fixed stress

evel at a given temperature and corresponding creep failure time.
hen the creep failure time at a different temperature, say T1, and

he same stress value may be estimated from Eq. �12� as

tf1
= 10PLM���/T1−20 �13�

iecewise constant pressure histories may be handled in a similar,
lbeit slightly more complicated, fashion.

Example
We now give a simple example of the application of the tech-

ique described in Sec. 3. We consider a pipe made of Grade 11
teel under a constant internal pressure of 650 lbs / in.2 �4.48
Pa�, with a ratio of outer to inner radius of b /a=1.5. The tem-

erature history is considered to be piecewise constant about
000°F �538°C�, and is shown in histogram form in Fig. 9, in
erms of the fraction of the total operating time spent at a particu-
ar temperature. A total of N=105 Monte Carlo trials were carried
ut for a component operating time of tc=500,000 h �approxi-
ately 57.1 years�, assuming that the creep properties of the ma-

erial were statistically distributed, as described previously. The
reep stresses were computed from Eq. �5�, and two different
ultiaxial stress generalizations, �m= �̄ and �m=���, were used.
igure 10 shows the results, in terms of the Monte Carlo prob-
bility estimator p=Pr
F
 f� versus damage fraction f .

The simulations conducted using the von Mises multiaxial gen-
ralization indicate a survival probability of approximately 96%
ver an operating period of 500,000 h. Otherwise stated, the prob-
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Fig. 9 Temperature histogram
bility of failure during this period is 4%. The maximum principal
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tensile stress multiaxial generalization shows a higher survival
probability of approximately 97% over the same period, with a
corresponding failure probability of 3%.

The shape of the curves shown in Fig. 10, rising steeply for
small damage fraction values and then flattening for larger values,
deserves a bit of discussion. The steep early rise of the curve is a
reflection of the fact that a large number of the individual Monte
Carlo trials resulted in quite low values of damage fraction after
500,000 h. To be more precise, approximately 90% of the trials
yielded damage fractions of less than 0.06, a relatively small
value, after 500,000 h. On a more fundamental level, this behavior
is a function of the fact that the extreme values of the input �A ,��
distributions play a major role, as the value of f becomes larger.

5 Discussion
We have presented here a probabilistic lifetime assessment

methodology for high-temperature piping system components that
takes into account the very wide scatter present in creep and creep
failure data. This scatter is sufficiently large as to render existing
deterministic techniques for lifetime prediction highly problem-
atic. In the face of this scatter, a common practice is to make use
of the minimum expected properties, a highly conservative ap-
proach. However, this practice neglects the totality of the material
data base, and hence, is quite likely to lead to overly conservative
predictions of component lifetime. We feel that a more rational
component lifetime prediction scheme is one that takes account of
the scatter in the data in a systematic fashion. This immediately
implies that probabilistic, and not deterministic, life prediction
techniques should be used. There are several techniques available
for carrying out such calculations, but the Monte Carlo technique
is especially attractive for this application, primarily due to its
ease of use. The implementation described here requires only very
modest computational resources. A drawback of the Monte Carlo
technique is that it may require a rather large number of trials to
accurately estimate small failure probabilities, say less than 0.5%.
However, failure probabilities that are this small are far from criti-
cal, and hence, this should not constitute a drawback in the
present case. A generalization of the time fraction rule, known as
Robinson’s rule, Eq. �11�, is used to account for situations, in
which conditions such as temperature or pressure vary in a piece-
wise constant fashion over the lifetime of the simulation.

The methodology outlined here makes use of the widely used
damage fraction rule given by Eq. �9� for the calculation of creep
damage. We depart from the standard deterministic implementa-
tion, however, in that the creep time-to failure tf is taken to be a
random variable, through Eq. �8�. The random time-to failure tf

damage fraction f
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P
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Fig. 10 Damage fraction probability after 500,000 h operating
time
itself is dependent upon four random parameters, A, �, n, and
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ln tf, whose statistical properties are estimated from experimen-
al creep and creep failure data. The first three of these are ob-
ained from the variations in the values of these quantities ob-
ained from fits of Eq. �3� to creep and creep rupture data sets, and
ence, reflect variations in mean data set trends. The last, � ln tf,
s obtained from the variations in the fitted equations �3� to the
ndividual values of ln tf within a data set. Thus, the first three
arameters take account of the interdata set variations due to fac-
ors such as product form variations and variations in chemical
omposition between heats. The quantity � ln tf, on the other
and, arises from variations within individual data sets, and thus
odels the effects of the intradata set variations upon the failure

ime. Intradata set variations on the creep rate �̇c have, however,
een neglected in the present formulation. The creep rate is not a
irect contributor to the time-to-failure, and enters only indirectly
hrough the creep exponent n, which affects the piping stresses
hrough Eq. �5�.

We have assumed in calculating the failure times that the
tresses at the inner radius, the most likely point of creep failure,
re given by the steady-state creep stresses, Eq. �5�, for a cylinder
nder plane strain conditions. This is, of course, an approximation
o the actual, more complicated time-dependent state stress. How-
ver, given the extremely long lifetimes associated with many
iping components, it is quite a reasonable approximation. A more
ccurate description of the stresses would likely require a detailed
nite element analysis on each Monte Carlo trial, greatly increas-

ng the numerical effort involved in the implementation. Along
hese lines, it should be noted that the technique we have outlined
ere is applicable in principle to high-temperature components of
rbitrary complexity. However, it is likely that in such cases, a
etailed numerical analysis would be required for a determination
f the component stresses, even for a determination of the steady-
tate stresses.

To sum up, we have presented a simple failure prediction meth-

dology for piping systems that yields predictions of component

51206-6 / Vol. 132, OCTOBER 2010
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survival probability, or equivalently of failure probability, after a
fixed period of time. We believe that this methodology provides a
much more rational basis for lifetime prediction than deterministic
lifetime assessments that either ignore or treat in a very simplistic
fashion, the very large scatter in the material creep and creep
failure data.
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