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ABSTRACT 
 

Theoretical analysis of parametric instability for the 

control systems with distributed parameters shall be given. The 

approach to the solution of such systems can be composed of two 

parts, i.e. modeling and estimation of the distributed parameters 

and instability estimation of the periodical time-variant elements 

using parametric circumference. A control system with 

mechanical distributed parameters such as robot manipulators is 

introduced as an example. Theoretical analysis shows that the 

parametric instabilities occur by digital controllers or 

time-varying elements which excite the resonance regions of 

distributed parameters. An electro-mechanical transformer 

which consists of constant current motor and synchronous 

generator is applied as another example. Inductance between 

stator windings and rotor of the synchronous generator serves as 

a periodical time-varying parameter and long electrical line 

plays a role of an element with distributed parameters. Instability 

condition of the transformer rotation owing to the parametric 

resonance excitement was obtained. 

 

 

1. INTRODUCTION 
 

There are numerous oscillatory systems whose interaction 

with the external world amounts only to a periodic time 

dependence of their parameters. The corresponding resonance 

is called parametric [1,2]. A textbook example is a simple 

pendulum with a vertically oscillating point of suspension [1]. 

The main resonance occurs when the excitation frequency ω is 
nearly twice the natural frequency of the oscillator ωo  [1,2]. 

Applications of this basic phenomenon in physics and 

technology are ubiquitous. 

Periodical time variant dynamic objects with distributed 

parameters are widely used in control engineering, 

electro-mechanics, mechanics, thermo-, hydro-, gas dynamics 

and the like [2-7]. Examples of Partial Differential Equations 

(PDEs) in which some of the coefficients are spatially periodic 

functions and parametric resonance occurs are given in the 

literature [3]. Coordinate control system of robot-manipulator 

can be considered as a similar example. In this case 
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me-periodic element is a MDM (modulator-demodulator) 

mplifier and a resilient shaft with a driving gripper serves as 

n element with distributed parameters. Another example of 

eriodical time variant system with distributed parameters is 

n electro-mechanical transformer which consists of a constant 

urrent motor and a synchronous generator. In this system 

utual inductance between stator windings and a rotor of the 

ynchronous generator serves as a time-periodic parameter, 

nd long electrical line plays a role of element with distributed 

arameters. Methodology and procedures for solving time 

ariant systems were presented in many literatures [1~2, 8-11]. 

This paper slightly modifies Chechurin’s idea [8] about 

 stability of the general lumped system and extends it to the 

bility analysis of distributed parameter systems. The main 

a of the modification is to centralize the parametric circle 

sented in the literature [8]. Such small modification allows us 

ind regions of parametric resonance in the frequency domain 

re easily than the previous one and use Frequency Response 

nctions (FRF) of the distributed parameter sub-system  from 

 total such as shells and plates in mechanical system and 

ctrical lines in the electronic system. Two examples in the 

rks given in the present paper will explain the existence of 

ametric resonance of systems with distributed parameters and 

fulness of the modification of the parametric resonance 

cle. 

PARAMETRIC RESONANCE IN PERIODICAL TIME 

RIANT SYSTEMS WITH DISTRIBUTED 

RAMETERS 
 

As the systems with distributed parameters have 

oretically infinite number of natural frequencies, it is 

uitively clear that the parametric resonances in such systems 

y occur in many regions of frequencies as well. However, it is 

 easy to find whole frequencies or frequency regions of 

ametric resonances by a simple approach. A simple 

roximate approach presented in the literature [8] which uses 

ametric circle for a time-periodic element in frequency 

ain was well approved by many examples and comparisons 

h other approaches [8, 11]. The proposed parametric circle 

ll be applied in order to find regions of parametric resonance 

 the systems with distributed parameters as well. 

Firstly, we review the technique of approximate 

quency domain parametric resonance analysis presented in 
Copyright © 2007 by ASME
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the literature [8]. Time variant periodical element with τ period 
a(t-τ) can be written as Fourier series 

 

T
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where Fourier coefficients 

dteta
T

a
T

tjr

r ∫ −Ω−−=
0

)()(
1 ττ ,         (2) 

Ω is the alternating excitation frequency 

Harmonic linearization by sinusoidal input 

x(t)=sin(rΩt/2) and output y(t)=a(t-τ)sin(rΩt/2) relation to this 

time variant object for the fundamental parametric resonance 

gives in Nyquist plane parametric circle (stationary 

phase-dependent transfer function) with center 0a  and radius 

ra  by: 

 

( ) ϕϕ j

rrp eaajW −−= 0
,            (3) 

 

where ϕ = Ωτ. Different types of time variant element can be 

referred in literature [8]. Thus, the characteristic equation of the 

time variant parameter and linear time invariant elements can be 

written by: 

 

,0)()(1 =+ ϕω jWjW rp
            (4) 

 

where W(jω) is the frequency response function (FRF) of linear 

time invariant elements. Conditions of fundamental parametric 

resonance for the given system can be depicted in Nyquist plane 

as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Conditions of fundamental parametric resonance in 
complex plane. 

 
It is apparent that the necessary condition of the 

parametric resonance is the existence of cross points for inverse 

Nyquist diagram with parametric circle. If the cross points exist, 

it is easy to derive unstable frequency regions from it (shaded 

regions in Fig.1).  Similarly, conditions of parametric resonance 

in the systems with distributed parameters are also valid and will 

have more cross points as shown in Fig. 2. 

Figure 2 shows the characteristic of parametric 

resonances by combining parametric circle with frequency 

responses of systems with distributed parameters as the 

distributed parameter systems have many frequency resonance 

chara
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cteristics in frequency domain.  

. 2 Condition of parametric resonances for periodical 
 variant systems with distributed parameters in 
plex plane. 

 

In case of the systems with distributed parameters it is 

re convenient to use central parametric circle than current 

-central parametric circle owing to many cross points of 

uency contours of the system. When the periodical time 

iant element a(t) consists of mean value a0 and periodical 

e variant signal a1(t),  

 

a(t) = a0 + a1(t).    (5) 

 

Parametric circle can be positioned in the center of the 

plex plane by moving mean value of the signal to the time 

ariant element. Then, the regions of instability can be easily 

nd and experimentally obtained FRFs can be also included. 

this case modified transfer function of time invariant 

ents becomes: 

)(1

)(
)(

0 pWa

pW
pM +

= .   (6) 

Therefore, the first parametric resonance of the system can 

ound by simple relations; 

rM a
r

j =






 Ω−

2

1  or 1

2

−=






 Ω
rM a

r
jW .   (7) 

 

Instability regions from equation (7) can be shaded in 

h complex and frequency-magnitude planes as shown in Fig. 

The great advantage of the modified circle is to use 

uency-magnitude graph which is a standard for engineers 

 scientists in theory and practice. Because of the modified 

sfer function, the regions of parametric instability lie on the 

er space of centralized parametric circle in Nyquist plane 

 the upper part of instability line in frequency-magnitude 

ph other than the non-centralized parametric circle as 

wn in Fig. 1. 
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Fig. 3 Central parametric circle with frequency 
response of systems with distributed parameters in 
complex plane (a) and frequency-magnitude plane (b). 

 

The main idea for the calculation of parametric resonance 

regions in systems which include linear time invariant 

distributed parameters is to separate time variant elements from 

linear time invariant elements for the calculation of FRFs and 

combine them in complex plane in order to find regions of 

parametric resonance in frequency domain. This kind of 

approach can make engineers intuitively and quickly find 

regions of parametric resonance in a very complicated system, 

especially a system with distributed parameters. Following two 

examples shall be helpful to understand the idea and procedure 

for the calculation of parametric resonance regions in distributed 

parameter systems.    

 

3. NUMERICAL EXAMPLE I 
 

As an example of time-periodic distributed parameter 

system, consider a coordinate control manipulator system as 

shown in Fig. 4: 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Robot-manipulator system 
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he system consists of a shaft, a distributed element as itself, 

ith lumped mass stuck at the end of the arm and modulator - 

emodulator (MDM) amplifier. The feedback is required for 

easuring gripper position by optic sensor. Then, the transfer 

unction of motor can be written: 

 
1)(

)(
)(

2 ++
=

Φ
=

pTpTT

pK

pU

p
pW

MML

M
M

,      (8) 

here KM, TL, and TM are constants from motor characteristics 

nd p is Laplace operator. The modulator-demodulator amplifier 

ransforms input signal )(tuc  into motor torque signal u(t)  with 

elation 

).()2cos1(

)()sin2()()()( 2

tut

tuttutatu

cM

cMc

ω

ω

−=

=⋅=  

herefore, amplifier is a time-variable parameter which has 

ouble modulation 

 

 
Mω2=Ω .                  (9) 

 

For compensating the shaft, controller has been chosen as 

D (Proportional-plus-Derivative) compensator with transfer 

unction 

 

 ,)( pKKpW dpc +=              (10) 

here Kp and Kd imply proportional and derivative constants 

espectively and are chosen mainly in order to compensate for 

he lumped inertia of the system. 

The sensor is considered as an inertialess element and its 

ain Ks , as well as motor gain KM , controller gain Kc , and 

mplifier gain Ka  is included in a total gain K : 
 

caMs KKKKK = .              (11) 

 

Thus frequency response of the open loop time invariant 

ystem is 

 

)(
)1)()((

))((
)(

2
ω

ωω

ωω
ω jW

jTjTT

jjKK
KjW d

MML

dp

++

+
= ,   (12) 

here )( ωjWd  – frequency response function of the shaft 

Frequency response of total system with the shaft is 

alculated from equation (12) with following physical numerical 

ata : inertia (Io ) = 0.09 kg.m
2
, density (ρ ) = 7.8 * 103 kg/m3

, 

adius of the shaft (r) = 0.01 m., length (l) = 0.36 m., damping 

oefficient (b) = 0.0005 N.s/m, and shear modulus (G) = 40 

0
9
N/m

2
. 

As the system with a lumped element is unstable without 

ompensators, following compensator is chosen: 

1)(*01.0 += ωjc
. Frequency response function of the motor 

ith numerical data is given as 

1)(*081.0)(*10*8

)(*70
25 ++

=
− ωω

ω
jj

j
Wmotor

.     (13) 

Impulse response of the lumped system in use of a 
lumped element shaft damps out by time as shown in Fig. 5 
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Fig. 5. Transient response of stationary lumped system 
with compensation 

 

However, real servo system gives frequency response 

which is vulnerable to parametric resonance as to the 

characteristic of the distributed parameters as shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Inverse Nyquist plot of the servo system with 
distributed parameters and parametric circumference 

 

It is obvious that the inverse frequency response of the 

given servo system intersects with the first parametric resonance 

circle. It means that time variable system has parametric 

resonance and unstable at ω=Ω/2. 

Frequency models and transfer function of the shaft for 

the numerical calculation is achieved by Finite Element Method 

(FEM). Numerical modeling of the total system is implemented 

by commercial software «SIMULINK» as shown in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Schematic diagram for the numerical modeling of 
the total system with a time-varying element 
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The numerical experiment shows the occurrence of the 

t parametric resonance (see Fig. 8 (b)) which does not exist in 

 absence of time-periodic parameter (Fig. 8 (a)). 

 (а) 

(b) 

(c) 

. 8 Time histories of the shaft (a) transient signal in the 
sence of time-varying parameter, (b) general view of  
nsient signal in the presence of time-varying parameter 
d (c) Zoomed view of  (b) 
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Therefore, conditions of parametric resonance excitation 

are illustrated in a servo system with distributed parameters of 

the shaft. It is shown that modulation frequencies of the 

compensator estimated as time varying elements can induce 

parametric instability of the system when it is continuous with 

distributed parameters. 

To identify the occurrence of parametric resonance in 

other systems with distributed parameters, consider a following 

electromechanical system which is excited by the mutual 

inductance between rotor and stator windings of the generator. 

 

4. NUMERICAL EXAMPLE II 

 

M.L.Levinshtein[13] performed an experimental 

research of parametric resonance on a synchronous generator 

with capacitance loading, but he considered existence of a 

parametric resonance in a generator only. In the present paper, 

“motor-generator” system with long electrical line shall be 

considered. In the frame of single-phased synchronous 

generator as shown in Fig. 9, it is not difficult to write the 

equation of motion with general variables:  

 

 

 

 

 

 

 

 

 

 

Fig. 9 Motor-Generator electrical transformer system 
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Here are constants and variables used in this section: 

 

eC - electrical constant of motor;  

MC - electromechanical constant of motor; 

CU – maximum value of the mutual inductance 

Iв – excitational current of generator rotor;  

i - current of generator stator;  
J - moment of inertia for «motor-generator» rotors; 

M - mutual inductance of stator windings and generator 

rotor;  

Мвр and Мс – rotational moment of motor and resist moment of 

generator to the shaft 

p- Laplace variable 

R and L – active resistance and inductance of constant 

u – voltage in loading circuit. 

U and I- voltage and current in circuit of constant current 

motor;  

nn ZpW /1)( = - transfer function from voltage to the current of 

the loading circuit. 

nZ - complex resistance of loading (impedance);  
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α - angle of rotational shaft;  

ω - angular rotational speed of motor and generator; 

ξ and γ – some parameters depending on operator р 

 

Alternation of the mutual position between rotor and stator of 

the generator reflects that the inductance of the generator M 

can be changed by time. Ideal law of alternation M and дM/дt 

during constant shaft rotation is generally adapted [14] as 

shown in Fig. 10. 

t 

t 

M(t)

t

M

∂
∂

π /ω0 
2π /ω0 0 

 
 

Fig. 10 Alternating character of the mutual inductance 

according to time during shaft roation 

 

Smooth variation of this dependence is applied in this work:  

M(t) = CU sin (α)= CU sin(ω0t).          (15) 

bviously, the inductance is time-periodic with a basic 

requency ωo and the system becomes time-variant. Applying 

aplace transform to the system equation (14) and arranging 

he equation by the relative angle of rotational shaft α, 
ollowing nonlinear equation can be obtained; 
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here JITk вM /
2

1 = , RLTa /= , 
MeM CCRJT /=  and p is 

aplace operator. 

As the mutual inductance M is the function of rotation 

ngleα , equation (16) is nonlinear. For the purpose of stability 

nalysis of the rotation let us introduce small motion 

erturbation ∆α : α= α*+∆α from unperturbed motion, namely, 

otation of the rotor with constant speed ω0, α*=ω0t. The 

quation (16) is rewritten in terms of ∆α  as follows  
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 (17) 

Since we assumed α* to be periodic, its derivatives are 

eriodic, therefore equation (17) is periodically time variant. 

pplying stationarization [8,15] to equation (17) we can obtain 

pproximate excitation condition of the first parametric 

esonance. 
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where 
2

1 )( un CpWkq = , and p=jω0=jΩ/2, where Ω - 

alternating frequency of the parameter (in this study we 

assumed single pole machine, therefore, Ω =2ω0). 

Equation (18) can be considered as a characteristic 

polynomial with exponential multiplier of some linear 

stationary systems. Equality condition of left part is analogous 

to the searching condition on the boundary of system stability 

with feedback connection which gives following transfer 

function: 

( )
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( ) ( )ϕϕ jejW −−= 5.01
.                         (20) 

Hence, in accordance with Nyquist criterion, uniform 

rotation of the system (motor-generator) rotor with speed ω0 

can be unstable in condition of loading circuit Wn(p) and 

alternating mutual inductance M(t) = CU sinω0t if Nyquist 

diagram of the closed-loop transfer function W(p)W1(jϕ) 
encloses point (–1;j0) on imaginary plane: 

W(jΩ/2)W1 (jϕ) = –1 or W1(jϕ) = – W
–1
(jΩ/2).    (21) 

Therefore, critical frequencies and amplitudes of the 

changing parameter which cause parametric resonance 

excitation can be found. 

Let us consider electromechanical transformer on long 

(250m) electrical line with resistance, inductance and 

capacitance values per unit length: rL=1e-6 Ohm/m, lL=1e-5 

H/m, cL=1e-8 F/m. Lumped loading inductance ln=0.032 H is 

assumed to be attached at the end of the line. Transfer function 

of the long line with reactive loading inductance can be written 

as:  

)(coshsinh)/(sinh

1
)(

pRNN
pWn ⋅+

=
ξξγξ

   (22) 
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LLLξ , 

R(p)= ln p and N indicates the number of finite elements with 

discrete step length h. 

Nyquist diagram and amplitude-frequency characteristic 

of the given system with distributed long electrical line 

loading is shown in Fig. 11. Calculation shows that the first 

parametric resonance can occur at the following frequency 

outskirts: till 5.91; from 151.06 to 151.49; from 302.99 to 

303.19; from 455.20 to 455.30 rad/sec. The most interesting 

resonant frequency is the third one as it is closely located near 

the nominal frequency of the rotation 300 rad/sec. 

As shown in Fig. 11, third frequency mode of the 

distributed parameters crosses the absolute radius of the 

parametric resonance circle. It means that the rotating 
wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms
 

motor-generator systems with 300 rad/sec rotational speed 

may have parametric resonance when the length of the 

electrical line extends to 250 meters. 

Since the frequency response of the given system 

changes according to the length of the electrical line, we can 

imagine that the regions of the parametric resonance changes 

by the length of the line. Figure 12 shows the conditions of 

parametric excitation according to the length of the electrical 

line. As the regions of instability for each mode are not wide, 

each mode was depicted by the square and circle marks. Here, 

we can find that the parametric resonances may occur with the 

following lengths of the line: 170m(2
nd
 mode), 250m (3

rd
 

mode), 310m (4
th
 mode), 360m (5

th
 mode), and so on. 
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Fig. 11 Conditions of first parametric resonance 

excitement on electromechanical transformer with long 

line (250m) loading; (a) Nyquist diagram and (b) 

magnitude versus frequency plot 
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Down
 

Fig. 12 Parametric excitation according to the length of 

electrical line: dotted line – rotation speed of the shaft (300 

rad/sec) 

Numerical experiment was performed with a 

commercial software Simulink (Fig. 13) with equivalent 

transfer functions W1(p) and W3(p): 
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Fig. 13 Block scheme of Simulink for numerical 

experiment 

 

It is easy to prove that in this case whole transfer function  
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coincides with equation (19).  

In case that the transfer function of the loading is 

hyperbolic it is not possible to use a standard simulation tool 

like Simulink. However for the observation of first parametric 

resonance  it is not always necessary to use exact transfer 
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function of equation (22), but enough to use its approximation 

around interesting frequency range.  

Experiment shows the presence of the first parametric 

resonance (Fig. 14).  
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(b) 

Fig. 14 Oscillation growth for the electromechanical 

transformer by numerical experiment. (a) general view, 

(b) fragment of (a) (dotted line – vibration of parameter, 

solid line – vibration in the system). 

 

. CONCLUDING REMARKS 

 

In the present paper we have considered the problem of 

parametric resonance in systems with distributed parameters 

whose equation of motion is described by partial differential 

equation. In this article we have explored two examples of 

such systems and found it useful for ones to use modified 

parametric circle to determine instability regions of 

parametric resonance. Moreover it allows ones to use 

experimental FRFs for the calculation of parametric 

instability regions.  

Occurrence of parametric instability in systems with 

distributed parameters such as robot servo system and 

motor-generator has been shown. It has been demonstrated 

that neglecting distributed parameters in robot servo system 

can cause loss of stability owing to the lack of high frequency 
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Do
modes from the characteristics of continuous systems. 

Stability analysis for an electromechanical transformer 

system, which consists of constant current motor and 

synchronous generator with long electrical lines as a 

distributed loading, was performed for another example of 

parametric resonance. In this example we have shown that the 

mutual inductance between the rotor and stator windings and 

electrical line loading can incur the loss of stability.  

Some future areas of research are to explore a wider 

range of parametric space and higher parametric resonance 

frequencies. Also, a comparison of experimental and 

theoretical results shall be more interesting in those 

distributed parameter systems. Usability of parametric circle 

in order to make an unstable system stable can be also very 

interesting. 
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