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Abstract
Automatic evaluation of non-native speech accentedness has
potential implications for not only language learning and accent
identification systems but also for speaker and speech recogni-
tion systems. From the perspective of speech production, the
two primary factors influencing the accentedness are the pho-
netic and prosodic structure. In this paper, we propose an ap-
proach for automatic accentedness evaluation based on com-
parison of instances of native and non-native speakers at the
acoustic-phonetic level. Specifically, the proposed approach
measures accentedness by comparing phone class conditional
probability sequences corresponding to the instances of native
and non-native speakers, respectively. We evaluate the proposed
approach on the EMIME bilingual and EMIME Mandarin bilin-
gual corpora, which contains English speech from native En-
glish speakers and various non-native English speakers, namely
Finnish, German and Mandarin. We also investigate the influ-
ence of the granularity of the phonetic unit representation on
the performance of the proposed accentedness measure. Our
results indicate that the accentedness ratings by the proposed
approach correlate consistently with the human ratings of ac-
centedness. In addition, our studies show that the granularity of
the phonetic unit representation that yields the best correlation
with the human accentedness ratings varies with respect to the
native language of the non-native speakers.
Index Terms: Automatic accent evaluation, non-native speech,
phonetic representation, posterior features, KL-divergence, dy-
namic programming

1. Introduction
Non-native speakers of a language typically have accent be-
cause they tend to carry the phonetic and prosodic structure,
and pronunciation rules from their mother tongue. Much of the
research in accent evaluation relies on native speakers to listen
to samples of accented speech and rate the accentedness. The
goal of automatic accent evaluation is to automatically identify
the characteristics that contribute to speakers accent. Reliable
and automatic evaluation of accentedness can provide many po-
tential benefits to computer assisted language learning, second
language acquisition research, accent identification, accent clas-
sification, speech and speaker recognition.

In the literature, automatic assessment of non-native speech
has often focused on pronunciation error detection and assess-
ment at the phoneme level. A variety of measures have been
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proposed to measure the pronunciation errors at phoneme level,
such as log-likelihood based measures [1], log-likelihood ra-
tio [2], goodness of pronunciation measure [3], log-posterior
probability scores [1, 4], measures based on phonological fea-
tures [5, 6]. Most of these measures are extracted from the out-
put of an hidden Markov model (HMM) based speech recog-
nizer. To improve the performance of mispronunciation detec-
tion, it is formulated as a 2-class classification task to deter-
mine if the pronunciation of a specific phoneme was ‘correct’
or ‘wrong’. Many classifier-based approaches such as deci-
sion trees [7], linear discriminant analysis [8], logistic regres-
sion classifiers [9] are applied. However, the improvement in
performance comes with a tradeoff that human annotations are
required. On the other-hand, there are approaches to measure
prosodic features of pronunciation [10, 11, 12, 13].

In this paper, we propose an approach to automatically
evaluate the accentedness of non-native speakers (Section 2).
The proposed approach compares the acoustic-phonetic content
in native and non-native speakers speech in an instance-based
framework. One of the main advantage of the proposed ap-
proach is its capability to go beyond instantaneous phoneme-
level scoring, and provide utterance level and speaker level scor-
ing of accentedness. Furthermore, the approach does not re-
quire any human labeled training data. The proposed approach
is motivated from [14], where it was shown that the intelligibil-
ity of synthetic speech can be assessed objectively by compar-
ing instances of synthetic speech and human reference speech.

We evaluate the proposed approach on the EMIME bilin-
gual [15] and EMIME Mandarin bilingual [16] corpora, which
contain English speech from native and non-native speakers
(Section 3). The non-native speakers are from various native
language backgrounds, namely Finnish, German and Mandarin.
We study the impact of the granularity of the phonetic unit rep-
resentation on the performance of automatic accentedness eval-
uation (Section 4). At the utterance level, the accentedness rat-
ings by the proposed approach and the human ratings of accent-
edness correlate with a Pearson coefficient of 0.5 for Finnish
and German speakers and 0.7 for Mandarin speakers.

2. Automatic Accentedness Evaluation
Recently [17, 18], it has been observed that the problem of
matching a text hypothesis (typically represented as a sequence
of lexical units) and an acoustic signal (typically a sequence
of acoustic features) in an automatic speech recognition (ASR)
system can be split into four sub-problems:

1. Definition of a latent symbol set.
2. Modeling the relationship between the acoustic feature

observations and the latent symbols (acoustic model).
Typically, Gaussian mixture models or artificial neural
networks (ANNs) are used as acoustic models.
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3. Modeling the relationship between the lexical units and
the latent symbols (lexical model). This relationship can
be deterministic (i.e., one-to-one) or probabilistic, and is
typically learned or modeled using the acoustic model.

4. Matching of two sequences consisting of the evidence
about the latent symbols from the acoustic model and
the lexical model, respectively. This matching is typi-
cally performed using dynamic programming with local
constraints and a local score that matches the acoustic
and lexical models evidence at each time frame.

The present paper builds on this observation to show that
objective evaluation of accentedness at acoustic-phonetic level
and pronunciation level can be effectively formulated along the
similar lines. That is, objective accentedness evaluation can be
formulated as quantifying the mismatch between an acoustic
signal representing the non-native speech and a text hypothesis
representing the spoken message based on the knowledge of na-
tive speech. In the rest of the section, the four sub problems are
elaborated in the context of objective accentedness evaluation.

Latent symbols: In an ASR system, latent symbols are typi-
cally based on phonemes, such as linguistic knowledge-driven
context-independent phonemes or both linguistic knowledge
and acoustic data-driven clustered context-dependent phonemes
(obtained during decision tree-based state tying). In this pa-
per, we show that the acoustic-phonetic differences between na-
tive and non-native speech can be better captured with clustered
context-dependent phonemes derived using native speech data.

Acoustic model: Modeling the relationship between the acous-
tic feature observations and the latent symbols on native lan-
guage speech data. In the paper, this relationship is modeled
through artificial neural networks (ANNs).

Given an acoustic feature sequence S =
[s1, · · · , sn, · · · , sN ] from a non-native speaker, the
acoustic model estimates a latent symbol conditional
probability vector sequence (posterior probability sequence)
Z = [z1, · · · , zn, · · · , zN ], where N denotes the number of
frames, and

zn = [z1n, . . . , z
k
n, . . . , z

K
n ]T

= [P (c1|sn), . . . , P (ck|sn), . . . , P (cK |sn)]T (1)

Here K denotes the number of latent symbols and P (ck|sn) de-
notes the posterior probability of latent symbol k given acoustic
feature observation sn at time frame n.

Lexical model: The lexical model can be linguistic knowledge-
driven [19] or acoustic data-driven [20]. The first case repre-
sents the HMM-based approach and the second case represents
the instance or template-based approach.

In the case of the linguistic knowledge-driven approach,
a phonetic lexicon containing native pronunciation of words
can be used and the text hypothesis, i.e., the text spoken by
the non-native speaker is represented as a sequence of lexi-
cal units (context-independent phonemes or context-dependent
phonemes). The relationship between lexical units and latent
symbols can be captured through a decision tree (determin-
istic lexical model) or a probabilistic lexical modeling tech-
nique [19]. The probabilistic lexical model can be trained on
native speech. In the case of deterministic lexical model, the
relationship between each lexical unit in the sequence is a Kro-
necker delta distribution of cardinality K, in the case of prob-
abilistic lexical model it is a categorical distribution of cardi-
nality K. The lexical model eventually leads to a sequence of

probability distributions Y = [y1, · · · ,ym, · · · ,yM ]T, where
M is the lexical unit sequence or HMM state sequence length
representing the text hypothesis.

In the case of the acoustic data-driven approach, the
text hypothesis is represented through an instance or in-
stances of speech signal(s) from a native speaker. In this
case, given a acoustic feature observation sequence X =
[x1, · · · ,xm, · · · ,xM ]T from a native speaker, the lexical
model yields a sequence of latent symbol posterior probability
vectors Y = [y1, · · · ,ym, · · · ,yM ]T based on the acoustic
model or an ANN. M in this case is the number of frames.

Matching of sequences Z and Y using dynamic program-
ming: In dynamic programming, the local (temporal) con-
straints are dictated by the reference sequence Y . More pre-
cisely, when the lexical model is linguistic knowledge-driven,
i.e., HMM-based, the accumulated score A(m,n) is typically
computed as

A(m,n) = S(ym, zn)+

min
[
A(m,n− 1), A(m− 1, n− 1)

]
where S(ym, zn) is a local score that matches the acoustic
model evidence zn at time frame n with the lexical model evi-
dence ym at HMM state m. The local constraints here are the
self transition of an HMM state (A(m,n − 1)) and transition
from the preceding state (A(m − 1, n − 1)). The above equa-
tion assumes uniform transition probabilities.

In the case of the instance-based approach, A(m,n) can be
computed using Itakura constraints, i.e.,

A(m,n) = S(ym, zn)+

min
[
A(m,n− 1), A(m− 1, n− 1), A(m− 2, n− 1)

]
The accumulated score A(M,N) is normalized by the path
length. The local match S(ym, zn) can be based on a mea-
sure that compares two probability distributions. In this paper,
we use symmetric Kullback-Leibler divergence, i.e.,

S(ym, zn) =
1

2
·

K∑
k=1

[
zkn log

( zkn
yk
m

)
+ yk

m log
(yk

m

zkn

)]
(2)

The use of KL-divergence can be motivated from information-
theoretic sense and hypothesis testing [21].

Given that the acoustic model (ANN) is trained on native
speech and the lexical model is based on native speech data,
it can be expected that S(ym, zn) measures the instantaneous
acoustic-phonetic mismatch, which when integrated over time
through dynamic programming with local constraints yields
pronunciation level mismatch between native and non-native
speech. In other words, we hypothesize that the cumulative
score A(M,N) estimated in the proposed manner is a good
measure of accentedness. We demonstrate that in the present
paper using the instance-based lexical model approach.

In the literature [22], a combination of dynamic program-
ming (using dynamic time warping) and classifier-based ap-
proaches was proposed for mispronunciation detection using
spectral features and Gaussian posteriorgrams. However, mea-
suring the acoustic-phonetic differences in spectral domain is
difficult as it is more vunerable to undesirable variabilities such
as speaker and environment. In this paper, the acoustic-phonetic
differences between native and non-native speech are measured
using latent symbol posterior probability sequences estimated
through an ANN. ANNs are discriminative classifiers, and can
provide invariance towards undesirable variabilities.



3. Experimental Setup
The experimental evaluations presented in this paper are con-
ducted on the data from the EMIME bilingual [15] and EMIME
Mandarin bilingual [16] corpora.

Speakers: The study consists of English speech from native
and non-native speakers. We used the same three English utter-
ances used in [15, 16, 23] spoken by all the speakers for which
subjective accentedness ratings are available.

• Native speakers: 14 native English speakers consisting
of seven male and seven female speakers from a vari-
ety of native accents namely, Scottish, Southern-English,
American, New Zealand and Australian accents.

• Non-native speakers: 14 non-native English speakers
from each native language group i.e., German, Finnish or
Mandarin. Each language group consists of seven male
and seven female speakers.

The native language of the three non-native language groups
used in study is from different language families: English
and German both belong to the Germanic branch of the Indo-
European language family; Finnish belongs to the Finnic lan-
guage family; Mandarin belongs to the Sino-Tibetan language
family. English and German are closely related and share many
features. For example, the phonemes of English and German
are similar, as are stress and intonation patterns. Furthermore,
the non-native English speakers learned English in a variety of
places and from a variety of English-accented teachers.

Human accentedness ratings: Human accent ratings were col-
lected at University of Edinburgh in sound isolated booths [15,
16]. Accent ratings were collected from 18 female and 10 male
English monolingual listeners. The database also consists of
accent ratings non-native listeners, however we have not used
them in this study. The listeners were asked to score the degree
of foreign accent for each utterance on a scale from 0 or “no for-
eign accent” to 6 “strong foreign accent”. The listeners showed
moderate to substantial inter-rater agreement [15, 23]. More
analysis of accent ratings by native and non-native listeners is
in [23].

MLPs: In this paper, we use multilayer perceptrons (MLP)s
as phoneme posterior probability estimators. We use the Wall
Street Journal (WSJ) corpus [24] as domain-independent data
to train the MLPs. We used the SI-284 training data which
contains approximately 80 hours of speech data (or 36,515 ut-
terances from 284 speakers). Phoneme-based lexicon was ob-
tained from the CMUDict pronunciation dictionary and consists
of 40 context-independent phones including silence.

The input to all the MLPs is 39-dimensional perceptual lin-
ear prediction (PLP) features with a nine frame temporal con-
text (i.e., four frame preceding and four frame following con-
text). We use five-layer (one input, three hidden and one output
layer) MLPs that are trained with the frame level cross entropy
error criteria using the Quicknet software.Each hidden layer
consisted of 2000 hidden units. The target labels for the MLPs
were obtained from the HMM/GMM system.

We also investigate the influence of the granularity of the
phonetic unit representation on the performance of the proposed
accentedness measure. Therefore, various MLPs were trained
which differed mainly in terms of the number of output units.

• MLP-CI-40: An MLP trained to classify 40 context-
independent phones.

• MLP-CD-N: MLPs trained to classify N context-
dependent phone states. The context-dependent phone
states were obtained by decision tree-based state cluster-
ing of context-dependent phones in HMM/GMM frame-
work. The different number of context-dependent phone
states N (N ∈ {183, 419, 1013, 1915, 2832}) were ob-
tained by varying the hyper parameters the state oc-
cupancy count and the log-likelihood threshold during
decision-tree based state clustering.

Automatic accentedness evaluation: Accentedness scores are
computed through the instance-based lexical model approach
described in Section 2. In the literature, it has been argued that
the performance of accent and pronunciation evaluation sys-
tems is higher at utterance and speaker levels than at word and
phoneme levels [25]. Furthermore, speaker level accent ass-
esment also demonstrates the extent of consensus among the
ratings of various utterances. In this paper, we compute both
utterance and speaker level accentedness scores as follows:

• Utterance-level scores: Accentedness scores are com-
puted between an instance of non-native speech utter-
ance and the seven native speech utterances from the
same gender as the non-native speaker. The minimum
of the resulting seven scores is considered as the accent-
edness score for that utterance and the particular speaker.

• Speaker-level scores: The utterance level accentedness
scores for the three utterances of a speaker are averaged
to obtain the speaker level accentedness score.

4. Results
The accentedness scores by the proposed approach are corre-
lated (by computing the Pearson correlation coefficient) with
the human ratings of accentedness at the utterance level and
speaker level.

4.1. Utterance-level analysis

Table 1 presents the utterance level correlation between the ac-
centedness scores by the proposed approach and the human
accentedness ratings for Finnish, German and Mandarin non-
native speaker utterances with increasing phonetic granularity.

The results in the first row of the table indicate that when
context-independent phonemes are used, the proposed approach
achieves higher correlation with respect to the human ratings
for Mandarin speaker utterances followed by Finnish and Ger-
man speaker utterances. For German speaker utterances, the
context-independent phonemes yield very low correlation with
respect to the human ratings. As discussed before, the reason
for this could be that English and German belong to same lan-
guage families and hence there are a number of aspects of Ger-
man that help with the correct production of English. In the
literature, it was observed that phoneme-level mispronunciation
detection approaches when applied to non-native speech that is
closer to native speech, result in poor correlation with the hu-
man ratings of accentedness [26, 27]. The results in first row of
Table 1, inline with the literature, indicate that it is difficult to
predict the accentedness of German speaker utterances than the
accentedness of Mandarin speaker utterances.

It can be observed from Table 1 that the effect of granu-
larity of the phonetic representation on the correlation depends
on the native language of the non-native speakers. Particularly,
for German speaker utterances, as the granularity of the pho-
netic representation increases, the correlation with human rat-
ings also increases. However, for Finnish and Mandarin speaker



Table 1: Correlation at utterance level between accentedness
scores of the proposed approach and human ratings for Finnish,
German and Mandarin non-native speakers.

# of latent
symbols Finnish German Mandarin

40 0.45 0.29 0.62

183 0.39 0.44 0.64
419 0.42 0.48 0.61
1013 0.46 0.53 0.64
1915 0.48 0.52 0.63
2832 0.49 0.55 0.66

Table 2: Correlation at speaker level between accentedness
scores of the proposed approach and human ratings for Finnish,
German and Mandarin non-native speakers.

# of latent
symbols Finnish German Mandarin

40 0.52 0.49 0.72

183 0.53 0.74 0.72
419 0.54 0.79 0.70
1013 0.54 0.79 0.72
1915 0.54 0.80 0.70
2832 0.56 0.80 0.73

utterances, the increase in the granularity of the phonetic repre-
sentation did not result in significant increase in the correlation
values.

4.2. Speaker-level analysis

Table 2 presents the speaker level correlation between the ac-
centedness scores by the proposed approach and the human
accentedness ratings for Finnish, German and Mandarin non-
native speakers with increasing phonetic granularity. The re-
sults show that the proposed approach achieves higher correla-
tion with human accent ratings at the speaker level than at the
utterance level.

Similar to the utterance level correlation, results in the
first row of the table indicate that when context-independent
phonemes are used, the proposed approach achieves higher cor-
relation with respect to the human ratings for Mandarin speak-
ers followed by Finnish and German speakers. For German
speakers, as the granularity of the phonetic representation in-
creases, the correlation with human ratings also increases, while
for Finnish and Mandarin speakers, the increase in the granu-
larity of the phonetic representation did not result in significant
increase in the correlation values. The results indicate that the
finer-granularity phonetic representation particularly improves
the automatic accentedness evaluation performance of German
speakers whose native language is closer to English.

The boxplots in Figure 1 show the z-scores using the human
accentedness ratings and automatic accentedness ratings with
the proposed approach ( with 2832 clustered context-dependent
phonemes) for female and male speakers, respectively. For
both human ratings and automatic ratings, larger score indicates
greater degree of accentedness. In the boxplots, FF represents
Finnish female, GF represents German female, MF represents
Mandarin female, FM represents Finnish male, GM represents
German male and MM represents Mandarin male. The figures
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Figure 1: Accentedness scores based on human accent ratings
and the proposed approach

indicate that the speaker level trends in the accentedness rat-
ings by humans and proposed approach are correlated. Detailed
description of the boxplots can be found in the research report
version of the paper [28].

5. Conclusions
We proposed a novel approach for automatic accentedness eval-
uation of non-native speech based on comparison of acoustic-
phonetic information obtained through an instance of non-
native speech and the lexical and pronunciation information ob-
tained through instances of native speech. We investigated the
impact of the granularity of the phonetic unit representation on
the performance of the proposed accentedness measure. Our
investigations showed that the accentedness scores by the pro-
posed approach correlate well with the human ratings of accent-
edness at both utterance level and speaker level. Furthermore,
the granularity of the phonetic unit representation that results in
optimal correlation with human accentedness ratings depends
on the native language of the non-native speakers.

In this paper, the lexical and pronunciation structure were
imposed through instances of native speech. As discussed
in Section 2, this structure can also be imposed through a
probabilistic lexical model trained on a native speech database
through approaches such as Kullback-Leiber divergence based
HMM. This provides two primary advantages. Firstly, it avoids
the need for a reference native speech utterance. Secondly, it
allows to localize individual phoneme or word level pronunci-
ation errors and to provide a detailed error feedback to a non-
native speaker or second language learner. Finally, a complete
accent evaluation system should include assessment of prosodic
characteristics of non-native accent. Our future work will focus
on extending the approach to use linguistic knowledge-driven
lexical model and to include prosodic features of accent.
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