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Abstract

We present a Surrogate (semi-empirical) model for prediction of cellular response to the surfaces of biodegradable polymers that have

been designed for tissue engineering applications. The predictions of our model, when tested against experimental results, show a high degree

of accuracy that is sufficient for rational design of polymeric materials for biomedical applications. The model was determined by fitting

experimental data for a series of 62 polyarylates to a small number of polymer structure-based ‘molecular descriptors’ using the technique of

partial least squares (PLS) regression. While PLS is commonly applied in quantitative structure activity relationship (QSAR) analysis

employed in the pharmaceutical industry, this study marks the first time the technique has been extended to the problem of biomaterials

discovery/design. Quantitative predictions of cellular response to six polymers (untested prior to model building) concurred with experiment

within 15.8% on average. This performance compares quite favorably with the overall variation in experimental values for the library of

polyarylates. Examination of the PLS ‘loadings’ reveals those structure-based features most associated with variations in the polymer

performance properties, thereby providing direct guidance to the synthetic chemist in biomaterials design.

q 2004 Published by Elsevier Ltd.
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1. Introduction

We have generated and tested a semi-empirical model for

the prediction of cellular response to polymer surfaces for a

combinatorial library of tyrosine-derived biodegradable

polymers (polyarylates). The procedure employed is based

on quantitative structure activity relationship (QSAR)

model protocols developed by researchers in the pharma-

ceutical industry for designing small-molecule compounds

with optimized bioactivity. Briefly, the process consists of

associating calculated molecular structure-based features

known as ‘molecular descriptors’ with experimentally

measured properties in a phenomenological manner.
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While there are many advantages in applying this strategy

to biomaterials development, doing so poses several specific

challenges. Both the advantages and the challenges will be

treated in detail in this introduction.
1.1. Structure/property correlations in the development of

polymeric materials

While correlations between chemical structure and

macroscopic polymer properties have been explored since

the 1930s (when the macromolecular structure of polymers

was first recognized), this has typically not been done

systematically. Traditionally, a given property is studied for

a collection of structurally unrelated materials (e.g. a group

of test materials consisting of polyethylene, Teflon, Dacron,

etc). It is impossible to draw global conclusions from such
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studies; observed structure/property relationships may well

not be general and cannot be extrapolated to other sets of

test materials. This type of sequential or ad hoc materials

development has certainly been one of the major limitations

to new materials discovery in biomedical materials science

[1]. Here the inherent complexity of biological responses to

materials and the lack of a unified theory to explain such

interactions severely limit the scope of conclusions that can

be drawn from any series of experiments involving only a

handful of disparate candidate materials [1]. To date, most

biomaterials development consists of studies involving

various surface modifications of the same off-the-shelf

materials (PEG, PP, PS, PLA, etc.) that have been chosen

for their availability rather than their suitability for any

particular application [1,2]. A more rewarding approach is

to study sets of polymers that share common structural

features and use the information gained from such analysis

in the design of new materials tailored for specific

applications [3–6].

In this context, we define a ‘library’ as a group of test

materials in which all members share common properties

and common structural features to some degree. These

shared properties and features facilitate the construction of

quantitative structure-performance relationship (QSPR)

models that can predict properties of untested polymers

and can guide the rational design of novel polymers within

the same family. Such a strategy, successfully employed,

yields optimized materials while saving an enormous

amount of resources and labor in biomaterials development

(particularly in the synthesis and testing stages).

1.2. The need for a combinatorial and systematic approach

to biomaterials design

Combinatorial approaches, which lend themselves to

QSAR protocols, have profoundly altered the process by

which potential new drugs are identified [7]. These

approaches, often collectively known as Combinatorial

Chemistry (‘CombiChem’), involve the automated syn-

thesis of tens of thousands to millions of compounds as

randomly distributed moieties within a single reaction

vessel followed by the identification of potentially active

compounds in a selective bioassay. This basic methodology

has also been successfully implemented in the design of

catalytically active polymers [3].

A combinatorial approach is most effective when

discernible correlations between the basic design variables

(e.g. biomaterial chemistry and structure) and the perform-

ance of the product material are not available. This is clearly

the case for materials being designed for tissue engineering

scaffolds where the relationship between molecular struc-

ture and performance (i.e. cell–biomaterial interactions) is

largely unknown [1]. Likewise, the use of combinatorial

methods may be the most cost-effective and rapid approach

whenever interdependent requirements and a large number

of parameters result in unacceptably complex experimental
designs. Again, biomaterials design with its many require-

ments and parameters is an appropriate area for the

consideration of combinatorial methods—especially as an

initial screening technique to identify promising polymer

structures for further study.

1.3. The challenge of applying ‘CombiChem’ methods to

biomaterials design

The major problem in applying the traditional Combi-

Chem approaches to polymeric materials discovery stems

from the fact that it would generate thousands or millions of

polymers within a single test tube. The mixture created by

this process would be a blend of polymers that could not be

resolved into individual, homogeneous materials for testing.

A more feasible combinatorial approach is to employ

parallel synthesis of a system of monomers such that each

resulting polymer is obtained in pure form in its own

reaction vessel. This strategy permits the measurement of

biomaterial properties of each homogeneous polymeric

material in the library [8].

An additional complication arises with regard to testing

or evaluating candidate biomaterials in a combinatorial

fashion. While it is possible to devise simple high-

throughput assays that allow one to test millions of

compounds for some specific biological activity, there is

no simple bioassay that can identify a suitable biomaterial

within a group of polymers. This is simply because the

relationship between materials structure and biological

response is currently unknown. Therefore, combinatorial

biomaterials design requires innovative fundamental

research to identify the best predictors of biocompatibility.

This, in turn, requires simple test assays that can be

performed rapidly and inexpensively on a large number of

test specimens. Several examples of these (e.g. protein

adsorption and cellular response) have been under devel-

opment by the Kohn group [9,10]. The availability of

combinatorial libraries of candidate materials, together with

high-throughput procedures for measuring biorelevant

properties, offer a superior platform on which to develop

important correlations between design and performance/

function for biomedical applications.

1.4. Computational modeling of virtual polymer libraries

The use of computational methodologies has been sparse

in the field of biomaterials, and computations involving

molecular-level properties are virtually non-existent [11,

12]. Most of this is due, of course, to the inherent

complexity involved in modeling bioresponse phenomena.

However, considering the significant contributions compu-

tational methodologies have made to virtually all fields of

research and development as well as the advent of relatively

inexpensive, high-performance computing hardware and

software, the introduction of these methodologies to

biomaterials science is a timely endeavor.
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Virtual polymer libraries constructed and evaluated

entirely in silico provide an extraordinary tool to explore a

wide range of new polymer compositions in a rapid and

cost-effective manner. Briefly, virtual polymer libraries are

large numbers of polymer structures that are created on a

computer using various molecular modeling environments.

Computational models evaluate members of virtual libraries

using ‘molecular descriptors’ (i.e. quantifications of some

aspect of molecular structure) to predict polymer properties

such as biological response. Ultimately, this allows the

rational selection of a smaller subset of these virtual

polymers for actual synthesis and exploration. Although this

approach is common and effective in drug discovery, as yet

it has not been applied widely as a tool in biomaterials

design.

1.5. QSAR models for materials property prediction/design

Computational techniques intended to build, screen, and

mine virtual libraries of compounds have evolved rapidly in

recent years as an efficient strategy for molecular discovery

and optimization. In the field of drug discovery, QSAR

models are constructed to correlate the experimentally

determined properties of this subset of compounds with

their calculated molecular descriptors. The QSAR models

enable prediction of target properties for the full library of

compounds. Then experimentation can be used to confirm

predictions, particularly for those compounds found by the

model as optimal for the desired application. One of the

most successful approaches is an iterative process that

cycles through prediction and experiment several times,

with each cycle yielding improved agreement between

prediction and experiment. Each cycle represents an

enrichment process that culminates in compounds (e.g.

biomaterials) with optimal performance properties. Exper-

imental testing is reserved only for those compounds

predicted to exhibit optimal performance.

Preliminary results showing the feasibility of the present

approach have already been reported. Using Kohn’s library

of polyarylates, Reynolds [13] used similar techniques to

predict several polymer properties without extensive (i.e.

expensive) experimentation [10,14]. Reynolds first created a

virtual polymer library, then employed similarity–diversity

analysis and a genetic algorithm-driven QSPR model to

design diverse and focused libraries of copolymers. He

found that the same concepts of molecular similarity and

diversity, so useful in the pharmaceutical industry to

discover new drug candidates, to be highly amenable to

synthetic polymers.
2. Methodology/background

2.1. The library of tyrosine-derived polyarylates

The Kohn laboratory has used combinatorial chemistry
techniques to prepare a series of structurally related

polyarylates derived from monomers consisting of a

tyrosine-derived diphenol and a diacid (Fig. 1). In the

combinatorial approach, ‘AB’ copolymers are synthesized

from a set of x structural variations of ‘A’ and y structural

variations of ‘B’. The ‘A’ monomer template in the

polyarylate library is the DTR diphenol shown in Figs. 1

and 2 while the ‘B’ monomer template is a dicarboxylic acid

shown in Fig. 1. All possible combinations with the

available 14 diphenols and 8 diacids yield 112 structurally

distinct, but closely related, polymers. These can be

prepared within one week in a custom designed parallel

synthesis reactor [10,14].
2.2. Combinatorial libraries and phenomenological

property prediction

A familiar example illustrates the utility of such a

combinatorial polymer design and molecular descriptors in

the phenomenological prediction of polymer properties.

With regard to the measured glass transition temperature Tg
for each of the 112 polyarylates in the library, it is possible

to sort the polymers such that there is a gradual progression

from low to high Tg (Fig. 3). However, the relationship

between the sorting scheme and the chemical structures of

the polymers is unclear and highly non-intuitive. By

introducing an exceedingly simple polymer structural

descriptor called the ‘total flexibility index’ (TFI), a useful

exponential relationship between Tg and TFI emerges

(Fig. 4). TFI is defined as the number of carbon and oxygen

atoms in the variable portions of the backbone and pendent

chain. In fact, it has been shown [13] that measurements of

Tg performed on a representative subset of 17 polyarylates

make it possible to predict Tg for each of the remaining 72

with a relatively high degree of accuracy. The use of

structural descriptors thus makes experimentation beyond

the representative subset unnecessary, yielding considerable

savings of time and resources.

The present study was inspired by the search for

molecular descriptors that can be correlated with the

performance properties of polyarylates in biomedical

applications (e.g. protein adsorption and cell response/pro-

liferation). Though the relationship between polymer

structure and biological response is likely far more

complicated than that of physico-mechanical properties

such as Tg, computational molecular modeling techniques

make this approach possible. In addition, the polyarylate

library is ideal for testing QSPR models of biological

response based on polymer structure. Despite their struc-

tural similarity, the polyarylates show an impressive (and

reproducible) variation in fibrinogen adsorption of over

360% and in cell response of w201% [9,10] that can be

directly related to changes in structure (viz. Section 2.4).



Fig. 1. Library of 112 polyarylates obtained from 14 tyrosine-derived diphenols and eight diacids. Polymers are strictly alternating copolymers consisting of a

diacid (DA) and a diphenol (DP) component varied at Y and R, respectively. The number of methyl groups in the DP component is also variable.
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2.3. Tyrosine-derived diphenols as monomers

The basic structure of desaminotyrosyl–tyrosine alkyl

esters (DTR, Fig. 2) consists of a unit of ‘desaminotyrosine’

and a unit of L-tyrosine alkyl ester, linked together via a

regular peptide bond. DTR is a derivative of naturally

occurring tyrosine dipeptide with the important structural

modification that the N terminus of the peptide was replaced

by a hydrogen atom and the C terminus of the peptide is

protected by an alkyl ester chain of variable length and

structure. This particular design gives rise to a versatile

diphenolic monomer that can be used in numerous other

polymer systems [14–17].
2.4. Experimental data: cell response studies

Studies of the response of fetal rat lung fibroblasts
Fig. 2. Chemical structure of DTR diphenols. Note that the monomers form

a homologous series, differing only in the length of their respective pendent

chain (R). Commonly used pendent chains are ethyl (E), butyl (B), hexyl

(H), octyl (O), and dodecyl (D) esters.
(FRLF) to polymeric substrates were performed as follows.

Polyarylates were spin coated onto glass cover slips that

were inserted into the bottom of wells in 24-well

polystyrene plates [10]. Four samples of each polyarylate

composition were created in order to provide adequate

statistics. 104 cells/cm2 in Dulbecco’s modified Eagle’s

media supplemented with 10% heat-inactivated fetal bovine

serum were seeded using the drop culture technique into

each of the polyarylate-coated wells. A separate tissue

culture polystyrene (TCPS) 24-well plate was used as a

control. Wells were then incubated for 1 h at 30 8C.

Subsequently, the wells were washed with PBS, replenished

with media, and then incubated again at 37 8C. After seven

days of incubation, the metabolic activity of remaining cells

in each well was measured using a commercially available

MTS colorimetric assay (Promega, Madison, WI). Cellular

response to each polyarylate sample was then quantified as

‘normalized metabolic activity’ (NMA), which was its

average measured metabolic activity given as a percentage

of the average measured value for the TCPS wells. The

average standard deviation over these measurements was

8.54% (NMA). The average percent standard deviation,

where percent standard deviation is defined as the standard

deviation expressed in terms of a percent of the mean, was

23.1%. Of the possible 112 polyarylates, 62 compositions

were selected randomly for testing prior to modeling.

Following model building, six compositions that did not



Fig. 3. Bar graph illustrating the complexity of the relationship between glass transition temperatures of 112 polymers in the polyarylate library and structure.

While it is possible to sort the polymers such that there is a gradual progression from low to high Tg, the relationship between the sorting scheme and the

chemical structures of the polymers is unclear and non-intuitive.
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belong to the 62 polymer training set were tested for cellular

response in separate experiments (same protocol). These

additional six polymers were chosen to probe the accuracy

of model predictions over their full range. Two of them were

predicted to yield high values of FRLF NMA, two were

predicted to yield middling values and two very low values.

The test was ‘blind’ in the sense that these six samples had

not been cell culture tested—prior to model building. Such a

test provides a clear illustration of the predictive capability

of QSPR models, thereby decreasing the experimental

burden through in silico selection, rational design and

evaluation of candidate polymers.
Fig. 4. Exponential correlation between the glass transition temperature of indiv

flexibility index’ (x), a descriptor that describes the chemical structure of the polym

equation provided [yZ127.48e(K0.11818x)], the glass transition temperature (y) of e

the library can be predicted.
2.5. Molecular descriptors

Construction of the virtual polymer libraries and the

QSPR models depends on the generation of molecular

descriptors. It is possible to calculate thousands of these

directly from the structure of any particular polymer using

widely available molecular modeling tools [18]. Although

the number of ‘molecular descriptors’ ranges in the

hundreds and perhaps thousands, they can be divided into

the several general categories (Table 1). For the present

example, we deliberately selected only a relatively small

number of molecular descriptors that satisfied two criteria:
idual polymers contained within the library of polyarylates and the ‘total

ers. This illustrates the utility of the phenomenological approach. Using the

very one of the thousands of theoretical polymer structures contained within



Table 1

Categories and examples of molecular descriptors

Category Requirement Example

Constitutional Molecular composition Mw, number of atoms/bonds, number of H-bond donors/acceptors

Topological 2-D structural formula Kier–Hall indices, extent of branching

Geometrical 3-D structure of molecule Molecular volume, solvent accessible surface area, polar and non-polar surface area

Electrostatic Charge distribution Atomic partial charges, electronegativities

Quantum mechanical Electronic structure HOMO–LUMO energies, band gap, dipole moment
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(i) they could be calculated easily (i.e. no quantum

mechanical descriptors); and (ii) they were physically

intuitive and directly related to gross structural and/or

molecular bio-physical properties. The rationale for this

decision was that the present study was not meant to be

exhaustive but, rather, as a demonstration of the general

approach.

This selection process yielded the set of 15 descriptors

shown in Table 2. The unsaturation index refers to the

counting of unsaturated (double, triple, aromatic) bonds; the

hydrophilic factor is a measure of the number of hydrophilic

functional groups; and the aromatic ratio is the ratio

between the number of aromatic bonds and total bonds in

the H-depleted molecule. The molar refractivity is a

classical measure of molecular volume and dispersion

(London, van der Waals) forces that govern non-polar

intermolecular interactions; and log P; defined as the

logarithm of the octanol–water partition coefficient, pro-

vides a measure of the hydrophobicity of the molecule.

Values of these molecular descriptors were calculated for

all of the 112 polyarylates, where each polymer was

represented as a defect-free, linear chain of three repeat

units in length. Subsequently, the descriptors were used to

generate the QSPR models.
2.6. QSPR models

The complete list of polymers whose experimental cell

response data was used to build the QSPR models appears in

Table 3. Generally speaking, QSPR model building involves

the application of statistical regression methods that
Table 2

Summary of 11 molecular descriptors employed to build initial QSPR models

Descriptor type

Functional groups

Empirical descriptors

Molecular properties

a Five descriptors that contributed to the best model.
quantify the relationship between changes in structure and

changes in the target property.

At this stage, our primary objectives were three-fold: (i)

to build statistically robust QSPR models in which the cell

growth (as measured by NMA) was correlated with

theoretically calculated molecular descriptors rather than

with experimental data (Tg, air–water contact angle, etc.);

(ii) to identify those particular molecular descriptors that are

most important in explaining the observed variations in

NMA among these polyarylates; and (iii) to apply the QSPR

models for predicting the NMA for the remaining 50

polyarylates (i.e. those not used for model building) and for

selecting individual polyarylates from this subset that are

predicted to exhibit high NMA values.
2.7. Partial least-squares (PLS) regression and principal

component analysis

The present QSPR models attempted to correlate the

target property (FRLF NMA) with molecular descriptors

using partial least-squares (PLS) regression [19–22]. Here

we provide only a summary of these methods as the details

appear elsewhere [23–28].

PLS is a popular and powerful computational method

that expresses a dependent variable (target property) in

terms of linear combinations of the independent variables

(molecular descriptors) commonly known as principal

components (PCs) [29,30]. While the descriptors them-

selves may be interdependent (covariant), the PCs so

generated are independent (orthogonal). The calculation is

briefly described as follows. First, a (square) matrix is
Name

Number of primary carbons (sp3)

Number of secondary carbons (sp3)

Number of tertiary carbons (sp3)a

Number of substituted aromatic carbons (sp2)

Number of branches in pendent chain (aliphatic)a

Unsaturation index

Hydrophilic factor

Aromatic ratio

Molar refractivity (MR)a

Polar surface area (PSA)a

Logarithm of the octanol–water partition coefficient ðlog PÞa



Table 3

List of 62 polyarylates used to build the QSPR model, together with values of biological activity (FRLF NMA) and % standard deviation across four

independent measurements

No. Pend Diacid FRLF NMA (%TCPS) STDEV (%TCPS)

1 DTB Adipate 32.29 30.02
2 DTB Diglycolate 75.89 2.51
3 DTB Dioxaoctanedioate 82.81 9.87
4 DTB Methyl adipate 35.12 4.29
5 DTB Sebacate 58.05 4.32
6 DTB Suberate 76.34 9.63
7 DTB Succinate 75.82 9.63
8 DTBn Adipate 52.48 18.18
9 DTBn Diglycolate 73.77 7.43
10 DTBn Dioxaoctanedioate 69.93 10.24
11 DTBn Glutarate 71.49 4.75
12 DTBn Methyl adipate 32.01 23.05
13 DTBn Sebacate 66.53 1.90
14 DTBn Suberate 67.24 10.79
15 DTBn Succinate 77.77 8.87
16 DTD Adipate 2.00 1.98
17 DTD Diglycolate 67.65 7.63
18 DTD Dioxaoctanedioate 66.31 4.64
19 DTD Glutarate 18.83 14.02
20 DTD Methyl adipate 20.83 5.44
21 DTD Sebacate 7.92 6.97
22 DTD Suberate 31.48 3.34
23 DTE Adipate 75.66 8.32
24 DTE Diglycolate 82.00 1.03
25 DTE Dioxaoctanedioate 77.69 12.45
26 DTE Glutarate 78.47 7.34
27 DTE Methyl adipate 38.55 15.15
28 DTE Sebacate 68.40 3.32
29 DTE Suberate 69.51 10.03
30 DTE Succinate 97.59 5.20
31 DTH Adipate 16.48 22.77
32 DTH Diglycolate 69.50 6.38
33 DTH Dioxaoctanedioate 59.09 9.06
34 DTH Glutarate 52.80 3.88
35 DTH Methyl adipate 25.48 7.05
36 DTH Sebacate 50.62 8.73
37 DTH Suberate 63.64 5.89
38 DTH Succinate 30.18 13.46
39 DTiP Adipate 62.36 14.05
40 DTiP Diglycolate 81.44 11.47
41 DTiP Dioxaoctanedioate 70.89 6.22
42 DTiP Glutarate 79.79 11.94
43 DTiP Methyl adipate 85.01 13.04
44 DTiP Sebacate 78.30 6.09
45 DTiP Suberate 70.44 5.63
46 DTiP Succinate 77.07 14.67
47 DTM Adipate 86.22 16.24
48 DTM Diglycolate 88.33 1.95
49 DTM Dioxaoctanedioate 84.61 0.93
50 DTM Glutarate 94.60 9.03
51 DTM Methyl adipate 78.00 8.17
52 DTM Sebacate 87.85 5.32
53 DTM Suberate 80.71 14.16
54 DTM Succinate 114.66 2.72
55 DTO Adipate 4.80 4.94
56 DTO Diglycolate 66.69 0.69
57 DTO Dioxaoctanedioate 71.67 4.32
58 DTO Glutarate 43.18 4.13
59 DTO Methyl adipate 40.88 7.50
60 DTO Sebacate 17.58 6.71
61 DTO Suberate 47.38 5.52
62 DTO Succinate 25.57 14.15
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created to represent the relationship between the descriptors

and the experimental NMA data. Then, the eigenvalues and

eigenvectors of that matrix are determined. The eigenvector

associated with the largest eigenvalue has the same

direction as the first principal component (PC1) and the

eigenvector associated with the second largest eigenvalue

determines the direction of the second principal component.

Similarly, the second principal component (PC2) has the

same direction as the eigenvector associated with the second

largest eigenvalue, and so on. PC1 explains the greatest

amount of variance in the target property, PC2 is next best,

etc. The PLS equation, then, assumes the following form for

the case of ‘n’ molecular descriptors:

PLS : target property

Z a0 Ca1ðPC1ÞCa2ðPC2ÞCa3ðPC3ÞC.

CanðPCnÞ (1)

Each PC can be decomposed into its ‘loadings’ which

reveals the individual contributions from the original set of

molecular descriptors. The loading of an individual

molecular descriptor indicates how much this variable

participates in defining the PC (the squares of the loadings

indicate their percentage in the PC). This information is

extremely valuable since the leading PCs (esp. PC1 and

PC2) embody those descriptors that correlate most strongly

with the target property and, thus, provide clues to achieving

optimal polymer design. Knowledge of these key molecular

descriptors often provides insights into the fundamental

mechanism of action, and, indeed, may suggest new design

strategies and synthetic targets beyond the original library.
2.8. Validation

The final QSPR model was first validated internally using

‘leave one out’ (LOO) cross-validation. The LOO procedure

provides a quantitative assessment of the capability of the

model to provide predictions for polymers outside the

training set. In LOO, n different models are constructed

(where n is the number of training set elements). In this case,

nZ62 for the 62 polyarylates represented in Table 3. In each

of the QSPR models, a different training set member is ‘left

out’; i.e. each model has a training set of exactly nK1

elements. Each model is then used to predict the biological

response of the training set element that is ‘left out’. The

success of the models is evaluated using the cross-validated

correlation coefficient (q2) defined as:

q2 Z
SSDKPRESS

SSD
(2)

where SSD is the sum-of-squared deviations of the

experimentally measured NMA values of the polymers

around the mean value, and PRESS represents the sum of

the squared differences between the predicted and actual

target property values for every compound.
The model is generally considered internally predictive if

q2O0.5 (where q2 can vary from KN to 1.0). The optimal

number of components corresponds to that which yields

either the smallest rms error or the largest q2 value. A final

PLS analysis was performed inclusive of all compounds in

the data set, yielding a conventional (correlation coefficient)

r2 value which provides a measure of the internal

consistency (goodness of fit) of the model.

Following this internal validation, the model was

evaluated externally using a test set of polymers with

experimentally measured properties that were not used to

build the QSPR model. Following this, the QSPR model is

considered suitable for making accurate predictions outside

of the training set of polymers.
3. Results and discussion

The optimum model achieves the highest accuracy using

the minimum number of descriptors. Therefore, the

procedure described above was attempted with all possible

combinations of the descriptors in Table 2. It was

determined that the presence of the five descriptors denoted

by an ‘a’ in that table was necessary for any model to meet

the internal validation accuracy measure described in the

previous section. However, it was also discovered that

adding the remaining descriptors from Table 2 did not

improve the accuracy in any of the models. Therefore, only

the five best descriptors [i.e. number of tertiary carbons

(sp3); number of branches in pendent chain (aliphatic);

molar refractivity (MR); polar surface area (PSA); and

logarithm of the octanol–water partition coefficient ðlog PÞ]

were included.

The results are summarized by plotting the QSPR-

predicted versus experimentally observed NMA values for

the set of 62 polyarylates in the training set (Fig. 5B). Using

only five PCs (PCZ5), the resulting model was statistically

significant (r2Z0.62; rZ0.79). The cross-validated r2 value

(q2Z0.56) satisfied the generally accepted condition that

q2R0.50 for an internally consistent and predictive

regression model [21,22,31,32].

The loadings of the initial PCs (viz. PC1, PC2, PC3) give

the relative importance of each of the descriptors to the

model. The loadings for PC1 were of greatest interest to us,

and the five descriptors that make the largest contribution to

PC1–PC5 are shown in Fig. 6. We note that this list includes

each of the three molecular property descriptors listed in

Table 2. Such molecular property descriptors are derived

computationally and, therefore, would not be recognized

merely from visual inspection of the polymers’ structure.

This result illustrates the importance of including theoreti-

cally calculated descriptors that encode information about

both the structures and bio-physical properties of the

polymers.

Interestingly, a previous study by Welsh and co-workers

[33] showed that similar molecular property descriptors



Fig. 5. Summary of results from QSPR model: (A) ‘snapshot’ of the list of 62 polyarylates used for model building. The polymers are designated on the left by

code name, while values of the descriptors are depicted in successive columns. AA—adipate, DDA—dioxaoctanedioate, DGA—diglycolate etc. The whole list

of polyarylate abbreviations can be found elsewhere [13]. (B) Plot of the QSPR-predicted versus experimentally observed NMA values for the set of 62

polyarylates in the training set.
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figured prominently in QSAR models constructed to explain

the observed inhibitor–receptor binding affinities for a series

of HIV-1 protease inhibitors. The descriptors in this

previous study were closely related to PSA, MR, and

bioavailability ðlog PÞ: We believe that the similarity of

descriptors found in the present study is no coincidence.
Fig. 6. Loadings for five principal components (PC1-5) extracted from QSPR mod

making the largest contribution to PCs are listed to the right of the figure. It is no

descriptor type (see Table 2). MLOGP-Moriguchi octanol–water partition coefficie

refractivity. nBRs-number of branches in pendent chain (aliphatic). nCt-number
Indeed, this result points to the fundamental importance of

such molecular property-based descriptors in constructing a

rational basis for explaining the in vitro properties and,

perhaps, the in vivo properties of molecules intended for

biomedical applications.

Predictions of FRLF NMA were generated for all 50
el based on NMA values for 62 polyarylates. The five molecular descriptors

teworthy that three of these five descriptors are of the ‘molecular property’

nt log P: PSA-fragment based polar surface area. MR-Ghose-Crippen molar

of tertiary C (sp3).
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polymers in the library for which experimental testing was

not performed prior to model building. Six of these

polymers were chosen for experimental verification of

these predictions. The six appear in Fig. 7 along with both

the predicted values of FRLF NMA generated by the model,

their monomer structures and the experimentally measured

NMA values. Again, this particular set was chosen because

it provides two examples of polymers predicted to be low,

middle and high performers.

A graphical comparison of the predictions versus

experimentally measured results appears in Fig. 8. The

error bars indicate the average percent standard deviation

(coefficient of variation) of the measurement for the 62

measurements included in the training set. The 458 line in

the figure represents the case of perfect agreement between

experiment and model. Perfect agreement, of course, is

impossible given the significance of the experimental error.

However, we do note that all of the predictions fall within

experimental error of the measured results except for the
Fig. 7. The structures, QSPR model FRLF NMA predictions and m
lowest measured case (HTH Methyladipate). The average

percent error of prediction is 15.8%. This is considerably

less than the experimental average percent standard

deviation (23.1%) and is nearly an order of magnitude less

than the total variation in the set of six test polymers

(149%). Then the model has certainly discriminated

between the highest and lowest performers to well within

the level of experimental error and, indeed, has done so

prior to any experimentation. While the model is somewhat

less adept at distinguishing between mid and lower

performing polymers unambiguously, in most applications

identification of optimal performers is sufficient. For

example, these predictions could have been used to reduce

the set of polymers for testing from the original six to the

two top performers if high FRLF NMA was the target

property. This corresponds to a decrease in the experimental

burden of approximately 67% which, in the case with larger

sample volume, would represent a substantial savings in

both time and resources.
easured values for the six polyarylates in the ‘blind’ test set.



Fig. 8. QSPR predictions versus experimental results for the ‘blind’ test set. Error bars represent the standard deviation of the experimental measurements.
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More generally, we note that the average error of

prediction is even smaller when compared to the overall

experimental variation (from min 2 to max 114 in terms of

normalized cellular metabolic activity) in all 68 samples.

The model can be used to distinguish the highest performers

from the lowest. In other words, the predictions generated

by this model can easily be used to test the performance of

candidate structures entirely in silico, or prior to exper-

imentation. Taken together, then, the results from our

computational models give confidence in the validity of the

proposed strategy. The predictions generated by the QSPR

model might well be used in an iterative procedure to design

a polyarylate surface that maximizes FRLF NMA. In this

process, candidate structures would be proposed, evaluated

using QSPR models trained on a subset of experimental

data, then the structures could be refined (perhaps using any

one of a number of design algorithms [34–36]) and then

retested. In fact, the development of such an algorithm for

iterative structural refinement and design of polymeric

biomaterials is currently underway in our laboratory.
4. Conclusions and future work

We have shown that computational strategies that have

demonstrated success in the rational design of new

therapeutics in pharmaceutical discovery can be employed

to offer guidance and direction in the design, selection, and

optimization of novel biorelevant materials. This procedure

works quite well for the example case involving a

combinatorial library of polymers and the ‘target’ property

of response of fibroblast cells. However, the methodology

employed here is sufficiently general to treat many other

problems in biological response. These include protein

adsorption, immunoresponse (in the form of macrophage
genotypic expression) as well as the proliferation and

growth of many different cell types in the presence of these

polymers. In principle, a surrogate model can be built for

any measure of cell response. However, experimental data

for FRLF cell response to the polyarylate library is only

available for the MTS colorimetric assay.

Since computed polymer descriptors are less expensive

to obtain than in vitro or in vivo measurements, the use of a

computational modeling approach can significantly reduce

the costs and labor associated with identifying high-

performance biomaterials for specific applications. Further,

with the application of other methods of design optimization

already well developed in other fields of research, such a

procedure may lead to great advances in biomaterials

development.
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