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Lateral Structure Interaction With 
Seismic Waves 
The interaction of lateral structural inertia forces with horizontal seismic motion is 
formulated in terms of an integral equation of the Volterra type. By means of normal 
mode theory the inertia force at the base of the structure is expressed as a function of the 
foundation motion. After the motion of the two-dimensional elastic half space resulting 
from a uniform horizontal foundation force varying arbitrarily with time over a specified 
interval on the boundary of the half space lias been determined, the interaction equation 
is derived. Numerical studies for two free-field acceleration inputs are made for dif­
ferent ground stiffnesses and structural characteristics. The first of these free-field 
inputs is a ramp sine function and the second is the east-west ground acceleration re­
corded at Golden Gate Park during the 1957 San Francisco earthquake. The interac­
tion effects for structures similar to nuclear power plants prove to be significant. 

Introduction 

D, JTJRING seismic motions caused by earthquake or 
explosive forces, inertia loads of large building structures tend to 
resist the foundation movement. Since the earth is flexible, 
these inertia forces will change the seismic motions locally from 
free-wave values. Lateral and vertical free-field motions will be 
altered and structure rocking will be initiated. 

One of the first attempts to analyze this interaction problem 
was made by Jacobsen [1]1 in 1938. However, in this stud}', the 
dynamic characteristics of the half space were approximated. 
Biot [2] published one of the first papers in which a spectrum 
approach was proposed for engineering seismic analysis. In this 
paper, Biot discussed the interaction problem and stated that in 
certain cases this "stress-reducing factor" may become very large. 
Since that time many researchers have contributed toward the 
solution of this problem [3]. The significance of interaction ef­
fects in an engineering problem was first evaluated on underwater 
shocks by Belsheim, Blake, and O'Hara and others at the Naval 
Research Laboratory [4^15], In the field of earthquake engi­
neering recent contributions have been made by Parmalee [16], 
Luco [17] and Agabein, et al. [18]. Parmalee coupled an A'-mass 
structure to a half space. The half-space analysis was based on 

1 Numbers in brackets designate References at end of paper. 
Presented at the Sixth U. S. National Congress of Applied Me­

chanics, Harvard University, Cambridge, Mass., June 15-19, 1970. 
Discussion of this paper should be addressed to the Editorial De­

partment, ASME, United Engineering Center, 345 East 47th Street, 
New York, N. Y. 10017, and will be accepted until April 20, 1971. 
Discussion received after the closing date will be returned. Manu­
script received by ASME Applied Mechanics Division, November 26, 
1969; final revision, April 24, 1970. 

Bycroft's steady-state solution [19, 20], Interaction effects of 
a number of conventional multistory building structures were 
studied. Luco investigated the interaction of a shear wall with 
the soil using a harmonic incident wave. The magnitude of the 
base shear force was shown to be dependent on the input wave 
frequency. At resonance, interaction effects greatly limited the 
magnitude of the base shear force. Agabein, Parmalee, and Lee 
developed a lumped parameter mathematical model for a study on 
soil-structure interaction. It was concluded by the authors that 
". . . the influence of flexibility of the foundation on the seismic 
response of the multistory building is significant...." Effects on 
the base spectrum response caused by interaction were not 
thoroughly investigated in these studies. In 1967 Scavuzzo 
[21] analyzed the interaction between the lateral foundation 
motion of large structures and lateral seismic motion at the base 
by means of a one-dimensional modeling of the earth. Although 
the oversimplification of the earth model precluded the possibility 
of analyzing the effects of the shear and Rayleigh waves, this 
paper provided a basis for predicting the interaction effects to be 
significant. Similar techniques have also been applied to the 
underwater shock problem [22]. 

In this investigation, the effects of interaction between lateral 
inertia forces and lateral foundation motions are considered for a 
two-dimensional model of the earth. The two-dimensional model 
permits inclusion of the shear and Rayleigh wave effects. The 
significance of this interaction effect is evaluated by noting 
changes in spectrum responses from values obtained without any 
structure present. Changes in lateral acceleration at the 
foundation of a structure from free-field accelerations are also 
presented. Interaction effects caused by vertical motion, torsion, 
rocking, and large base masses have been deferred. 
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Theory2 

Foundation Inertial Force. Inertia forces at the base of a structure 
that can be idealized as an Ar-mass system can be expressed as a 
function of the lateral base acceleration ii(0, 0, t), the natural 
frequencies of vibration oij, and the effective model mass Ms 

[4,5]. 

= - X) Mfi>s I u(0, 0,r) sin wy(< - r)dr 
j Jo 

The effective mass is defined bj' 

M 
(£*„«,.)• 

' T. x. 

( i ) 

(2) 

where Xis are the mode shapes (eigenvectors) of the linear elastic 
iV-mass structure fixed at the base and mt are the concentrated 
masses. 

Solution to Lamb's Problem. The solution is derived for the lateral 
displacements at the origin for a two-dimensional homogeneous 
elastic half space where the stress distribution on the surface is 
prescribed by a zero normal stress and a shear stress that varies 
arbitrarily with time in the interval —c<x<c and is zero outside 
of this interval, Fig. 1. Transform techniques are used to obtain 
the solution. The infinite Fourier transform with respect to x 
and the Laplace transform with respect to t are applied. This 
procedure follows the method described by Flitman [23]. 

For dynamic elasticity problems in two dimensions, the equa­
tions of motion can be expressed as 

bhi 
p - = (A + M) 

b2v 
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By introducing the two scalar functions <j> and \p such that u 
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equations (3) can be written as 
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Fig. 1 Coordinate system used in solution to the Lamb problem. A 
shear stress, f(f), which acts between ± c varies arbitrarily with time. 
The remaining portion of the surface is stress free. Normal stresses over 
the entire surface are zero. 

By making use of Hooke's law, the stresses can be written as [24] 

„ (b2d> b2\l/\ 

/b2<f> d V \ 

\ by2 bxb 
cr„ = 2fi 

bxby/ 
+ XV2c/> (5) 

\ bxby bij2 bx2/ 

'• See the Nomenclature for definitions of the symbols. 

The boundary conditions used in the solution are 

o-„ = 0 y = 0 

= (f(t), ' \x\ < c, 

\o, \x\ > c, 

<fx = o"» = TXII = 0, y = a> 

Taking the Laplace and Fourier transforms of the <f> and \j/ func­
tions defined by 

::} (6) 

——Nomenclature 

a = dilatation (P) wave velocity 

a = •J-
X + 2M 

4 
A = area of structure base 

b = shear (S) wave velocity 6 = 

c = half the length dimension of 
area in plane of the half 
space 

E = Young's modulus 
F{i) = lateral force at base of a 

structure 
/(f) = surface shear stress when \x\ 

< c 
Mj = effective mass of jth mode 

Vlj 

P 
u(x, y, t) 

u(t) 

up(t) 

v{x, y, i) 

V 

j t h structure mass 
transformed time variable 
lateral displacement (x-direc-

tion) 
lateral displacement of cen­

ter of base 
free-field lateral displace­

ment at center of base 
vertical displacement (j/-di-

rection) 
Rayleigh wave velocity 
eigenvector corresponding to 

i th mass in jth mode 
natural circular frequency of 

j t h mode 
Lame constant X = 

vE 

(1 + v){\ - 2v) 

E 
u = shear modulus u = , 

2(1 + v) 
v = Poisson's ratio 
£ = transformed x-coordinate 
p = ground density 

crx = tensile stress in the x-direc-
tion 

cry = tensile stress in the (/-direc­
tion 

TXU = shear stress 
(j> = dilatation scalar potential 
\f/ = equivoluminal (shear) wave 

function 
d2 

V2 = Laplace operator V2 = 
bx2 

+ by2 
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t)dtdx 

yields 

dfy 
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dy2 

0 = 0 
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The double transform of the boundary condition on rxu can be ex­
pressed as 

Txy{k, 0, P) = 
2/(p) sin eg 

(9) 

By determining <f> and \j/ the solution for the transformed dis­
placement at y = 0 can be found. 

p2f(p) sin c£ Jg 2 + ^ 
«(£» o, P) = -

26»/i£D«, p) 
(10) 

where 

fl(£, P) = (*2 + 0 - ?Y+Pi \f2 + $ (ID 

The solution for the displacements is obtained by taking the in­
verse transforms of u. From the Fourier inversion integral 

u(x, 0, p) p'fip) f" 
4wb2(x J -

V £" + ft! Shl ^ 

W - » #><&p) 
e-^df (12) 

By equating sin c£ to Im e'c^ and a; to zero and by halving the 
interval of integration and doubling the even integrand, the 
integral in the last equation becomes 

Jo £Dtf,p) Ck 

Im 2 
Jo #>(£ P) 

e , c £d£ (13) 

Like 

and 

b2 . . P2/(p) . 
m the preceding equation, -—77- is real-valued #>(!, P) 
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By putt ing zc£ = — pr the integral can be written in a convenient 
form. This procedure was used by Chao in his solution of a 
similar three-dimensional problem [25]. Thus u can be rewritten 
as 

fi(0J0Jp) = I m < - - ^ - ^ - ) I g(-)e-**dT> (15) 
(, 2-wy.c p Jo \ c / ) 

where the integration takes place down the imaginary axis of the 
complex T-plane and 

M T ) 
.» _^ Branch cuts 

RS(T) 

Fig. 2 Path of integration 

g(T) 

I t can be noted tha t T2 

id-- T2\ 

V l - T2 

+ T2Jhl_ 
la2 T2 V l -_ y2 

(16) 

(r)"' is real-valued and nonpositive 

for r on the imaginary, axis and that all the square roots are real-
valued noimegative numbers. The integral appearing in equa­

tion (15) can be determined in terms of L 

evaluation of the Cauchy principal value of jfg (?) 
om the 

-vrdT 

over the fourth-quadrant contour in Fig. 2 by means of the residue 
theorem modified to cover the case where simple poles lie on the 
countour. 

The integrand of tfq ( r ) - -
Tdr has branch points at T = 

± - and r 
a 

± -, a simple pole at the origin, and, if Poisson's 
b 

ratio is specialized to XA, other simple poles at T = ± — where V, 

the speed of the Rayleigh wave, equals; 
2b 

; for a Poisson's 
' V3 + V3' 

ratio of XA. From an elemental examination of g it is clear t h a t 
±(c/a) and ± ( c / 6 ) are branch points and that the origin is a 
simple pole. The other simple poles at ± (c/V) are determined 
as the zeros of the square-bracketed expression in the denomina­
tor of g{T). In solving for these zeros by elementary algebra, 
it can be shown tha t for the zeros to be determined T2 satisfies a 

cubic equation with roots l/it , and [26]. The 
4 ' 4 

first two of these roots are extraneous and the third corresponds 
to T = ± ( c / F ) . The Cauchy principal value of the integral 

fg Cf) e VTdr around the contour in Fig. 2 is written as the 

sum of integrals in the equation (17) and the modified residue 
theorem is used. 

f (br\ AT \ (bT\ _ 0 (D ffl — I e PTdT = I - i res + Tri res J g I — )e pT 

Jc \c/ I 2 T = 0 T=CJ \e/ 
(17) 

where P denotes the Cauchy principal value of the integral and C 
is the contour in Fig. 2 traced in the counterclockwise direction. 
In the limit as R —*• °°, ei —*• 0, and «2 —»• 0, all the integrals over 
the circular arcs in equation (17) vanish, three of the remaining 

f M 1 
integrals combine to give — L\g l — I t , and equation (17) 
simplifies to 
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r«® e-PTdr ~ L\g a 
+ I - i res + Tri res \ g 

I 2 r=o c ( ? ) - (18) 

The residue at t = 0 is (4c/6). The residue at r = (c/V) is purely 
imaginary and therefore makes no contribution to the value of 
u(0, 0, p). Hence by use of equation (18), equation (15) can be 
rewritten as 

^>QtP).^\.^MLLm^m\ (19) 
{ 27TJUC V \ \C / ) ft P I 

(Cl ) f(p) 
Application of the operational formula L J I f(i])dri> = 

\Jo ) P 
and the convolution theorem yields the final solution, w(0, 0, t), 
of the original boundary-value problem. 

6 Cl 

«(0, 0, t) = - - f(T)dr -
" J o 

n(— T 

J 

2irc/t 

X | T ' / © I m i / ^ W T (20) 

where Im g 
( ! ) 

is computed from equation (16) with (o2/62) 

= 3 as is implied from assuming Poisson's ratio equal to 'A. 
The form of Im g(T) is given by equation (21). 

By taking the second time derivative in equation (22) and by 
~F(t) 

substituting f(t) = —-— with F(t) written out as in equation 
A 

(1), the following interaction equation can be obtained. 

b rl 

«(0 J S Mpf «(?) cos oojt - £)d? 
" A j J o 

| •£ Mpf f T[fl(£) cos Uj{t - r - m® 
Jo j JO 

my 
^ rt 

2irixcA 

X Im I dr + up(t) (23) 

Equation (23) is an integral equation of the Volterra type in terms 
of the foundation acceleration u(t) at the origin of the coordinate 
system. The prescribed function iip(t) is the lateral free-field 
acceleration at the origin without a structure present. In 
equation (23) the modal characteristics of the structure are de­
scribed by the effective mass Ms and circular frequency co,- for 
each O'th) mode of the system. Foundation geometry is defined 
by the base area A and the effective base half width c. The 
elastic properties of the ground are described by the shear 
velocity 6 and the shear modulus u. 

Integral equation (23) is solved by classical iteration performed 
numerically at each time interval. A digital computer program 
listed in reference [27] can be used to input any digitized free-field 
value. Shock spectrum values are calculated for both free-field 

Im g(T) 
+ 

, 0 < T < 
V3 

2(T2 -

3V r2 

3T(1 _ y s j y ' y s - j 

» (T* - 3 -/3)(r° -

- l{(& - T72)2 + TWTS -

3 + V3\ ' 

- iVT* - 1} 

V3 
< T < 1 

(21) 

2l^T^7^^y(VT^V3:j ,T>\ 

. . c c 
The integral in equation (20) is proper for 0 <t< —. At T = — 

Img 
/br\ . ( e V 1 

I — I has a singular point of order I T — — I . 

s finite i 

-iJ' H) 

The dis­

placement at t = —, however, is finite since the indeterminant 
1 c 

form in the integrand, f(v)drl - exists. Fori > J , 

because of the singular point at r = —, to be meaningful the 

integral in equation (20) must be considered as its Cauchy princi­
pal value. In which case M(0, 0, t) is a well-defined finite value 

for all nonnegative I. The singularity at r = — is expected in 

this kind of problem [23]. 
Interaction Equations. The total lateral displacement at the center 

of the base of the structure, u{l), due to inertial shear stress of the 
structure and the free-field displacement, up(l), is obtained by 
superposing on the solution of the half-space problem the free-
field displacement, up(l). 

u(t) = - - I 
"Jo 

f(T)d.T 
27TC t̂ 

X ff Tfa)Img(j}dZdT + up(l) (22) 

accelerations and foundation accelerations in a separate program. 
By comparing spectra at the mode frequencies the effects of 
lateral interaction on seismic loads can be evaluated for a given 
structure. 

Discussion 
Numerical studies are based on two different types of struc­

tures: a modern pressurized water nuclear power plant and a 
conventional 10-story building. A fixed-base fundamental fre­
quency of 4.06 ops is calculated for the containment vessel of the 
plant under consideration. The fundamental frequency of the 
10-story building is 0.8 ops. These two structures represent 
realistic extremes in dynamic response because the first structure 
is stiff and heavy and the second structure is relatively flexible. 

The dynamic characteristics of the nuclear power plant are 
based upon a compact dynamic model which has been provided 
by the Stone and Webster Engineering Corporation of Boston, 
Mass., Fig. 3. It should be noted from Fig. 3 that the weight of 
the base mass is much greater than the dynamic masses. How­
ever, subsequent calculations show that spectrum values at the 
fixed-base frequencies are affected most significantly by the dy­
namic masses (28). Furthermore, in the numerical results pre­
sented herein, only the containment vessel dynamic mass is 
considered. 

The Alexander building, a 10-story building located in San 
Francisco, Calif., which has been studied by seismic engineers for 
many years, is used as the second structure. Dynamic properties 
of this building have been determined by both test and analyses 
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k = 0 .30 x I 0 9 l b / f t 
2 

A = 15400 f t 2 

Fig. 3 Nuclear power plant shown in Fig. 2(a) has been idealized as 
indicated in Fig. 2(b). The masses Mo, mi, and mz represent the base, 
containment vessel, and internal structure, respectively. 

[29, 30], Clough [30] reported the effective masses for the first 
three modes of vibration for a 10-mode dynamic model. In this 
paper, effective masses for the first three modes of a 10-mode dy­
namic model are reported. These effective masses (10,377,000 
lb, 2,432,000 lb, and 595,000 lb, respectively) include 92 percent 
of the total weight (14,619,000 lb) and, therefore it should be a 
good dynamic model of the structure to study interaction effects. 
Natural frequencies of the first three modes are 0.8 cps, 2.8 cps 
and 5.0 cps, respectively. It should be noted that the funda­
mental frequency of this building is a factor of five lower than 
that of the nuclear containment structure. 

Two free-field ground accelerations, iip(t) are used in these 
studies. In the first series a sinusoidal ramp function defined by 
equation (24) and plotted on Figs. 4 and 5 is prescribed. 

sin 107rf 

up{t) = 

0 < t < 0.8 

sin 107T« 0.8 <t < 2.0 [ 

t > 2.0 

(24) 

Only the dynamic model based on the nuclear power plant is sub­
jected to this input. 

All mechanical properties of the half space can be defined by 
the shear wave velocity, the density, and Poisson's ratio. In all 
studies the ground density is taken to be 100 lb /ft3 and Poisson's 
ratio is made equal to 1/i. Thus the elastic ground properties 
are completely defined by the shear wave velocity. In all studies, 
shear wave velocities of 500 fps, 1000 fps, and 2000 fps are used as 
input. The lowest velocity is representative of soft soils; the 
highest velocity is representative of reasonably hard soils. 

Initially, the single mass oscillation representing the contain­
ment vessel mass with a fixed base frequency of 4.06 cps was sub­
jected to this ideal input. Calculated foundation accelerations 
for the case with a soil shear wave velocity of 2000 fps are shown 
in Fig. 4. In the next series of calculations, the frequency of the 
system is increased to 5 cps so that it is tuned to the frequency of 
the prescribed motion. Foundation accelerations for a soil 
shear wave velocity of 1000 fps are shown in Fig. 5. It should 
be noted that the foundation acceleration is initially in phase with 
the free-field acceleration and then becomes out-of-phase. This 
change in phase occurs with all three soil stiffnesses. Further­
more, resonance, as observed in forced mechanical vibrations, 
does not occur even though the structure has the same frequency 
as the input wave. This characteristic has been previously ob­
served [21]. 

The engineering significance of these interaction effects is best 
evaluated by comparing the peak shock force felt by the struc­
ture when subjected to the free-field motion and calculated 
foundation motion. This peak force is proportional to the ac­
celeration spectrum response evaluated at the natural frequency 
of the vibration mode under consideration [5, 12, 13]. Thus, by 
numerically performing the integration 

•**-;(£ U(T) sin w(i — r)dr (25) 

the spectrum response in G'a of acceleration can be calculated. 
In Fig. 6, the spectrum response of the free-field acceleration is 
shown as a solid line. In addition the spectrum values deter­
mined from the foundation accelerations calculated from equation 
(23) are plotted at frequencies of 4.06 cps and 5.0 cps for the three 
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Tine, Seconds 

Fig. 4 The acceleration response of a single mass system weighing 475,000 slugs to 
a ramp sinusoidal function with a 5 cps is shown. The natural frequency of the system is 
4.06 cps and the ground shear wave velocity was taken to be 1000 fps. 

Fig. 5 The acceleration response of a single mass system weighing 475,000 slugs to 
a ramp sinusoidal function with a 5 cps is shown. The natural frequency of the system is 
5.0 cps and the ground shear wave velocity was taken to be 1000 fps. 

soils considered. I t must be emphasized that for the seismic 
design of the structure only the spectrum value at the natural 
frequency of the structure is meaningful. Thus, for computa­
tions made with a natural frequency of 4.06 cps, only the spectrum 
values at this frequency are needed to calculate shock loads of the 
containment structure. Thus the significance of interaction 
effects on response spectra can be evaluated by comparing values 
at the two frequencies of 4.06 cps and 5.0 cps. These values are 
also listed on Table 1. As observed from both Fig. 6 and Table 1, 
the largest interaction effects occur when the structure is tuned 

Table 1 Spectrum response to the ramp sine function 

Soil shear 
wave velocity 

fps 

500 
1000 
2000 

Structure fixed base frequency, cps 
4.06 5.0 

1.27 g 
0.52 g 
0.67 g 
0.87 g 

7.18 g 
0.62 g 
1.01 g 
2.12 g 

" Spectrum values are those calculated for the ground motion with­
out a structure. 
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* 

+ 

X 

• 

va " 500 f t / s e c 

Va = 1000 f t / a e c 

vs - 2000 f t / s e c 

Frequency, cps 

Fig. 6 The acceleration response spectrum for a sinusoidal ramp function is shown as a 
solid line. The response of one mass dynamic models of reactor power plants with natural 
frequencies of 4.06 cps and 5 cps for three soil shear wave velocities (500 fps, 1000 fps, 
and 2000 fps) show the spectrum from interaction effects. 

Tine, .Seconds 

Fig. 7 East-west ground acceleration recorded at Golden Gate Park during the March, 
1957, San Francisco earthquake 

to the frequency of the prescribed function. In this case, in­
teraction effects reduced the spectra from a factor of 11-3.3, de­
pending upon the ground stiffness. At a frequency of 4.06 cps, 
these factors varied from 2.4-1.5. 

The second free-field ground acceleration used in the numerical 
work is based on the Mar., 1957, San Francisco earthquake [31]. 
The first four seconds of the east-west motion recorded at Golden 
Gate Park (Fig. 7) is used as input. The spectrum response of 
this motion is presented as a solid line in Fig. 9. 

Base foundation accelerations are computed for structures with 

fixed-base frequencies of 4.06 cps, 4.44 cps and 4.75 cps. The 
three soil shear wave velocities (500 fps, 1000 fps, and 2000 fps) 
are also used in these computations. Thus a total of nine 
problems are studied. A typical calculated foundation accelera­
tion is shown in Fig. 8. Spectrum computations are shown in 
Fig. 9. The solid line is the response of the assumed earthquake 
motion. Spectra determined from the calculated base response 
are shown for the three soil stiffnesses. These values are also 
tabulated in Table 2. Interaction effects reduce spectra from a 
factor of 5.6-1.6. Furthermore the largest percentage reductions 
occur at the peak of the response spectrum (4.44 cps). Thus in-
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Fig. 8 Ground acceleration at the base of one mass structure with a natural frequency 
of 4.06 cps'and a shear wave velocity of 1000 using the Golden Gate east-west ground 
motion 

3 

0 

J 
/ 

s~~*^ \ / 

• \ J 

1 

. » 
• + + 

+ 

a -

vs = 

vs = 

v s >= 

500 f t / s e c 

1000 f t / s e c 

2000 EC/sec 

Fig. 9 The acceleration response spectrum for the east-west ground motion recorded 
at Golden Gate Park during the March, 1957, earthquake is shown as a solid line. The 
spectrum response of one mass models of reactor power plants with natural frequencies 
of 4.06 cps, 4.44 cps, and 4.75 cps are shown for three soil shear wave velocities (500 
fps, 1000 fps, and 2000 fps). 

able 2jSpectrum response for earthquake motions 

Soil shear 
Structure fixed base frequency, cps wave velocity 

fps 

500 
1000 
2000 

4.06 
0.590 
0.15.7 
0 .190 
0.30g 

4.44 
0.84 0 
0.15 f f 
0.220 
0 .390 

4.75 

O.660 
0.150 
0.230 
0.42 g 

° Spectrum values are those calculated for the ground motion with­
out a structure. 

teraction with the ground tended to level out the free-field spec­
trum response. 

The last parametric study is based on a dynamic model of the 
Alexander building which has been described previously. This 
building, which also has been subjected to the earthquake shown 
in Pig. 7, is studied with three modes of vibration. The calcu­
lated foundation acceleration for a ground with a 1000 fps shear 
wave velocity is shown in Fig. 10. After plotting the results of 
these it was found tha t acceleration amplitudes are still large a t 
4 sec. For the case in which a shear wave velocity of 2000 fpa 
was specified, the second mode of vibration can be seen in the 
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Time, Seconds 

Fig. 10 The response of the Alexander building to the east-west ground acceleration re­
corded at Golden Gate Park during the March, 1957, San Francisco earthquake. The 
shear wave velocity of the ground was taken to be 1000 fps. 

Fig. 11 The acceleration response spectrum for the east-west ground motion recorded 
at Golden Gale Park during the March, 1957, earthquake is shown as a solid line. The 
spectrum response of the first three modes of vibration of the Alexander building are plotted 
(0.8 cps, 2.86 cps, and 5 cps) for the three soil shear wave velocities. 

latter portion of the graph. Peak spectrum values which are 
tabulated in Table 3 and plotted in Fig. 11 occur late in time 
(3V2 to 4 sec). Thus, if time responses are computed for longer 
periods, calculated spectrum values would probably increase. 
It should be noted that reductions in spectrum values from 
interaction effects for this structure occur for the softest soil. 
For the stiff est soil (6 = 2000 fps) spectra values of all modes are 
increased above free wave spectra. Based upon this limited 
study of a more conventional building structure, it appears that 
interaetion effects do not always reduce lateral foundation 

Soil shear 
wave velocity 

fps 

0 0 " 

500 
1000 
2000 

IV 
Mode 1 
0.8 cps 

0.025 
0.042 
0.031 
0.042 

odes of vibrati 
Mode 2 
2.85 cps 

0.335 
0.230 
0.321 
0.827 

on 
Mode 3 
5.0 cps 

0.486 
0.358 
0.473 
0.721 

" Spectrum values are those calculated for the ground motion with­
out a structure. 
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spectra. At times base response spectra are increased. The 
lack of radiation of energy into the soils is the primary reason for 
this increase for the structure studied. However, it should be 
pointed out that rocking effects have not been considered. 
Rocking spectrum input will also be significant for tall structures. 
Conclusions made from the study of the Alexander building are 
similar to those made by Parmalee [16]. 

Conclusions 
By making use of normal mode theory and the solution of a 

half-space problem in which displacements are caused by a shear 
stress varying arbitrarily with time over an area symmetric 
about the origin, lateral interaction between a structure and the 
half space can be expressed by an integral equation of the Volterra 
type. Foundation accelerations can be computed with a digital 
computer program which solves this equation by numerical 
iteration at each time interval. Spectrum responses can also be 
computed from these foundation accelerations. 

Results of spectrum calculations show that reductions in 
lateral shock spectra caused by interaction effects are significant 
and must be accounted for in the design of heavy stiff struc­
tures. Peaks in the free-field response spectra of earthquakes 
are reduced more than other values. As shown in Fig. 9, inter­
action effects from these structures tend to level out the response 
curves. For conventional multistory structures such as the 
Alexander building which is studied, interaction effects will, at 
times, increase spectrum values above the free-field spectrum. 
In conclusion it can be stated that significant reductions in the 
lateral spectrum response can be expected from interaction of the 
building and ground for low heavy stiff structures. For flexible 
tall buildings interaction may slightly increase the base spectrum 
response and the resulting lateral accelerations. 
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