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Abstract: The procedures studied in this paper originate from a problem posed at the
International Mathematical Olympiad in 1986. We present several approaches to the IMO
problem and its generalizations. In this context we introduce a “signed mean value procedure”
and study “relaxation procedures on graphs”. We prove that these processes are always finite,
thus confirming a conjecture of Akiyama, Hosono and Urabe [1]. Moreover, we indicate
relations to sorting and to an iterative method used in circle packing.
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1 The Pentagon Game

Our starting point is Problem 3 of the International Mathematical Olympiad (IMO)
in 1986 which arguably belongs to the hardest challenges this contest has ever seen
([7], [15], [16]). The problem was proposed by the first author of the present paper
and originally emerged as a side product of investigations of an old geometric question
concerning partial reflections of non-convex polygons (see [14] pp.30–34). After the
competition it turned out that the problem can be generalized in various directions
and has interrelations with several other topics. In this paper we collect some known
facts and present new perspectives of the problem.

The Pentagon Game: Five integers with positive sum are assigned to the vertices of
a pentagon. If there is at least one negative number, the player may pick one of them,
say y, add it to its two neighbors x and z, and then reverse the sign of y. The game
terminates when all the numbers are nonnegative. Prove that this game must always
terminate.
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1.1 Decreasing Quadratic Functions

A standard approach for proving finiteness of a procedure is to construct a positive
integer-valued function which decreases in every step.

First solution. We denote the five numbers in consecutive order by x1,x2,x3,x4,x5

and remark that the sum s := x1 + x2 + x3 + x4 + x5 remains invariant. A simple
calculation shows that the function f of x = (x1, x2, x3, x4, x5), given by

f(x) := (x1 − x3)
2 + (x2 − x4)

2 + (x3 − x5)
2 + (x4 − x1)

2 + (x5 − x2)
2,

is strictly decreasing in each step of the game. In fact the value of f changes from
f(xold) to

f(xnew) = f(xold) + 2 y s < f(xold). (1)

Since all values of f are nonnegative integers, the game must stop after at most f(x)−1
steps. �

This argument was found by all but one of the eleven students who succeeded in
solving the problem during contest, and it coincides with the solution suggested by the
proposer, but there are other quadratic functions which work as well. One example
proposed by Géza Kóz (see [19], p.321) is the function

2 (x1x2 + x2x3 + x3x4 + x4x5 + x5x1) + 3 (x1x3 + x2x4 + x3x5 + x4x1 + x5x2),

which is strictly increasing and bounded from above by s2.
Although the function f provides the simplest solution, it does not immediately gener-
alize to the analogous game played on an arbitrary polygon. For a square, for instance,
the required decreasing quadratic function is not the naively expected expression

(x1 − x3)
2 + (x2 − x4)

2,

as the counterexample xold = (−1, 3,−5, 4) with xnew = (−1,−2, 5,−1) shows. A
substitute which works is

3{(x1 − x3)
2 + (x2 − x4)

2}+ {(x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
2 + (x4 − x1)

2}.

To handle the hexagon in a similar way one may use something like

6∑
k=1

{(xk − xk+3)
2 + 2(xk − xk+2)

2 + 2(xk + xk+1 − 2xk+3)
2 + 6(xk + 2xk+1 − 3xk+3)

2}.

In the next subsection we describe a construction given by N.Alon, I. Krasikov, and
Y.Peres [2] which solves the problem for all n.
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1.2 Sums of Consecutive Elements

During the IMO contest all but one participants who solved the problem used the
function f defined in (1) (see [15], p.20). The only alternative solution was found by
Joseph G. Keane from the US team, whose idea had the rare distinction to be honored
by a special prize. Instead of a sum of squares he considered a function involving
absolute values.
Second solution. Let the function g be defined by

g(x) :=
5∑

j=1

(
|xj|+ |xj + xj+1|+ |xj + xj+1 + xj+2|+ |xj + xj+1 + xj+2 + xj+3|

)
,

where all indices are reduced modulo 5. In each step of the algorithm all but one of
the summands remain invariant or switch places. Only the term |s− y| is changed to
|s + y|, where y denotes the negative number chosen by the player. Consequently g
decreases by the positive integer d := |s− y| − |s + y|. �

The function g can easily be adapted to the corresponding game played on polygons
with real numbers x1, . . . , xn. In order to simplify notations we extend the sequence
(xj) periodically to all integers j and define

sij := xi + xi+1 + . . . + xi+j−1, i, j ≥ 1. (2)

Then the generalized function g is a sum of absolute values of the sij,

g(x) :=
n∑

i=1

n−1∑
j=1

|sij|. (3)

Again g decreases in each step by d := |s−y|− |s+y|, which shows that the algorithm
stops if the xj are integers. In order to prove that it also terminates if the xj are real
numbers, we denote the multiset of the numbers |sij| by S. As stated above, if the
value of an element a in S is changed, then a = |s− y|, so y < 0 is equivalent to a > s.
If s < a ≤ 2s then a is replaced with the new number |s + y| = 2s− a ≤ s, which then
must remain constant forever. If a ≥ 2s, then |s + y| = a − 2s, i.e. a is reduced by
2s. Since this can happen only a finite number of times, any element of S is eventually
trapped in the interval [0, s], and then the algorithm must stop.
This argument also shows that the number of steps needed to turn every number non–
negative depends only on the initial configuration and not on the player’s choice.
Indeed, if we denote by bxc′ that integer satisfying x − 1 ≤ bxc′ < x, then any y ∈ S
may be reduced by+s

2s
c′ many times in the manner described above. Since in each step

of the algorithm exactly one element of S is diminished and g decreases, there must
still be a vertex carrying a negative number as long as there remain elements of S
outside the interval [0, s]. Consequently, the formula

N =
∑
y∈S

⌊
y + s

2s

⌋′
(4)
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gives the total number of operations to be performed.
N.Alon, I. Krasikov, and Y.Peres [2] derived a similar formula using the squares s2

ij

instead of the absolute values |sij|. In order to show that (4) coincides with their result
we denote by T the multiset of all numbers

sij = xi + xi+1 + · · ·+ xi+j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1.

Taking into account that x 7→ s− x maps T bijectively onto itself, we obtain

N =
∑

t∈T,t>0

⌊
s + t

2s

⌋′
+

∑
t∈T,t≤0

⌊
s− t

2s

⌋′
=

∑
t∈T,t>0

⌊
s + t

2s

⌋′
+

∑
t∈T,t≥s

⌊
t

2s

⌋′
.

As b t
2s
c′ and b t+s

2s
c′ give the number of even and odd integers in the interval (0, t

s
),

respectively, both sum up to b t
s
c′. Denoting by dxe the integer with x ≤ dxe < x + 1,

we arrive at the formula given in [2],

N =
∑

t∈T,t>s

⌊
t

s

⌋′
=

∑
t∈T,t<0

⌊
s− t

s

⌋′
=

∑
t∈T,t<0

⌈
|t|
s

⌉
. (5)

An unbeatably elegant application of sums of consecutive elements is due to Bernard
Chazelle ([5], [7] p.6)

Third solution. Let S̃ be the infinite multiset of all sums sij defined in (2) with
i, j ∈ Z, 1 ≤ i ≤ n and 1 ≤ j. Since the sum s = x1 + . . . + xn is positive, the number
of negative elements in S̃ is finite. In each step of the game all elements of S̃, except
one, remain invariant or switch places with others. Only the negative number y chosen
by the player is changed to −y.
In order to verify this we arrange the elements of S̃ in the following table

x1 x1 + x2 x1 + x2 + x3 . . . x1 + . . . + xn−1 s s + x1 . . .
x2 x2 + x3 x2 + x3 + x4 . . . x2 + . . . + xn s s + x2 . . .
x3 x3 + x4 x3 + x4 + x5 . . . x3 + . . . + x1 s s + x3 . . .
...

...
...

...
...

...
xn xn + x1 xn + x1 + x2 . . . xn + . . . + xn−2 s s + xn . . .

If, without loss of generality, the player chooses the number y = x1 then the elements
in every row, except in the first and the second, are preserved. Apart from the element
−x1, the new first row has the same elements as the old second row, and the new
second row coincides with the old first row without x1.
Hence, in every move exactly one negative element of S̃ is changed to positive. Since
the sum s is positive, the number N of negative elements in S̃ is finite and the algorithm
must terminate after at most N steps. In fact it cannot stop earlier, since then S̃ would
still have negative elements, which is impossible if none of the xi is negative. As S̃
may be constructed as the infinite multiset of all t + z · s, where t runs through T and
z through the non–negative integers, we again obtain formula (5). �
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N.Alon, I. Krasikov, and Y. Peres as well as B.Chazelle also proved that the final
position is uniquely determined by the initial configuration.

A similar solution given by John M. Campbell uses only one infinite two-sided sequence
(vi) of consecutive sums (here shown for n = 5)

. . . ,−x4−x5, −x5, 0, x1, x1+x2, x1+x2+x3, . . . , x1+. . .+x5, 2x1+x2+. . .+x5, . . . ,

which is constructed by adding (respectively subtracting) cyclically the numbers xi.

Fourth Solution Any move exchanges the elements vi+nj and vi+1+nj for some i ∈
{1, . . . , n} with vi > vi+1 and all j ∈ Z. The procedure can be performed as long as
there exists i ∈ {1, . . . , n} with vi > vi+1. We denote by Ni the number of elements
vj which stand right of vi and are less than vi. It is clear that every move reduces the
sum N = N1 + . . . + Nn by one, and a little thought then shows that the procedure
stops after exactly N steps with a strictly increasing sequence (vi). �

Campbell’s solution reveals that the pentagon game can be reformulated as a sorting
procedure, which clearly explains why the final position is uniquely determined. We
explore this idea further in the next sections.

1.3 Breaking Symmetry – A Sorting Procedure

The next approach is a finite version of Campbell’s solution. The first author learned
it in 1987 from Sergej Steinberg during a personal communication in Pushchino. The
idea is to represent the numbers xi as differences.

Fifth solution. Let y1 = 0 and define y2, . . . , yn by

yi = x1 + x2 + . . . + xi−1.

Then xi = yi+1−yi for i = 1, . . . , n−1 and xn = s−yn = y1−yn+s. Rewriting the rules
of the game for the numbers y1, . . . , yn we get the following two possible operations.

If yi+1 < yi for some i = 1, . . . , n − 1 it is allowed to interchange yi+1 and yi. If
yn > y1 + s it is allowed to replace the first number y1 with yn − s and the last number
yn with y1 + s.

It is convenient to think of the numbers yi as written on cards which are arranged
in a line and are numbered from left to right. Then the first operation exchanges
two neighboring cards, the card carrying the greater number “moving right” and the
card with the smaller number “moving left”. The second operation is allowed if the
difference yn − y1 is greater than s. Here the larger number yn is diminished by s, the
smaller number y1 is increased by s, and the two cards change places.
Since the numbers yi are only changed by multiples of s, all possible values belong to
a discrete set R. This set is even finite, since the maximal number yi never increases
and the minimal number never decreases. Because R is finite, max yi must remain
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constant after a number of steps. Let this maximum be m. Since no card with yi < m
can ever reach the value m, at least one card must carry the number m forever. Now,
analogously, each of the remaining n−1 cards can change its value only a finite number
of times. Going on by induction, we see that after some time the values of all cards
remain unchanged. It is now clear that the remaining sorting process must stop, since
it contains no cycle and the number of permutations is finite. �

As an alternative to the above reasoning one may consider the nonnegative function
f(y) =

∑
y2

j . If the second operation is performed the value of f decreases by

d := 2s (yn − y1)− 2s2 = 2s (yn − y1 − s) > 0.

Since yn and y1 belong to the finite set R, the number d is bounded from below by
a positive constant. So the second operation can be applied only a finite number of
times.

In order to determine the final configuration x∗j we remark that the final values y∗i of
yi must satisfy

y∗1 ≤ y∗2 ≤ . . . ≤ y∗n ≤ y∗1 + s.

Moreover, the final value on each card differs from its initial value by a multiple of s
and the sums

∑n
i=1 yi and

∑n
i=1 y∗i must be equal. These observations allow to find y∗i

as follows:

Let 0 ≤ rj < s be the remainders of yj modulo s. Denote by r∗j the rearrangement of
the rj such that 0 ≤ r∗1 ≤ . . . ≤ r∗n < s. Then y∗j is given by

y∗i = r∗i+j + ks (i = 1, . . . , n− j), y∗i = r∗i+j−n + (k + 1)s (i = n− j + 1, . . . , n),

where the integers j and k are chosen such that 0 ≤ j ≤ n− 1 and

n∑
i=1

(yi − ri) = (kn + j) s.

For the final values x∗i of xi we then obtain

x∗1 = y∗2 − y∗1, x∗2 = y∗3 − y∗2, . . . , x∗n−1 = y∗n − y∗n−1, x∗n = y∗1 − y∗n + s.

1.4 Keeping Symmetry – Threshold Sorting

The solution via the above sorting procedure breaks the symmetry between the vari-
ables. In the sequel we develop a similar approach keeping symmetry. This will lead to
a new kind of problems which are treated in more generality in the next section. Here
we start with a simple situation.

The Threshold Sorting Procedure. Let d be a positive constant and let y1, . . . , yn

be a finite sequence of real numbers. If there are u = yi and v = yj with u > v + d then
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replace u by v + d and v by u − d. Repeat this step as long as numbers u and v with
u > v + d exist. Determine whether this procedure always stops.

First of all we observe that all numbers yi are changed by multiples of d, their maximum
is not increasing and their minimum is not decreasing. Consequently the set of all
possible values is finite. Hence there exists a number c such that u− v− d ≥ c > 0 for
all u, v to which the operation might be applied during the whole process. It follows
that the nonnegative function f(y) =

∑
y2

i is decreasing in each step of the algorithm
by

u2 + v2 − (u− d)2 − (v + d)2 = 2d (u− v − d) ≥ 2cd.

Therefore the procedure always stops.

The function f gives a rather bad estimate of the number of steps. A better one can
be obtained using the function g given by g(y) :=

∑
|yi − yj|.

In order to prove that g is decreasing, we remark that the new numbers u − d and
v + d lie in the interval with endpoints u and v. It follows that |(u − d) − (v + d)| is
less than |u − v| by at least 2 min(c, d), and it is easy to see that for any w the sum
|(u− d)− w|+ |w − (v + d)| is less than or equal to |u− w|+ |w − v|.

The last result can be used to symmetrize the fourth solution of the Pentagon game.

Sixth solution. There exist uniquely determined values y1 := 0, y2, . . . , yn, yn+1 :=
y1, such that the xi have the symmetric representation

xi = yi+1 − yi +
s

n
, i = 1, . . . , n.

Reformulating the original algorithm for x1, . . . , xn in terms of y1, . . . , yn we get the
following operation:

If there are two neighbors u = yi and v = yi+1 such that u > v + s/n then u is replaced
with v + s/n and v is replaced with u− s/n.

Clearly this rule is more restrictive than that of the Threshold Sorting Procedure, and
so the algorithm must stop. �

It is interesting to see how the function g looks in terms of the xi. In fact it is quite
similar to the one considered earlier in (3), namely

g(x) =
n∑

i=1

n−1∑
j=i

∣∣∣∣∣(j − i + 1)s

n
−

j∑
k=i

xk

∣∣∣∣∣ .
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2 The Signed Mean Value Procedure

It turns out that threshold sorting is just a special case of a more general algorithm
which we introduce and investigate in this section. We start with fixing the rules of
the game, which is now played on an arbitrary finite collection of real numbers.

The Signed Mean Value Procedure. Fix a positive constant d and let y1, . . . , yn

be real numbers. If there are numbers (signs) η1, η2, . . . , ηn ∈ {−1, 0, 1} such that

s := η1y1 + η2y2 + . . . + ηnyn > d, (6)

then set m := η2
1 + η2

2 + . . . + η2
n and substitute

yj 7→ yj − 2 ηj

(
s− d

m

)
, j = 1, 2, . . . , n. (7)

Repeat this as long as numbers η1, η2, . . . , ηn ∈ {−1, 0, 1} with (6) exist.

Note that m always satisfies 1 ≤ m ≤ n and can vary from step to step.
The Threshold Sorting Procedure corresponds to the more restrictive rule where all
the η are zero, except two which are 1 and −1, respectively.

Theorem 1. The Signed Mean Value Procedure always stops.

Proof. In what follows we assume that there is a procedure which does not stop.

1. The function f(y) = y2
1 + y2

2 + . . . + y2
n is strictly decreasing. In fact

f(yold)− f(ynew) =
n∑

j=1

y2
j −

n∑
j=1

(
yj − 2ηj

s− d

m

)2

= 4
d(s− d)

m
> 0. (8)

Let fk denote the value of f at step k. Since the sequence (fk) is monotone and
bounded it converges to a limit f ∗.

2. Let sk, mk and yj,k denote the values of s, m, and yj in the k-th step, respectively.
Since 1 ≤ mk ≤ n it follows from (8) that

0 < sk − d ≤ n

4d
(fk − fk+1). (9)

We write f1 − f ∗ as a (absolutely) convergent telescopic series,

f1 − f ∗ =
∞∑

k=1

(fk − fk+1).

Together with (9) this shows the (absolute) convergence of
∑∞

k=1(sk − d), and in par-
ticular we have sk → d. Further, by (7),

|yj,k+1 − yj,k| ≤ 2 (sk − d), j = 1, . . . , n.
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Consequently, the convergent series

yj,1 + 2
∞∑

k=1

(sk − d)

serves as a majorant for the representation

yj,k+1 = yj,1 +
k∑

i=1

|yj,i+1 − yj,i|.

This implies that all sequences (yj,k) converge to certain limits Yj as k tends to infinity.

3. We now consider the difference

(η1,ky1,k + . . . + ηn,kyn,k)− (η1,kY1 + . . . + ηn,kYn),

which converges to zero, since yj,k → Yj as k → ∞. The first term in parentheses is
sk, which has been shown to converge to d. Consequently also

η1,kY1 + η2,kY2 + . . . + ηn,kYn → d. (10)

However, the set {
η1Y1 + η2Y2 + . . . + ηnYn : ηj ∈ {−1, 0, +1}

}
contains only a finite number of elements, which together with (10) then implies that

η1,kY1 + η2,kY2 + . . . + ηn,kYn = d (11)

for all sufficiently large k, say for all k ≥ K.

4. Finally, we observe that the values

Ik :=
n∑

j=1

(yj,k − Yj)
2

all converge to zero, since yj,k → Yj as k → ∞. In fact all Ik are equal for k ≥ K,
namely,

Ik+1 − Ik =
n∑

j=1

(
yj,k − 2ηj,k

sk − d

mk

− Yj

)2

−
n∑

j=1

(yj,k − Yj)
2

= 4
n∑

j=1

η2
j,k

(
sk − d

mk

)2

− 4
n∑

j=1

ηj,k
sk − d

mk

(yj,k − Yj)

= 4
sk − d

mk

[
n∑

j=1

η2
j,k

sk − d

mk

−
n∑

j=1

ηj,k yj,k +
n∑

j=1

ηj,kYj

]

= 4
sk − d

mk

[
sk − d−

n∑
j=1

ηj,kyj,k +
n∑

j=1

ηj,kYj

]
= 0,

9



where we used (6) and (11) in the last step. Since Ik → 0 it follows that Ik = 0 for all
k ≥ K, which implies yj,k = Yj. But then all variables yj would be constant after the
K-th step, a contradiction.

3 Relaxation Procedures

In this section we return to the IMO Pentagon Game and formulate a natural gener-
alization to graphs.

A Relaxation Procedure on Graphs: Let G be a connected graph with at least two
vertices. To each vertex vj of G a real number xj, called a label, is assigned. Assume
that s :=

∑
xj > 0. If the label x associated with a vertex v is negative then it is

allowed to add 2x/m to each of the m labels at the vertices adjacent to v, and then to
replace x by −x. This step is performed repeatedly as long as negative labels exist.

In their paper [1], Akiyama, Hosono and Urabe asked if this procedure necessarily
terminates for regular graphs. We shall prove that this indeed always happens for
arbitrary graphs. Note that connectedness can be omitted if we assume that s > 0
holds in every component of the graph.

The name “Relaxation Procedure” is motivated by the following interpretation. If
we consider the xj as charges sitting at the vertices vj, their distribution induces a
“tension” of the graph G. We do not describe precisely what this means but vaguely
speaking, the more an edge contributes to the tension, the greater the differences of
charges at its incident vertices is. So “tension” is a measure for non–uniformity of a
charge distribution. The rules of a “relaxation procedure” are such that the charges
are allowed to be shifted along the edges so that the tension is reduced.

Quite recently we learned that procedures of this kind are basic for iterative methods
in circle packing, as described in Kenneth Stephenson’s beautiful and inspiring book
[21]. Here the vertices of the graph correspond to the circles involved in the packing
and the edges are defined by the prescribed tangency structure of the packing. Each
circle (vertex) carries two labels, one is the “radius”, the other one is the “angle sum”
(which measures the “local curvature”). The angle sum at a circle C is expressed by
the radii of C and all circles adjacent to C.
The goal is to find appropriate radii which “flatten” the packing, which happens if
all interior angle sums are 2π (or a multiple thereof for branched packings). This is
achieved by an iterative procedure, where in each step one circle is chosen and its radius
is adjusted such that the local curvature becomes zero (or “small”). This changes the
curvature labels of C and of the adjacent circles. In effect the “curvature overhead” of
C is distributed among its neighbors according to a rule which resembles the setting of
the above relaxation procedure. The iteration is stopped if the absolute values of all
local curvatures are less then a positive threshold. For details we refer to [21], especially
pages 243–244.
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Does a relaxation procedure necessarily terminate? If yes, how many steps can be (or
must be) performed and what are the possible final configurations? For the procedure
defined above the following theorem gives an affirmative answer to the first question.

Theorem 2. For each graph the above relaxation procedure stops.

Proof. 1. We reduce the problem to a special case of the Signed Mean Value Procedure.
In order to do so, G is first converted to a digraph by choosing arbitrary directions of
its edges. Further, we double the number n of vertices of G by associating with any
vertex vj a new vertex v′j which is adjacent (exactly) to vj by an edge ej directed from
v′j to vj. The resulting digraph is denoted by G′. To each vertex v′j of G′ which does
not belong to G we assign the label −d, where d := s/n and n denotes the number of
vertices of G. Then the total sum of all vertex labels of G′ is zero.

2. With any directed edge ei of G′ we associate a label (“the conductance”) yi, such
that the vertex labels xj are equal to the sum of the edge labels at the incident incoming
edges minus the sum of the edge labels at the incident outgoing edges.
The existence of such labels follows from Kirchhoff’s law, using the fact that the sum
of all vertex labels is zero. More directly, to find appropriate edge labels one can select
a spanning tree T of G′ and choose arbitrary labels at those edges of G′ which do not
belong to T . The remaining labels at the edges of T are then uniquely determined
and can be found by successively deleting monovalent vertices of T together with the
corresponding edges. Note that all edges from v′j to vj belong to any spanning tree and
carry the label d.

3. We investigate the edge labels during a step of the relaxation procedure. Each
vertex label x has the representation

x = d−
∑

ηi yi

where yi are the labels of the incident edges belonging to G, with ηi = −1 for incoming,
and ηi = +1 for outgoing edges.
Let x be the (negative) label of a vertex v with valency m selected in a step of the
procedure. Then x < 0 is equivalent to s′ :=

∑
ηiyi > d. If the labels yi of the incident

edges belonging to G are replaced by yi − 2 ηi(s
′ − d)/m and the label d of the edge

between v and v′ remains unchanged, these new values are compatible with the new
vertex labels. In fact,

xnew = d−
m∑

i=1

(
ηi yi − 2

s′ − d

m

)
= d− s′ + 2s′ − 2d + d = −xold,

and changing the labels yi of all edges incident with v according to the rule

yi 7→ yi − 2 ηi
s′ − d

m
≡ yi + 2 ηi

x

m

has the same effect like adding 2x/m to the labels at all vertices adjacent to v.
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So the relaxation procedure for the vertex labels induces a special Signed Mean Value
Procedure (with preselected ηi) for the edge labels. By Theorem 1 the latter must
terminate.

In contrast to the problem for polygons neither the final configuration nor the number
of steps is uniquely determined. For instance, if the labels −1,−2, 3, 4 are attached to
the vertices of a complete graph of order four we get the following results (scaled by a
common factor of 27), depending on whether one starts with −1 or −2 in the initial
step:

(−27,−54, 81, 108) → (27,−72, 63, 90) → (−21, 72, 15, 42) → (21, 58, 1, 28)

(−27,−54, 81, 108) → (−63, 54, 45, 72) → (63, 12, 3, 30).

Open problem: Find a characterization of all graphs where the final configuration
and/or the number of steps are unique.

There are many possibilities to change the rules of the game. One option is to admit
weighted shifts of the charges, which leads to relaxation procedures on weighted digraphs.
To define these procedures we assume that every edge eij of a digraph G with n vertices
vi carries a non-negative label cij, its “edge conductance”, such that for all i = 1, . . . , n

ci :=
∑
j 6=i

cij > 0. (12)

To simplify notations we assume that G is completely bi-oriented, which can be achieved
by adding virtual edges with conductance zero, and define the weights wij for i, j =
1, . . . , n by

wij :=

{
−1 if i = j
cij/ci if i 6= j.

(13)

A Relaxation Procedure on Weighted Digraphs. Let G be a digraph endowed
with edge conductances cij, let the weights wij be defined by (13), and fix a “relaxation
parameter” λ ∈ R+. Assume further that any vertex vi of G carries a label xi, its
“charge”, so that the total charge x1 + . . . , +xn is positive.
If there is at least one negative charge, say xi, it is allowed to replace all charges
according to the rule

xj 7→ xj + 2λwij xi, j = 1, . . . , n. (14)

Repeat this step as long as there are negative charges.

Remark. Condition (12) guarantees that any negative charge has the option to be
distributed among their neighboring vertices. If one admits that ci vanishes for some
indices i, it is natural to set all corresponding weights wij, including wii, to zero and
to modify the procedure by not allowing the substitution (14) for those values of i.
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Open problem: Assume that the edge conductances of G are given. Describe the set
of all relaxation parameters λ such that, for any initial distribution of the charges, the
relaxation procedure terminates.

The rules of the relaxation procedure are designed so that the total charge remains
invariant, which was motivated by our physical interpretation. One should not think
that this condition is natural to get a “reasonable” procedure – on the contrary.
In 1987 Shahar Mozes invented what is now called Mozes’ Numbers Game, which
corresponds to the substitution rule

xj 7→:=

{
−xj if i = j
xj + wij xi if i 6= j

(15)

with integer weights wij. Using Weyl groups and Kac-Moody algebras, Mozes gave an
algebraic characterization of the initial positions giving rise to finite games and proved
that for those the number of steps and the finial configuration do not depend on the
moves of the player. For wij ∈ {0, 1} (which includes the original Pentagon problem)
Anders Björner [3] (see also [4], Section 4.3, and [8]) gave an elementary proof (with-
out characterizing the initial configurations for which the game terminates). Kimmo
Eriksson [9] showed that (for a subclass of problems) one can decide which positions are
reachable from a given initial configuration, and his subsequent investigations [11]–[12]
revealed deep connections to Coxeter groups and greedoids. Proctor [18] discovered
that Mozes’ Numbers Game is related to Bruhat lattices.

Further modifications of the problem arise if one admits simultaneous substitutions of
(some or all) negative labels. Another direction is to allow substitutions without sign
restrictions, and to ask for the set of all reachable configurations. Does this set contain
“minimal” configurations? Of, course one can also replace the real numbers by other
(partially ordered) algebraic structures . . .

Isn’t it fascinating to find so much mathematics hidden in a simple game?
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