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a b s t r a c t

Power-law scaling is an ubiquitous feature of the power spectrum of streamflow on the daily to monthly
timescales where the spectrum is most strongly affected by hydrologic catchment-scale processes.
Numerous mechanistic explanations for the emergence of this power-law scaling have been proposed.
This study employs empirical spectra obtained for eight river basins in the South Eastern US and syn-
thetic spectra generated from a range of proposed mechanisms to explore these explanations. The empir-
ical analysis suggested that streamflow spectra were characterized by multiple power-law scaling
regimes with high-frequency exponents a in the range �1 to �5. In the studied basins, a tended to
increase with drainage area. The power-law generating mechanisms analyzed included linear and non-
linear catchment water balance arguments, power-law recession behavior, autonomous and non-auton-
omous responses of channel hydraulics and the n-fold convolution of linear reservoirs underpinning
Dooge or Nash hydrographs. Of these mechanisms, only n-fold convolutions with n = 2 or 3 generated
power spectra with features that were consistent with the empirical cases. If the effects of daily stream-
flow sampling on truncating power spectra were considered, then the trends in a with drainage area were
also consistent with this mechanism. Generalizing the linear convolution approach to a network of res-
ervoirs with randomly distributed parameters preserved the features of the power spectrum and main-
tained consistency with empirical spectra.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Streamflow signatures

Streamflow provides an integrated measure of up-gradient
hydrological processes within a catchment, making it a key metric
to characterize the behavior of natural systems [1]. Analysis of
streamflow timeseries has multiple hydrologic applications, from
estimating evapotranspiration and precipitation history [2–4],
making inferences about hillslope travel time distributions [5,6],
antecedent water content [7], channel-aquifer connections [8,9]
and analyzing baseflow generation processes [10].

Streamflow measurements can be interpreted in several ways,
perhaps most widely through direct analysis of the flow hydro-
graph, for example in hydrograph recession analysis [10]. Alterna-
tively, streamflow can be analyzed in a probabilistic framework, for
instance by determining the nature and controls on the probability
ll rights reserved.

nvironment, Duke University,
density function (pdf) of streamflow. Such probabilistic analyses
provide insight into the ‘filtering’ of the stochastic rainfall signal
by the landscape [11,12], and allow risk and likelihood-based
interpretations of streamflow variability. Probabilistic analyses de-
scribe only the variations in the magnitude of runoff, however, and
are therefore complemented by information that characterizes the
temporal structure of these variations, for example through the
correlation structure or power spectrum of the timeseries. These
approaches emphasize periodicities and persistence and enable
contributions of different processes to the total streamflow vari-
ability to be separated on the basis of their characteristic time-
scales. Spectral interpretations of flow variability are receiving
increasing interest [13–17] due to the information they reveal
about clustering, intermittency and long-term memory in hydro-
logical systems. Numerous mechanistic explanations have been
proposed to explain the widely observed features of streamflow
power spectra. This study compares the synthetic spectra gener-
ated by multiple mechanisms to empirically derived spectra ob-
tained for eight river basins in the South Eastern US, and
evaluates the ability of the mechanistic explanations to reproduce
key features of the empirical spectra, and in particular the scaling
exponents.
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1.2. The streamflow power spectrum

The streamflow power spectrum is defined by the Fourier trans-
form of the streamflow timeseries q(t):

Qðf Þ ¼
Z 1

�1
qðtÞ expðiftÞdt; ð1Þ

where i2 = �1, f[T�1] is a frequency coordinate and t[T] is the time
coordinate. The energy spectrum is given by the squared amplitude
of the transformed flow, jQ(f)j2df. The power spectrum is defined by
the energy per unit frequency jQ(f)j2. The power spectrum is related
to the variance of the original timeseries r2, by Parseval’s theorem:
r2 ¼ 2

R1
f¼0 Qðf Þdf . The power spectrum is defined on an infinite do-

main of frequencies, and different processes inject energy at differ-
ent timescales, as illustrated in Fig. 1. In the case of streamflow, the
high frequency component of the spectrum (timescales on the order
of seconds) is dominated by the action and the spectral signature of
turbulence (for large Reynolds number flow). At low frequencies
(seasonal to –inter-annual timescales), streamflow spectra most
strongly reflect climatic drivers. The influence of the landscape
and hydrological processes is most pronounced at approximately
daily timescales, and the focus here is therefore on the timescales
bounding the ‘hydrologic regime’ shown in Fig. 1. The power spec-
trum of streamflow at these timescales is closely related to the
instantaneous unit hydrograph (IUH) of the watershed [18] denoted
as u(t). By construction,

qðtÞ ¼
Z t

0
ðpðsÞ � lðsÞÞuðt � sÞds; ð2Þ

where p(t) is the hyetograph, and l(t) is a loss function accounting
for the differences in mass between rainfall and streamflow. Denote
the difference of p and l as pq, defining the volume of rainfall input
to the catchment that is potentially available for flow generation.
The properties of the Fourier convolution integral require that:

Qðf Þ ¼ PQ ðf Þ � Uðf Þ; ð3Þ

where PQ(f) and U(f) are the Fourier transforms of pq and the IUH,
respectively. Thus, the streamflow power spectrum normalized by
Fig. 1. Conceptual diagram of the full power spectrum of streamflow. At high
frequencies (corresponding to fluctuations on the order of seconds) the Kolmogorov
Turbulent cascade emerges in the spectrum, characterized by the �5/3 power law
scaling in the inertial regime, steeper scaling in the dissipative region and �1
scaling in the production region. At the lowest frequencies periodic features
associated with seasonal, annual and longer period cycles emerge in the spectrum,
primarily associated with climatic drivers of streamflow. The intermediate regime
in the scaling range of hours to months is associated with fluctuations that are
hydrologically mediated, that reflect the nature of the instantaneous unit hydro-
graph, and which are the focus of this study.
the power spectrum of pq defines the power spectrum of the IUH.
The IUH can be interpreted as a linear ‘transfer function’ translating
rainfall spectral forcing into streamflow spectral response within
the timescales of the hydrologic regime in Fig. 1. On timescales
where pq can be approximated as white noise, the power spectrum
of streamflow will closely reflect the power spectrum of the IUH.
Because the Fourier transform acts as an ensemble averaging oper-
ator, this view of the IUH depicts the mean catchment response to
rainfall, and cannot be used to interpret or make predictions about
the watershed response to individual rainfall events. Any non-sta-
tionarity in these responses is averaged out in both the IUH and
the spectrum, and any further modification of the rainfall signature
– for instance by travel through the vadose zone – is incorporated as
part of the IUH.

1.3. Characteristics of the streamflow power spectrum

Daily USGS streamflow records from eight river basins in North
Carolina were analyzed to illustrate some features of the stream-
flow power spectrum. North Carolina has a warm humid climate
with persistent, rain-driven streamflow, making it an appropriate
location to investigate streamflow dynamics year-round. Gages
with a minimum record of 20 years were used here. Up to
115 years of flow data were available in some locations, and the
mean record length in the dataset was 60 years. Gages were se-
lected along the main river stems. Because most rivers on the east-
ern seaboard of the USA have been subject to dam construction,
streamflow gages located upstream of major control structures
were selected whenever possible (Lumber River, Rappahannock
River, French Broad River, New River): the effect of dams on the
spectra in the other basins is discussed below. The gages are for
drainage areas ranging from 38 km2 to nearly 22,000 km2. Metada-
ta regarding the gages used are provided in Table 1.

Several methods were applied to remove the effects of slow
variations in the streamflow prior to analysis. These included a
high-pass wavelet filter, and a two-parameter Chapman recursive
digital filter for baseflow separation [19,20]. The Chapman filter
has been shown to perform comparably to other baseflow separa-
tion algorithms [21], and the different approaches had little overall
influence on the resulting spectra. Troch et al. [22] found that
water balance metrics were also relatively insensitive to the choice
of baseflow separation algorithm. The Chapman filter was retained,
and the resulting timeseries of direct runoff was normalized to
have a mean of zero and standard deviation of unity (m3/day). Fou-
rier transforms of the resulting timeseries were conducted using
the Fast Fourier Transform algorithm, and power spectra generated
from the squared Fourier amplitudes. The resulting power spectra
were characterized by near-linear scaling regimes with a ‘break’ in
the scaling evident at timescales on the order of 5–10 days. Power
spectra of this nature are special forms of the Von Karman
spectrum:

jQðf Þj2 / 1
x2

x þ f a
� �n ð4Þ

and with n = 1 and a = 2, these spectra recover a Lorentzian func-
tional form. A true Lorentzian function converges on white noise
at sufficiently small f. The low-frequency spectra of streamflow,
however, retained features of power-law scaling. To isolate the ef-
fect of reddening at high frequencies, the approach of Dolgonosov
et al. [17] was used, and the function:

jQðf Þj2 / 1
f 1

1
x2

x þ f a ; ð5Þ

was fitted to the empirical power spectra for frequencies in the
range 0.01 < f < 1 day�1. Noise in the power spectrum can confound



Table 1
North Carolina river basin data including dates of dam installation and comparisons of power spectral exponents pre-dam construction and for the full record.

Basin Locality Drainage area
(km2)

Elevation (m
a.s.l.)

Duration Control structures a Full
record

a Pre-
dam

%
Change

Tar River, NC Tar River 433 286 1939–1984 Rocky Mount Reservoir
completed 1971

2.01 2.00 0.5
Louisberg 1106 176 1963–2008 2.21
Nashville 1816 111 1928–1970 2.94 2.94 0.0
Rocky Mount 2396 53 1976–2010 3.27
Tarrboro 5654 9 1896–1941 4.10 4.20 2.5

Rappahannock, VA Warrenton 505 312 1942–1986 River dammed below
Fredricksberg.
Removed 2004

2.08
Remington 1603 253 1942–1987 3.60
Kellys Ford 1660 208 1927–1952 3.59
Fredericksberg 4131 70 1907–1952 3.36

Deep River, NC High Point 38 764 1928–1973 12 Dams along the
course of the river
including 3 large lock
structures at the river
mouth

0.44
Randleman 324 640 1928–1973 1.38
Ramseur 904 420 1923–1968 1.88
Moncure 3714 185 1930–1975 2.31
Lillington 8972 105 1924–2010 2.58
Wilmington 12567 30 1937–2010 2.40
Kelly 13610 0 1969–2010 3.89

Neuse River, NC Northside 1386 226 1927–1980 Falls Lake Dam
completed 1981

3.68 3.68 0.0
Clayton 2978 128 1927–2010 2.88 2.88 0.0
Smithfield 3124 100 1970–1991 2.99
Goldsboro 6213 43 1930–2010 3.56 4.19 15
Kinston 6946 11 1930–2010 3.94 3.87 1.9

Roanoke River, NC &
VA

Roanoke 995 906 1899–2010 Kerr Lake completed
1952 other dams
constructed later

1.63 2.41 32.5
Niagara 1318 820 3.70 3.71 0.2
Toshes 2634 588 1925–1963 2.81 2.79 0.6
Altavista 4615 503 1930–2010 3.63 3.63 0
Brookneal 6226 351 1923–2010 3.89 3.89 0.0
Randolph 7682 307 1901–2010 4.49 4.49 0
Clover 8358 302 1929–1952 3.56
Rnke. Rapids 21714 44 1912–2010 3.70 3.70 0.0

French Broad, NC Rosman 176 2174 1907–2010 Impounded at Douglas
Dam, downstream of
Marshall

3.24
Blantyre 767 2060 1920–2010 3.08
Bent Creek 1751 1996 1934–1986 3.18
Asheville 2448 1950 1895–2010 3.25
Marshall 3450 1646 1942–2010 3.61

Lumber River, NC Maxton 945 171 1987–2010 Uncontrolled 1.06
Boardman 3181 72 1929–2010 2.86

New River NC & VA Jefferson 531 2657 1924–2010 Impounded
downstream of
Allistonia

1.34
Galax 2955 2208 1929–2010 2.84
Ivanhoe 3496 1943 1927–2010 2.89
Allistonia 5729 1848 1929–2010 3.23
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Fig. 2. Analysis of streamflow spectra from North Carolina Rivers. Panel (A) shows a raw spectrum for Nashville NC. Superimposed on the spectrum are 25 logarithmic bins.
The mean value of the bins is shown as a dark spot, boxes indicate the interquartile range, and crosses the minima and maxima within each bin. The fit of Eq. (5) for this basin
is indicated in red. Panel (B) illustrates the general increasing trend in the computed high-frequency exponent with increasing basin size for each of the 40 gages studied.
Panel (C) illustrates the relatively constrained values of the scaling exponent a, ranging from approximately 0.5 to 4.5, with a median of 3.5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Features of streamflow power spectral scaling reported in other studies. Note that the
highest value of a was obtained by the study using the highest sampling frequency.

Study Basin scale
km2

Sample
freq.

a A

Schilling and Zhang
[43]

52.18 Hourly 3.65 19 h

Dolgonosov et al. [17] 1850–21,000 Daily 2–3.0 12 days
Pandey et al. [14] 5–1.8 � 106 Daily 2.75

(mean)
1 week

Tessier et al. [47] 40–200 Daily 1–2.1 16 days
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fitting, so the spectra were smoothed using a logarithmic binning
approach. In this approach, the data are binned by frequency such
that the log of the bin width is constant, thus avoiding biasing the
fit towards higher frequencies [23]. The mean value in each bin is
then computed and used to fit the Lorentzian to the spectrum, as
illustrated in Fig. 2. The values of a obtained from the fitting are
shown in Table 1.

The spectra had two other important features. Firstly, the range
of a values was relatively constrained. As illustrated in Fig. 2, the
exponents obtained empirically ranged from 0.5 to 4.5, with med-
ian values of 3.5. Secondly, within each basin (and overall) there
was an increasing trend in a with drainage area, also shown in
Fig. 2.

In four basins data from gages located downstream of dams
were included. The dates of dam installation range from the
1800s (Deep River), 1952 (Roanaoke River), 1971 (Tar River) to
1981 (Neuse River). With the exception of the Deep River, there
are long enough streamflow records in these rivers to allow the ef-
fects of dam construction on the streamflow spectra to be evalu-
ated. As shown in Table 1, of the thirteen gages for which spectra
were compared before and after dam construction (gages where
there were at least 20 years of ‘‘pre-dam’’ data), only two showed
alterations of more than 5% in the a exponent. On this basis we
maintained the full flow records for the basins. The early installa-
tion of locks in the Deep River means that the alteration of the nat-
ural regime induced by the dams could not be independently
evaluated.

The features of the streamflow spectrum identified for the
North Carolina rivers are consistent with other studies, summa-
rized in Table 2. These studies also identified multiple scaling re-
gimes in the streamflow spectra and obtained a values on the
order of �2 to �3.75 (for references, see Table 2). These estimates
of a were made on timescales ranging from less than a day to
approximately 2 weeks, that is within the hydrologic regime of
Fig. 1.
2. Mechanisms generating power-law responses in spectra

The potential mechanisms that could result in power-law re-
sponses in streamflow spectra at daily–monthly time scales are
now reviewed, and their features compared to the empirical
streamflow spectra. The mechanisms are divided into two broad
categories: purely deterministic phenomena that could lead to
power-law spectra when forced by random rainfall, and phenom-
ena in which random spatial heterogeneity is explicitly considered
along with the random rainfall forcing.

2.1. Deterministic processes

2.1.1. Note on terminology
Analytical manipulation via Fourier transforms is generally only

possible for linear processes. These analyses therefore rely on lin-
ear representations of flow generation, such as: q(t) = qoexp(�kt).
The constant k has units of T�1. Although it is natural to interpret
k as a residence time, this interpretation does not reflect current
understanding of runoff generation processes in most catchments
(e.g. the old water paradox [24,25]). Tracer experiments indicate
that residence times within the vadose and saturated zones can
be long, while k typically has timescales of days to weeks. Hence
k should be interpreted as the timescale on which rainfall events
generate runoff responses. Mechanistically, k may be related to
the persistence of pressure connectivity between saturated regions
in the hillslope with the riparian zone. For clarity, k is referred to as
the ‘‘response timescale’’ of the linear reservoir.

2.1.2. Linear water balance
One approach to deriving the streamflow spectrum begins by

expressing stream discharge as a function of catchment water bal-
ance [2,16,17]:

etðtÞ ¼ pðtÞ � 1
A

qðtÞ þ ds
dt

� �
; ð6Þ

where et is evapotranspiration, p is precipitation, A is the contribut-
ing drainage area, s is the volume of water stored in the catchment
and t indicates time. Assuming a power-law storage-discharge rela-
tion: q = asb, where a and b are catchment-specific parameters, dis-
charge can be isolated:

�qðb�1Þ=ba1=bbðA etðtÞ � A pðtÞ þ qðtÞÞ ¼ dq
dt
: ð7Þ

The Fourier transform of Eq. (7) can be analytically determined if
(b � 1)/b � 0 (or b � 1, a linear storage-discharge relationship),
giving:

Qðf Þ ¼ cðbþ if ÞðPðf Þ � Eðf ÞÞ
ðb2 þ f 2Þ

; ð8Þ

where b = a1/bb and c = bA, and where P, E and Q are the Fourier
transforms of p, et and q, respectively. Computing the power spec-
trum of the streamflow gives:

jQðf Þj2 ¼ c2ðjPðf Þ � Eðf Þj2Þ
ðb2 þ f 2Þ

: ð9Þ

Fluctuations in et at daily and longer timescales are likely to have a
smaller amplitude than fluctuations in p [26] within the hydrologic
regime (Fig. 1), and so it might be reasonable to assume that:

jPðf Þ � Eðf Þj2 � jPðf Þj2; ð10Þ

for daily–monthly frequencies. At higher and lower frequencies, the
diurnal cycle in et, within-storm temporal scaling and seasonal vari-
ations in p and et invalidate this approximation. To illustrate, p and
et scaling were examined from eddy-covariance and rainfall time-
series collected at the Duke Forest’s Blackwood division near Dur-
ham NC. Eight years of data gathered in a pine plantation, and
five years of data gathered in a hardwood forest and grass field
[27,28] were analyzed. As shown in Fig. 3, Eq. (10) was a good
approximation on daily to monthly timescales for all three ecosys-
tems, but broke down for f < 0.01 or f > 1 days�1. With Eqs. (10), (9)
simplifies to a Lorentzian form for jQ(f)j2/jP(f)j2, with:

jQðf Þj2

jPðf Þj2
/ 1
ðb2 þ f 2Þ

; ð11Þ

so that at high f, jQ(f)j2 � f�2. By comparing Eqs. (11) and (4), it is in-
ferred that the catchment water balance constrains the streamflow
spectrum to a Lorentzian form. However, it is apparent that this form
of scaling cannot result in power-law exponents that deviate from
�2. Plausibly, the deviations in a from�2 might derive from nonlin-
ear storage discharge relationships, where q = asb but b is no longer
constrained by (b � 1)/b � 0. Such nonlinear relationships often
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arise in real situations [29]: for instance, solutions of the Boussinesq
Equation for an unconfined, homogeneous horizontal aquifer sug-
gest that b 2 [1.5–3] [2]; Palmroth et al. [3] found that b 2 [1.1–
1.6] for a series of North Carolina watersheds, while Ceola et al.
[30] found b 2 [1,2.2]. Furthermore, Biswal and Marani [31] sug-
gested that the parameters a and b could be related to network geo-
morphology, resulting in spatially-dependent and nonlinear
storage-discharge relationships.
2.1.3. Nonlinear water balance
No analytical treatment of the Fourier transform of Eq. (7) is

possible when b – 1. However, the sensitivity of jQ(f)j2 to varying
b can be explored by solving Eq. (7) numerically. Numerical solu-
tions to Eq. (7) obtained using Milstein’s Higher Order Method
[32] assuming white noise for P(t) � E(t) are shown in Fig. 4. The
Fig. 4. Ensemble mean power spectra generated for nonlinear analogues to Eq. (7). Fits o
the storage-discharge exponent (b). A �2 grade line is shown for reference.
solutions shown are ensemble means of 100 simulations generated
for b in the range 1 through 5 and normalized to zero mean and
unit variance. Although the break in scaling and the intercepts of
the spectra shift with b, the slopes of the spectra at higher frequen-
cies remain unchanged at �2. The non-linearity in the storage-dis-
charge therefore does not explain the a – 2. This result is
consistent with analyses of the higher-order power spectra of fluid
turbulence, where the ‘‘higher-order power spectrum’’ refers to the
power spectrum of a quantity raised to a power m, when m > 1. The
higher order spectra of fluid turbulence preserves Kolmogorov’s
� 5/3 scaling (i.e. the expected scaling at high frequencies for high
Reynolds Number turbulent flows) for all m, a result that can be
shown arise for any timeseries with near-Gaussian fluctuations
[33,34]. Thus, including the nonlinearity in Eq. (7) does not alter
the spectral scaling from the linear case. The water balance ap-
proach cannot therefore explain the full range of 1/fa slopes ob-
served in streamflow power spectra (Fig. 2).

2.1.4. Power-laws in the recession drive power-laws in the spectrum
Power-law behavior in hydrograph recessions is widely ob-

served. The hydraulics of porous media flow draining from the hill-
slope are often invoked as drivers of power-law behavior in the
hydrograph recession [2,35]. Alternative explanations that rely pri-
marily on heterogeneity of travel times across multiple flow paths
also predict power-law recession behavior [5,6,31]. Power-law
behavior in hydrograph recessions implies that during the reces-
sion phase, q / t�x. The Fourier transforms of such recessions can-
not be analytically determined in general. Heuristically, the more
negative x is, the more the IUH resembles an impulse function,
and the less the incoming signal of rainfall is ‘reddened’
during the recession phase. Conversely, the closer x is to zero,
the greater the attenuation and reddening of the input signals.
For 0 < x < 1 the Fourier power spectrum of q / t�x can be analyt-
ically determined and is given by:

jQðtÞj2 ¼ 4ðf 2Þx�1Cð1�xÞ2 sinðpxÞ2: ð12Þ

Evidently, as x ? 1 less reddening of the spectrum can be attrib-
uted to the recession, while as x ? 0 the spectral scaling ap-
proaches 1/f2. Therefore, power law recessions produce scaling
behavior bounded by 0 < a < 2, which is too restrictive to explain
the range of observed empirical behavior.

2.1.5. Series of linear reservoirs drive power-laws in the spectrum
If the streamflow spectrum is approached from the perspective

of the instantaneous unit hydrograph, then the unit hydrograph
f the Lorentzian (represented as A/(B2 + fa)) are shown in the table for each value of
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models of Dooge [36] and Nash [37] provide an alternative expla-
nation for the spectral phenomena. These models conceptualize
hydrographs as arising from the successive transformation of a
flood peak by travel through n linear reservoirs or channels. In each
case, the unit hydrograph can be defined as a gamma distribution
of the form:

uðtÞ ¼ 1
kCðnÞ

t
k

� �ðn�1Þ

� exp
�t
k

� �
; ðlinear reservoirsÞ; ð13Þ

uðtÞ ¼ 1
kCðnÞ

t � nTC

k

� �ðn�1Þ

� exp
�ðt � nTCÞ

k

� �
; ðlinear channelsÞ; ð14Þ

where k is interpreted as the reservoir response timescale as before,
and TC represents the travel time in the channels. These unit hydro-
graphs have identical power spectra:

jUðf Þj2 ¼ ðCðnÞÞ2 1

ð1=k2 þ f 2Þn
: ð15Þ

When n = 1, this result is identical to that in Eq. (11). These unit
hydrographs thus generalize the water balance approach by propa-
gating it through n reservoirs in series, permitting multiple scaling
regimes with �1/f2n. Encouragingly, this conceptual model permits
a > 2. Given the constrained range of a values observed in the daily–
monthly regime, however, this model suggests that river basins
consist of at most 2–3 linear stores in series. While n � 3 does not
map logically to a discretization of reservoirs based on, for instance
channel order or drainage area, it may be appropriate if catchments
are conceptualized as consisting of a small number of different
‘kinds’ of reservoirs, distributed in space and connected through a
network structure. These reservoirs could feasibly consist of the va-
dose zone, shallow responsive saturated zones, and the channel net-
work itself. The generalization of this conceptual model to a
primitive form of such a network is addressed in Section 2.2.

2.1.6. Channel hydraulics generate power-law responses in the spectra
Here we explore two novel hypotheses for the genesis of

streamflow power-laws: autonomous and non-autonomous re-
sponses of the channel. The first hypothesis is that the autonomous
response of streamflow hydraulics to lateral inputs of flow can gen-
erate power-laws in the streamflow spectrum. The starting point is
the kinematic version of the shallow water continuity equation
[38]:

@h
@t
þ @ðVhÞ

@x
¼ qL; ð16Þ

where h is the stage in the channel, V the velocity, x the longitudinal
coordinate, and qL represents the lateral input to the channel per
unit width of channel (units L/T). If a kinematic relationship be-
tween stage and velocity of the form V = Krh

m is assumed, then the
continuity equation can be expanded as:

@h
@t
þ Krð1þ mÞhm @h

@x
¼ qL: ð17Þ

For locally uniform flow the water depth gradient can be approxi-
mated as a constant, equivalent to the bed slope So, giving:

@h
@t
þ SoKrð1þ mÞhm ¼ qL ð18Þ

and the solution to the homogeneous (autonomous) equation
where qL = 0 (i.e. when water arrives in the stream as a Dirac delta
pulse) can be found as:

h ¼ ðm� 1ÞðSoKrtðmþ 1Þ � c1Þ1=ð1�mÞ: ð19Þ
The constant c1 can be estimated from the stage prior to the begin-
ning of the runoff event, h0, as c1 ¼ h1�m

0 =ð1� mÞ. Provided that h0 is
small, c1 � 0. From dimensional analysis, q � h @h

@t , so that the flow
q(t) associated with the autonomous response can be estimated as:

qðtÞ � �SoKrð1þ mÞððm� 1ÞðSoKrtð1þ mÞÞÞ
1þm
1�m: ð20Þ

The rate of change of the flow is then estimated as:

dq
dt
¼ �qð1þ mÞ

tðm� 1Þ �
q
t

1� k
2

� �
: ð21Þ

If this flow component represents the rising limb of the hydrograph,
and recessions are assumed to be near exponential, then the ordin-
ary differential equation (ODE) describing the evolution of the run-
off hydrograph can be expressed as the superposition of rising and
falling components:

dq
dt
¼ q

t
1� k

2

� �
�xxq; ð22Þ

where xx is the response timescale of the channel. Solving for the
time evolution of the flow yields:

qðtÞ ¼ t
k
2�1 expð�xxtÞ: ð23Þ

The hydraulic argument recovers the canonical gamma distribution
form of the unit hydrograph as per Section 2.1.5, but with a rather
different mechanistic underpinning. Power spectra generated from
this relationship scale as 1/fk, suggesting that the autonomous
hydraulic response of the rising limb of the flood hydrograph is con-
sistent with the production of power spectra with a > 2. Although
initially encouraging, closer inspection of this derivation suggests
that it is subject to a significant caveat. Solving the substitution
made in Eq. (21) for k:

k ¼ 4m=ðm� 1Þ: ð24Þ

This relationship has an asymptotic minimum for k of 4 as m ?1,
and predicts k < 0 for typical values of m (such as m � 2/3 from Man-
ning’s Equation).

An alternative hypothesis is that the non-autonomous compo-
nent of the hydraulic response could drive power-laws in the spec-
trum. During the rising phase of the hydrograph, it is reasonable to
assume that the non-local input of water to the channel is the
dominant term, so that the continuity equation may be reduced to:

@h
@t
� qL /

h
t
; ð25Þ

where a scaling argument has again been applied to approximate qL.
Applying the kinematic relationship, V = Krh

m this can be re-ex-
pressed in terms of the flow:

@q
@t
¼ n

q
t
ðmþ 1Þ; ð26Þ

where n is a constant of proportionality. This simple scaling argu-
ment recovers the solution for the rising limb of a runoff hydro-
graph driven by steady rainfall and shallow kinematic flow [38].
Assuming an exponential recession, the hydrograph ODE is:

dq
dt
¼ n

q
t
ðmþ 1Þ �xxq; ð27Þ

with solution q = exp (�xxt)tn(1+m). This solution generates 1/fa scal-
ing with a = 2(1 + n + nm). Assuming m � 2/3, exponents in the range
of 2 to 5 are recovered for 0.3 < n < 1. To determine if these values
are reasonable in light of measured hydrographs, individual flood
events were isolated from the NC river data and the relationship
dq
dt ¼ h q

t fitted to the rising limbs. The values of h obtained ranged
from 2.6 to 11.5, giving n in the range 1.6 to 6.85, and a of 7 to
25, much greater than observed empirically. Perhaps the prediction



Table 3
Generation of power-law recession behavior through randomization of the response
time. Depending on how response times are distribute, different recession forms
emerge, however the power spectra of these functions preserves the 1/f2 scaling of the
underlying linear reservoirs.

Distribution pk(k) qN(t) Range in a

Uniform 1/A, 0 < k 6 A qoð1�e�At Þ
At

�1 to �2

Exponential Aexp (�A k), 0 < A Aqo
ðAþtÞ

�1 to �2

Gamma kA�1 expð�BkÞBA

CðAÞ ;A;B > 0 qo
B
ðBþtÞ

� �A �2

Single reservoir 1 qoexp (�Ak), 0 < A 0 to �2
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of large values of the spectral exponent is unsurprising given the
non-stationarity within the non-autonomous term, which would
be expected to generate strong coherence and memory effects for
the individual flood events analyzed.

The hydraulic hypotheses provide an alternative way to concep-
tualize the genesis of the unit hydrograph based on channel flow
alone. They provide a flexible interpretation of multiple values of
power spectral scaling, and the emphasis on the rising limb as gen-
erating power-laws in the spectrum appears to be appropriate.
Furthermore, the hypothesized power-law rise was found to be a
reasonable description of the rising limb of the streamflow hydro-
graph. The lack of a quantitative agreement between these predic-
tions and observation may therefore indicate alternative
derivations of a dq/dt � q/t relationship for the rising limb are
needed to reconcile the high values of h with the observed values
of a. Alternatively, the fact that rising limb fits can only be com-
puted for isolated storms may result in a bias in the estimation
of h by comparison to the full flow record, generating the quantita-
tive mismatch.

2.2. Stochastic approach

Having reviewed a range of deterministic hypotheses for the
generation of power-law scaling in the streamflow spectrum, the
conceptual model that appears to be most consistent with observa-
tions is that of 1–3 reservoirs in series. This conceptualization can
be generalized to real catchments by assuming these reservoirs are
arranged in a spatially distributed network. As a starting point,
each reservoir is assumed to act as a linear reservoir with a distinct
response timescale, ki, j where i indicates the order of the reservoir
– i.e. its location along a single flow path of reservoirs in series –
and j denotes the specific individual reservoir. The components
of the network are reservoirs in series (connecting reservoirs of dif-
ferent order i) and reservoirs in parallel (describing the behavior of
multiple individual reservoirs j at the same order i), as illustrated
conceptually in Fig. 5. These components are first investigated in
isolation from each other.

2.3. Reservoirs in parallel with random time constants

Let each reservoir j be characterized by a single time constant kj.
Then the discharge from an individual reservoir has the form:

qjðtÞ ¼ qoj expð�kjtÞ: ð28Þ

Assume that the values of k are randomly distributed across the
parallel reservoirs (due to heterogeneity in subcatchment area,
soils, geology, etc. [31]) according to a known probability density
function pk(k). Using the combined distribution approach [39,40],
the resulting discharge qn(t) from the set of n parallel reservoirs
A B

Fig. 5. Conceptual sketch indicating potential mechanisms of streamflow generation and
incoming flux with the reservoir linear response function, and then applying a combined
the network may be generated.
(assuming each reservoir contributes an equivalent volume) can
be estimated as:

qnðtÞ ¼
Z 1

0
qo expð�ktÞ pkðkÞdk: ð29Þ

For many choices of pk(k) Eq. (29) generates analytical solutions
that are simple power-laws in time, as shown in Table 3. Based
on the recession analysis discussed in Section 2.1.4, the power spec-
tra of these recessions would be expected to have 0 < a < 2. The
power spectra of the functions shown in Table 3 were computed
while varying their parameters over 9 orders of magnitude (from
10�4 to 104). The results are shown in Table 3 and confirm that
the power spectra exponents remained in the range 0 to �2. Fur-
thermore, visual inspection of the spectra indicated that deviations
from 1/f2 scaling only occurred when the spectra were truncated at
higher frequencies. These results suggest that discharge relation-
ships derived from parallel combinations of linear reservoirs pre-
serve 1/f2 scaling in the spectra.

2.4. Reservoirs in series with random time constants

The other structural element of a network of reservoirs are
chains of reservoirs in series with randomized time constants.
The Fourier transform of the individual reservoir considered in
Eq. (28) is:

Qðf Þj ¼
qoj

kj þ if
: ð30Þ

In the Fourier Domain, the n-fold convolution of the exponential
reservoir can be readily computed:

Qðf Þn ¼
Yn

j¼1

qoj

kj þ if
¼
Yn

j¼1

qoj

Yn

j¼1

1
ðkj þ if Þ ; ð31Þ

which leads to a power spectrum:
their plausible arrangements in a primitive network. By recursively convolving the
distribution approach across each suite of parallel reservoirs, a response function for
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jQðf ÞNj
2 ¼

Yn

j¼1

q2
oj

Yn

j¼1

1

k2
j þ f 2

� � : ð32Þ

This expression can be simplified via a log transformation:

log jQðf ÞN j
2

� �
¼ log

Yn

j¼1

q2
oj

 !
þ log

Yn

j¼1

1

k2
j þ f 2

� �
0
@

1
A

¼ 2
Xn

j¼1

logðqojÞ �
Xn

j¼1

log k2
j þ f 2

� �

¼ 2nlogðqoÞ � nlogðk2 þ f 2Þ; ð33Þ

where the overline indicates the expectation of the expression.
From inspection, then, the form of the power spectrum is related
to the geometric mean of the inflow and the time constants for
the individual reservoirs, but cannot be further generalized without
specifying pk(k). Comparing the empirical power spectra with the
spectra in Eq. (32), suggests that it is again unnecessary to consider
n > 3. For n = 3, the power spectrum is given by:

jQðf Þ3j
2 ¼ q2

o1q2
o2q2

o3
1

k2
1 þ f 2

� �
k2

2 þ f 2
� �

k2
3 þ f 2

� � : ð34Þ

This spectrum evidently has a multi-scaling nature, spanning re-
gimes that scale as 1/f2, 1/f4 and 1/f6 as f increases. If the three res-
ervoirs are assumed to correspond to the vadose zone, the shallow
water table and the channel, then k1, k2 and k3 can be estimated,
and the spectrum computed. Taking the response timescales as
O(10�1) (vadose zone), O(10�2) (shallow water table) and O(10�1)
(channel) generates the spectrum shown in Fig. 6. As illustrated in
Fig. 6, truncation of the spectrum at different frequencies generates
the full range of a observed in real rivers. Such truncations arise
with a fixed sampling frequency if the values of k1–k3 vary. If larger
basins have smaller values of k (i.e. respond more gradually to a
rainfall burst than small basins), then streamflow power spectra
would be translated to lower frequencies with increasing drainage
area. Daily sampling would truncate less of the multi-scaling region,
leading to an increase in estimated a with drainage area.
Fig. 6. Power spectrum generated from three reservoirs in series with different
response times chosen to reflect reasonable orders of magnitude for soils, saturated
zones and channels. The different regions indicate the best linear fit to the spectrum
if it is truncated at progressively lower frequencies.
2.5. Idealized networks

Based on these results, attenuation of the flow signal and a red-
dening of the spectrum are associated with passage of the flow
through new kinds of reservoirs, while passage through reservoirs
in parallel alters the discharge hydrograph but not the scaling of
the streamflow power spectrum. Together, these results suggest
that the power spectrum of flow generated from a network in which
individual flow paths consist of n reservoirs will have the same
canonical form as the spectrum from n reservoirs in series. The nat-
ure of the flow at any level i in the network can be computed by
determining the flow leaving an individual reservoir at that level,
and then randomizing the relevant time constants. If the probabil-
ity law for the time constants for every level i of the network is
unaltered, then the flow leaving level i can be calculated as:

qi
outðtÞ ¼

Z 1

0
pkðkÞ

Z t

0
qi

inðsÞkj expð�kjðt � sÞÞds
� 	

dk: ð35Þ

In general, it is not possible to compute these flow responses ana-
lytically, but the effects of the transformations can be explored
numerically. The predicted flow output at each scale preserves the
signature of the series convolution, and is unaltered by the presence
of parallel network branches, which the shifts in the spectrum along
the network primarily attributable to the rising limb of the
hydrograph.

2.6. Comparison with field data

The theoretical analysis suggests that the representation of a
catchment as a third-order network of linear reservoirs is consis-
tent with the form of empirical streamflow power spectra regard-
less of the heterogeneity in the properties of these reservoirs. If this
mechanism is appropriate, then there should be empirical evidence
of progressive reddening of incoming rainfall signatures as re-
corded in different ‘reservoirs’.

Katul et al. [26] demonstrated that the measured soil moisture
spectrum had a Lorentzian form with a high frequency scaling of
1/ff+2, (where f is the exponent of the rainfall timeseries), which
was strongly supported by high frequency soil moisture measure-
ments made in the Duke Forest. Heuristically, if the flow leaving
the vadose zone is primarily associated with gravitational drainage
near saturation, then, following Clapp and Hornberger [41]:

qdrainage / KðhÞ / hb: ð36Þ

That is, the spectrum of the flow leaving the vadose zone should re-
flect a power transformation of the soil moisture content. As dis-
cussed earlier, such a transformation does not alter the power
spectrum of the soil moisture, suggesting that the flow leaving the
vadose zone may also scale as 1/f2. Applying the stochastic soil mois-
ture balance of Laio et al. [42], we find that the estimated deep drain-
age in that framework also scales as 1/f2 when driven by white noise.
The vadose zone therefore appears to redden the rainfall signal.

Schilling and Zhang [43] studied the spectral properties of fluc-
tuations in the water table from riparian transects at Walnut Creek
(Iowa). Water table fluctuations 40 m from the stream had an aver-
age exponent (in the hourly to daily timescale range) of �2.38,
while wells 20 m from the stream had an average exponent of
�2.55, and wells 1 m from the stream had exponents of �3.4.
The rainfall power spectrum scaled with an exponent of 0.04 in
the same temporal range, while the power spectrum of the stream-
flow scaled as 1/f3.7.

The increase in a towards the channel suggests that a second
reservoir, in addition to the vadose zone, is attenuating the rainfall
signature. Two mechanistic interpretations are consistent with the
spatial pattern in a. One interpretation is that as the upslope
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contributing area increases towards the channel, the water table
fluctuations are proportionally more influenced by lateral contri-
butions from upslope. Because lateral contributions have been
attenuated by storage and discharge from the hillslope aquifer,
they contribute to a reddening of the spectrum of water table fluc-
tuations compared to locations where the water table is primarily
responding to local drainage from the vadose zone.

However, Walnut Creek is known to have substantial periods of
reverse flow from the creek into the riparian aquifer [43]. Such re-
verse flow provides an alternative hypothesis for the observed
trend in a: that the primary communication between the hillslope
aquifer and the channel occurs due to rapid transmission of a pres-
sure signal (which would preserve the 1/f2 scaling from the vadose
zone), and that the channel network acts as a second reservoir. The
similarity in exponents observed in the near-channel riparian aqui-
fer and in the stream flow would then reflect the importance of the
stream in controlling water fluctuations in the riparian zone, while
attenuation of fluxes within the hillslope aquifers would have little
if any effect on the high-frequency scaling of streamflow.
3. Discussion and Conclusions

3.1. Mechanisms for generating power-laws in streamflow

As illustrated in Fig. 1, power-laws are observed at multiple
timescales in the streamflow spectra. In the hydrologic regime
(daily - monthly timescales), power-law scaling arises under cer-
tain conditions. Firstly, the sampling frequency at which stream-
flow is measured must be sufficiently high compared to the
limits of the power-law scaling regime that scaling exponents
can be identified. This condition is met in the data from large ba-
sins presented here, but is not always met in very small basins
where hourly sampling may be needed to resolve the high fre-
quency regime. Secondly, the analyses here considered only basins
where the assumption that flow generation can be approximated
as the relaxation response to persistent rainfall shocks is reason-
able. This means that arid basins where long periods of flow are
dominated by baseflow, and cold basins, where large snowmelt
pulses provide an additional signal of variation, have been ne-
glected. As illustrated in Figs. 1 and 3, the dynamics discussed ap-
ply only on daily to monthly timescales. At higher frequencies,
signatures associated with diurnal fluctuations in et or the turbu-
lent characteristics of the streamflow may emerge, changing the
scaling behavior. At lower frequencies, seasonal variation and
long-period groundwater fluctuations perturb the discharge signal.
Nonetheless, provided these caveats are met, power-law scaling of
discharge timeseries on daily-monthly scales appears to be a gen-
eral feature of streamflow.

Numerous potential sources of power-law scaling in streamflow
have been reviewed and compared with observed features of the
spectrum. Of the deterministic explanations reviewed, the classical
linear-systems approach predicted power spectra that were most
consistent with observations. Water balance and power law reces-
sion arguments confined scaling exponents to the 0 < a < 2 range,
which is too restrictive compared to observations. Although
hydraulic arguments allow for a range of spectral exponents, their
predictions are quantitatively inconsistent with observations, or at
least with the observations of individual flood events that can be
reliably isolated from a streamflow timeseries.
3.2. Implications

Surprisingly the power spectra predicted from a simple linear
conceptualization of catchment response were nearly identical to
spectra predicted from the outflow of a nonlinear network with
distributed parameters. On this basis, it also seems likely that the
form of observed spectra would be insensitive to spatial variations
in rainfall throughout a catchment, provided the rainfall scaling re-
mained unaltered or remained ‘white’. This may be plausible if the
catchments primarily experienced one mode of rainfall – for in-
stance frontal systems tend to have exponents near �0.5, while
convective systems have exponents near �1 [44]. The results sug-
gest that the observed range of spectral exponents (0.5 6 a 6 4.5)
in streamflow can be explained by several factors. Firstly, trunca-
tion associated with daily sampling reduces the empirical esti-
mates of a from the theoretical maxima of 2n. For instance, that
the highest value of a reported elsewhere in the literature, 3.75,
is based on hourly data that reduces this truncation effect [43].
Truncation may also explain the general trend of increasing obser-
vations of a with scale within individual basins: if the effective val-
ues of kj increase with scale, then daily sampling truncates less of
the high frequency scaling regime, leading to higher empirical esti-
mates of a. Mixing of fluxes with different scaling may also alter
the scaling regime. The scaling of numerically computed spectra
at high frequencies is sensitive to fairly small injections of white-
noise (e.g. contributing 65% of the variance in the streamflow),
as might be associated with rainfall entering the channel directly.
The preponderance of exponents in the range of 3 6 a 6 4 suggests
that a 2-reservoir conceptualization may be the appropriate model
for most of the watersheds investigated here. This would suggest
that the vadose zone and the channel form the primary reservoirs
for the rapid runoff response, and that the saturated zone does not
greatly affect the high frequency scaling of streamflow.

Power-law scaling is an almost ubiquitous phenomenon across
the earth, social, environmental, and life sciences, arising in fields
as diverse as linguistics, demography or stratigraphy. One reason
for its ubiquity is the broad range of fundamental processes that
can promote power-law scaling [45]: combinations of exponen-
tially distributed processes, critical phenomena, ‘‘rich-get-richer’’
mechanisms (the Yule phenomenon), reciprocal relationships with
time in ODEs, and more [46]. Based on this review, the direct inter-
pretation of power spectra in terms of underlying streamflow gen-
eration processes may prove challenging, since multiple
combinations of flow pathways and network structures appear to
preserve the overall structure of the streamflow spectrum. While
it is theoretically possible to extract information about the response
times of linear approximations to the different reservoirs in the sys-
tem from the spectrum, fitting Eq. (34) to noisy data is likely to ren-
der these estimates uncertain. Although the link between the
streamflow spectrum and the hydrograph remains robust, the con-
vergence of multiple processes to a common set of streamflow
power spectra poses a significant challenge to the mechanistic
interpretation of hydrographs and streamflow spectral scaling.
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