

Document Workflow Optimization

H.M. Dortmans L.J. Somers
Research & Development Dept. of Math. and Comp. Science

Océ-Technologies bv Eindhoven University of Technology
Po Box 101, 5900 MA Venlo, Po Box 513, 5600 MB Eindhoven,

The Netherlands The Netherlands
E-mail: hdo@oce.nl E-mail: wsinlou@win.tue.nl

KEYWORDS
Workflow, Petri Nets, Structured Documents

ABSTRACT

This paper describes a new way of modeling and improving
the workflow related to structured documents. A so called
Document Workflow Net is defined. This executable model
makes it possible to link document workflow to document
structure. It is shown that this model can be used to simulate
and to improve existing workflows.

INTRODUCTION

Workflow management is getting quite some attention
nowadays, due to the need of modern businesses to improve
and automate their business processes. According to the
Workflow Management Coalition (WfMC 1995; WfMC
1999), workflow management is generally concerned with
the automation of procedures where documents, information
or tasks are passed between participants according to a
defined set of rules, to achieve, or contribute to, an overall
business goal.

Document Workflow Management focuses more specifically
on the processing of documents, e.g. the creation of a
technical document (set) by a collection of authors, or the
scanning, image manipulations, and printing operations
performed inside a document print center. Companies and in-
house departments involved in document management and
processing could improve their operation considerably when
their current business processes could be optimized and
automated.

Workflow management for structured documents has been
the subject of other publications. Some publications (CIP4
2001; McClatchey et al. 1998) do not define a formal model.
Others (Weitz 1998; Aalst 1997) do not take workflow
improvement into account. We have taken the approach of
defining an executable model, covering both document
structure and process structure. Based on this model we show
how to improve existing workflows.

By not considering the document as an atomic unit of
information, but rather as a composite object, actually a
hierarchical part structure, we can describe and simulate
modern, real-world document production workflows. We will
also show that the workflow as such can be improved by
exploiting the parallelism that is implicitly present in such

document structure. This could help document creation and
production departments or businesses to decrease their turn-
around time.

DOCUMENT WORKFLOW MODEL

Any workflow, whether dealing with the production of
documents or not, can be described as a work breakdown
structure, comprising a partially ordered set of atomic
process steps, called activities or tasks. This structure can be
formally modeled as has been shown in numerous
publications, see e.g. (Ellis 1997; Aalst 1998).

Our model, however, describes not only the partial ordering
of process steps, but also deals with the fact that most
interesting documents have an internal structure. For
example, a typical manual consists of chapters, where each
chapter consists of sections. We model and exploit the fact
that parts within this structure can often be processed
concurrently.

Document Structure

Typical for interesting business documents (like user
manuals, specification documents, etc.) is that they have an
internal structure. For example, a typical manual consists of a
number of chapters, where each chapter consists of sections.
This structure is usually informally described in a blueprint
before such a document is written and it is clearly visible
afterwards in the table of contents of the completed
document. In a manual production environment the basic
components that make-up a document are often managed as
reusable assets, using a suitable Content Management
System.

In our model the Document Structure (DS) is the description
of the hierarchical structure of a particular document-type. A
DS is a rooted tree where each node represents a specific
document-part-type (e.g. Chapter, Section)

A Document Structure is a directed graph where

� one node, the root node (/), has no predecessor
� every other node has exactly one predecessor
� every node is labeled with a type identifier, i.e. a

string identifying a document part type

This definition implies that for every node there is a unique
path from the root node to that node.

A DS Instance (DSI) is an instance of a particular DS where
each node represents an instance of a document part type.
For example, manual m could be an instance of document
type M(anual) where chapter c1 of m is an instance of the
part-type C(hapter). The DSI can typically be derived from a
textual description, e.g. blueprint or table-of-contents, or a
job definition (CIP4 2001) of the particular document that
has to be produced.

Consider for example the case where the DS may describe
that in general manuals contain a number of chapters and
appendices, where chapters may be further divided into
sections. The DS of a specific instance (m) of the manual
document type could for instance define that there are in fact
two chapters (c1, c2) and one appendix (a), where chapter c1
contains two sections (s11, s12) and chapter c2 also
comprises two sections (s12, s22).

DS DSI

Manual

Chapter

Section

Appendix

/

M

C A

S

/

m

c1 c2 a

s11 s12 s21 s22

Figure 1 Document Structure of a Manual

Although not further used in this paper, we assume that each
part, represent by a node in the DSI, is supposed to have a
state that can be tested for resolving decisions during the
execution of the workflow.

Process Structure

Petri-nets are considered well suited for modeling and
simulation of all kinds of concurrent processes. Also the use
of Petri-nets for modeling the work routing aspects of
workflows can easily be justified (Aalst 1998):

� A clear and precise formal definition.
� Intuitive graphical representation
� Can model causality, choice, parallelism, iteration.
� Lots of research results, algorithms and proofs.

A classical Petri-net as introduced by Carl Adam Petri (Petri
1962; Peterson 1981; Reisig 1985) is a directed bipartite
graph with two types of nodes: places and transitions. The
nodes are connected via directed arcs. Connections between
two nodes of the same type are not allowed.

A Petri-net is a triple (P,T,F) where:

� P is a finite set of places,
� T is a finite set of transitions (P ∩ T = ∅),
� F ⊆ (P × T) ∪ (T × P) is a set of arcs (representing

the flow relation between places and transitions)

A place p is called an input place of a transition t iff there
exists a directed arc from p to t. Place p is called an output
place of transition t iff there exists a directed arc from t to p.

At any moment of time a place is supposed to contain zero or
more tokens. The state of the Petri-net, referred to as its
marking M, is the current distribution of tokens over places:
M:P → N (where N denotes the set of natural numbers).

Petri-nets can be illustrated graphically: places are
represented by circles, transitions by rectangles and tokens as
small dots within the places.

Petri-nets have well-defined simulation semantics:
� A transition t is said to be enabled to fire iff each of

its input places contains at least one token.
� If transition t fires, then t consumes one token from

each of its input places and puts one token in each
of its output places.

In this paper we use a special kind of Petri-nets, the so called
Workflow Nets (Aalst 1998). Workflow Nets have been used
with success for describing, simulating and analyzing
realistic workflow processes.

A Workflow-Net (WN) is a Petri-net that:

� has two special places: i and o. Place i is a source
place, i.e. has no input arcs, and place o is a sink
place, i.e. has no output arcs;

� is strongly connected if we add an extra transition
t* to it which connects place o with i.

The workflow-net is initiated by putting a token in place i
and is ready when a token occurs in place o. The second
condition guards that there are no dangling transitions or
places. They are all on some path from place i to place o.
We assume that the following routing primitives as defined
in (WfMC1999) are sufficient for document workflows:

AND-Split

OR-Split

AND-Join

OR-Join

Iteration
Sequence

Figure 2 Workflow Routing Primitives

Note that a place in the net can be both part of an OR-Split
and part of an OR-Join. Likewise any transition can be both
part of an AND-Split and an AND-Join. Iteration is in fact a
special combination of an OR-Join and an OR-Split.
In this paper we require document workflows to be well
structured (Aalst 1996; Aalst 1998). We believe that this
leaves us enough power to model and simulate most
interesting documentation processes.

A Workflow-Net WN is well-structured if and only if:

� For any pair of nodes x and y of WN (i.e. WN
extended with an extra transition that connects
place o to place i) and for any pair of elementary
paths C1 and C2 leading from x to y: if the set of
common nodes of C1 and C2 is {x, y} then C1 = C2.

In other words, in a well-structured WN there is only one
unique path from a transition to a place or from a place to a
transition. This means that flows that are split by an OR-split,
are joined by an OR-join. Likewise, flows split by an AND-
split are joined by an AND-join.

AND-JoinAND-Split

OR-JoinOR-Split

Figure 3 Well-Structured Split and Join

Well-structured nets have desirable dynamical properties
(Aalst1996). They can be checked for “soundness”, i.e.
lifeness, boundedness, and proper termination, in polynomial
time. A sound, well-structured net is safe, i.e. each place
never contains more then one token. This represents in real
life, that a condition holds or does not hold, or a resource is
available or not available. Furthermore, a well-structured net
is by definition a proper hierarchical nesting of subnets, that
we will call blocks.

A Block within a well-structured Workflow Net is:

� a single node, or
� the complete Workflow Net, or
� a subnet where all arcs entering the subnet do so

only at one particular OR-Join or AND-Join node
and all arcs exiting the subnet do so only at one
particular OR-Split or AND-Split node

A block is either a single node, the complete Workflow Net,
or any subnet contained within an AND-Split/AND-Join pair
or an OR-Split/OR-Join pair, including Iteration subnets.
It can easily be proven that blocks can be safely abstracted,
refined, or replaced without invalidating the well-
structuredness of the WN. A block can be replaced by
another block. Each single node can be refined by replacing
it with a block. Blocks can be recursively decomposed in
smaller blocks. A block can be abstracted by replacing it by a
single place or transition node.

Document Workflow Nets

We have shown how to describe the structure of a particular
document type as a Document Structure (DS). The business
process related to this particular document-type, can be
described as a Workflow Net (WN).

In order to model, simulate and improve the workflow
related to the creation and production of structured
documents we introduce a new kind of net that we will call
Document Workflow Net (DWN).

A Document Workflow Net is a graph comprising:

� a Document Structure DS, where each node is
labeled with a unique identifier,

� a WorkflowNet WN, where each place is labeled
with a reference to a node in the DS, and a
reference to an activity-type.

By means of the labeling, we are linking WN-transitions to
DS-nodes. These links represent the fact that performing an
activity involves a particular document-part and vice-versa
each document-part could be operated upon in one or more
activities at different points of time.
Each activity-type label in the DWN denotes a reference to
an atomic workflow operation, such as e.g. ‘Write’,
‘Review’, ‘Publish’, ‘Print’.

Following example is a DWN for the manual DS that we
have described earlier.

C
Write

i M o

Modify

Review Write Publish
S A

S

Figure 4 Document Workflow Net for a Manual

This DWN describes that first all sections of the manual are
written. Then the complete chapter will be reviewed. If not
ok, certain sections will be modified. When the review is
positive, appendices will be written and finally the manual is
published.
For a specific DS, using the same example, we can expand
above DWN into a DWN instance. An instance of the DWN
is generated by replacing each reference to node in the DS by
(one or more) references to nodes in the DSI.

INSTANTIATE
x1
x2
x3

ABC

X
ABC

Figure 5 Instantiation

For instance, the type C is substituted by its instances (c1,
c2), the actual chapters of the manual. This type substitution
is equivalent to place refinement, i.e. replacing a place by a
subnet with one entry place (OR-Join) and one exit place
(OR-Split) as shown in figure 6. Because of the balanced use
of OR-Join and OR-Split we safeguard that the substitution
maintains the well-structuredness of the net.
Note that each place in the DWN in fact can be considered a
small subnet in which the activity is linked to a transition
(see top of figure 6), which is done in most other papers. The
graphical notation we use in the DWN, however, turns out to
be quite helpful in keeping drawings concise and in
explaining algorithms.

x
ABC

x
y
z

ABC
x

y

z
ABC

ABC
ABC

ABC(x)

Figure 6 Graphical Notation

Simulation Semantics

Simulation semantics of Document Workflow nets is based
on Petri-net transition firing rules, but extended with an
additional rule. This “Mutex Rule” is defined as follows:

� A node in the Document Structure can not be
processed by more than one activity at a time

� Two nodes p and q in the Document Structure
cannot be processed simultaneously when the path
from the root node to p contains q, or the path from
the root node to q contains p

This rule prevents concurrent processing of a document part.
It also prevents multiple document parts to be processed
concurrently, when they have a ‘built-from’ or ‘part-of
relation’.

WORKFLOW IMPROVEMENT

Document Workflow Nets can not only be simulated based
on the above described simulation semantics. We can also
use the ‘Mutex Rule’ to remove unnecessary ordering of
process steps, allowing more activities to be enabled
concurrently. We will outline some simple but effective
improvement steps.

Improving a Document Workflow Net

Given a particular DWN, we can generate an improved
DWN as follows:

� For each transition t that has exactly one input
place a and one output place b, check the Mutex-
Rule for the DS nodes referenced by a and b. When
it turns out that there is no need for mutual
exclusive treatment of these nodes, perform the
following steps:

� Starting from a follow the flow downstream, not
stepping into blocks and not exiting the current
block, until a place y is found which label
references a DS node that is to be handled mutual
exclusive with the node that is referenced by a. If no
such place is found use the last place encountered
in the current block as y.

� Generate a new transition with a as input place and
y as output place.

� Starting from b follow the flow upstream, not
stepping into blocks and not exiting the current
block, until a place x is found which label
references a DS node that is to be handled mutual
exclusive with the node that is referenced by a. If no
such place is found use the last place encountered
in the current block as x.

� Generate a new transition with x as input place and
b as output place.

� Remove t

By applying these rules we get the following improved DWN
for the manual example of figures 1 and 4.

C
Write

i M o

Modify

Review

Write

Publish
S

A

S

Figure 7 Improved Document Workflow Net

In this new DWN we see that the original transition between
‘Review(C)’ and ‘Write(A)’ is removed. Now appendices
(A) could be written at the same time that sections (S) are
written and chapters (C) are reviewed. Of course, this
improvement can only be exploited in practice when enough
human resources are available.

Improving a Document Workflow Net Instance

After having improved the Document Workflow Net, by only
using information from the DS, we can even go a step
further, at least for a particular document instance, by using
information from the DSI. Let us look at the instantiated,
improved DWN of the manual what this means.

c1
c2

Write

i m o

Modify

Review

Write

Publishs11
s12
s21
s22

a

s11
s12
s21
s22

Figure 8 Instantiated Document Workflow Net

The DSI of manual m, which is a specific instance of the DS
of all manuals M, shows that instances s11 and s12 of S only
have a relation with instance c1 of C, and not with instance
c2, etc. We can use this information to improve the
Document Workflow Net a step further for this particular
document instance.

An improvement rule, Transition Splitting, for instantiated
DWN’s can be outlined as follows:

� For each transition t that has exactly one input and
one output place, check the Mutex-Rule for each
pair of node-references p and q, where p is taken
from the input place and q is taken from the output
place

� Remove t and replace it by a new transition for all
combinations of groups of input and output node-
references that need to be processed mutual
exclusively

Figure 9 illustrates this Transition Splitting rule for a
transition with an input place with labels (x,y,z) and an
output place with labels (m,n) where m is mutex with x, y
(and not with z) and n is only mutex with z.

m
n

x
y
z

ABC PQR

SPLIT

m

n

x
y

ABC

z
ABC

Figure 9 Transition Splitting

Applying the splitting rule to the instantiated DWN of figure
8 yields the following, even more parallelized DWN
instance:

Write

i m o

Modify

Review

Write

Publish
s11
s12

a

s21
s22 c2

c1

s21
s22

Write

Review

Modify
s21
s22

Figure 10 Improved Document Workflow Net Instance

CONCLUSIONS

In this paper we have introduced Document Workflow Nets
to describe workflows that manipulate structured documents.
By linking the description of the structure of a business
document with the Petri-net description of the workflow we
can better describe and simulate the workflow of realistic
document production workflows, where documents are
constructed and manipulated not as atomic objects, but as
hierarchical combinations of (reusable) parts. To enable
realistic simulation and analysis, the normal Petri-net
simulation semantics is extended with a mutex-rule that

prevents simultaneous operations on mutually interdependent
parts of a structured document.
Furthermore, an algorithm has been outlined that, given a
Document Workflow Net, can generate an improved one.
The algorithm increases concurrency of activities in order to
support increased operational productivity.
The results of this work, possibly extended with the concepts
of “time”, can be used to simulate and compare existing
versus improved document workflows in real cases. They can
also be used to build specialized workflow management
software for document creation, imaging and production.

REFERENCES
Aalst W.M.P. van der. 1996. “Structural Characterizations of

Sound Workflow Nets”. Computing Science Reports 96/23,
Eindhoven University of Technology, Eindhoven.

Aalst W.M.P. van der. 1997. “Designing workflows based on
product structures.” In Proceedings of the ninth IASTED
International Conference on Parallel and Distributed
Computing Systems, K. Li, S. Olariu, Y. Pan, and I.
Stojmenovic (Eds.), IASTED/Acta Press, Anaheim, 337-342.

Aalst W.M.P. van der. 1998. “The Application of Petri Nets to
Workflow Management.” The Journal of Circuits, Systems and
Computers, 8(1) 21-66.

CIP4. 2001. “JDF Specification”. International Cooperation for
Integration of Processes in Prepress, Press and Postpress,
Zurich, Switzerland, <http://www.cip4.org>.

Ellis, C.A. and G.J. Nutt. 1997. “Modelling and Enactment of
Workflow Systems.” In Application and Theory of Petri Nets
1993, M. Ajmone Marsan, (Eds.), Volume 691 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1-16.

McClatchey R., Kovacs Z., Estrella F., Le Goff J-M., Chevenier G.,
Baker N., Lieunard S., Murray S., Le Flour T., Bazan A., “The
Integration of Product Data and Workflow Management
Systems in a Large Scale Engineering Database Application”,
In: Proceedings of the 1998 International Database
Engineering and Applications Symposium, Cardiff, UK, 296-
302 (Jul).

Peterson J.L. 1981. Petri Net Theory and the Modelling of Systems.
Prentice-Hall, Englewoods Cliffs, New Jersey.

Petri C.A. 1962. “Kommunikation mit Automaten”. PhD thesis (in
German), Institut fur Instrumentelle Mathematik, Bonn.

Reisig W. 1985. “Petri nets. An introduction”. In W. Brauer, G.
Rozenberg, and A. Salomaa (Eds.), EATCS, Monographs on
Theoretical Computer Science volume 4. Springer Verlag,
Berlin.

Weitz W. 1998. "Combining Structured Documents with High-level
Petri-nets for Workflow Modeling in Internet-based
Commerce", International Journal of Cooperative Information
Systems, 7(4), 275-296.

WfMC. 1995. “The Workflow Reference Model”, Document
Number WFMC-TC-1003, Issue 1.1, Workflow Management
Coalition, Winchester, Hampshire, UK <http://www.wfmc.org>

WfMC. 1999. “Workflow Management Coalition Terminology and
Glossary”. Document Number WFMC-TC-1011, Issue 3.0,
Workflow Management Coalition, Winchester, Hampshire, UK
<http://www.wfmc.org>.

	Document Workflow Nets

	c0: Proceedings 14th European Simulation Symposium
A. Verbraeck, W. Krug, eds. (c) SCS Europe BVBA, 2002

