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ABSTRACT
User provided rating data about products and services is
one key feature of websites such as Amazon, TripAdvisor, or
Yelp. Since these ratings are rather static but might change
over time, a temporal analysis of rating distributions pro-
vides deeper insights into the evolution of a products’ quality.

Given a time-series of rating distributions, in this work,
we answer the following questions: (1) How to detect the
base behavior of users regarding a product’s evaluation over
time? (2) How to detect points in time where the rating dis-
tribution differs from this base behavior, e.g., due to attacks
or spontaneous changes in the product’s quality? To achieve
these goals, we model the base behavior of users regarding
a product as a latent multivariate autoregressive process.
This latent behavior is mixed with a sparse anomaly signal
finally leading to the observed data. We propose an efficient
algorithm solving our objective and we present interesting
findings on various real world datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
—Data mining ; I.2.6 [Artificial Intelligence]: Learning
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anomaly detection; robust autoregression; sparsity

1. INTRODUCTION
Rating scores about products and services are ubiquitous

in today’s websites such as Amazon, Yelp, or TripAdvisor.
These ratings supply new customers information about the
products’ quality and support the decision making process
which product to buy or service to use. In today’s era of
fast-paced developments in industry and growing competi-
tions between companies and manufacturers, these ratings
can also influence a companies production line. In fact, the
ratings of customers can be considered as a benchmark for
future sales performance of a product. To avoid negative re-
sults, companies can derive benefits from customer ratings
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by detecting functional weaknesses as well as deficiencies of
products for improving the detected lacks.

In this work, we propose a method for the temporal anal-
ysis of rating distributions. Given a time-series of rating dis-
tributions, our goal is to extract the base behavior of users
regarding the product’s quality over time as well as to dis-
cover time points at which the product’s evaluation shows
anomalous patterns. The base behavior represents the gen-
eral quality of a product accounting for temporal effects like,
e.g., decreasing quality due to technical progress of compet-
ing products. The anomalies, in contrast, represent irreg-
ularities where the observed ratings deviate from the base
behavior. These anomalies might occur, for example, due to
spammers trying to push the success of a product or due to
changes in the product’s manufacturing process.
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Figure 1: Left: Observed rating distributions of
the product “coconut-water” over time. Right: De-
tected base behavior without anomalies.

A real world example for such an effect is illustrated in
Figure 1 (left). The diagram illustrates the distribution
of ratings over time for a “coconut water” sold on Amazon
(more details about the data are given in the experimental
section). The different colors represent the fraction of the
star ratings – from 1 star (light blue) to 5 stars (red) – at
a certain time. At the very beginning and at the majority
of the later time points, the product received good ratings.
During the time period 4-6, however, the rating distributions
behave differently: one observes a high increase of negative
ratings. As we will show in Section 5, these anomalies oc-
curred due to a change in the products packaging – the pre-
viously used paper bottles were replaced by plastic bottles
leading to an unpleasant aftertaste.

With our method, we aim at detecting such anomalies as
well as the corresponding base behavior if the data would
be “anomaly free”. Let us anticipate and present the result
of our method: As shown in Figure 1 (right), our method
successfully detects the base behavior of users regarding the
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product, and, as we will see, it will provide further informa-
tion about the anomalies and the points in time when they
have been occurred.

Besides using our method to detect weaknesses in prod-
ucts and services, it can generally be used to find points
in time where irregular ratings have been given. Thus, by
filtering out these information new customers might be pro-
vided with a more precise evaluation of the product or –
as another extreme – these irregular ratings can specifically
be used to provide the whole picture on a product (since
these anomalous ratings are otherwise hidden in the much
larger set of normal behavior). Furthermore, our method al-
lows to predict the rating distributions of future time steps
exploiting the underlying base behavior. Thus, when new
ratings arrive one can assess whether they match the pre-
dicted values, i.e. normal behavior, or whether they deviate,
thus, indicating an anomaly.

The general idea of our method is to consider the base be-
havior as a latent multivariate autoregressive process, thus,
incorporating the temporal dynamics of the data. The base
behavior is then mixed with a latent, sparse anomaly signal
to finally generate the observed data.

The contributions of our work are:

• Novel mining task: We present a technique for the
temporal analysis of product ratings that detects the
base behavior of users as well as potential anomalies
enriched with their points in time when they occurred.
Furthermore, our technique can be used to predict the
rating distributions at future points in time.

• Theoretical soundness: We base our method on a sound
generative process that models dynamic rating distri-
butions by mixing a latent autoregressive process with
a latent and sparse anomaly signal.

• Algorithm design: We develop an efficient algorithm
that solves our objective by invoking a sequence of
quadratic programs. As a further benefit, our method
does not require user-defined parameters.

• Effectiveness: We evaluate our method on different
real world datasets and we show its effectiveness by
presenting interesting findings.

While the rating of products or services has been stud-
ied extensively in other research areas such as, e.g., rec-
ommender systems and opinion mining (cf. Section 4), the
goals of these areas are completely different to our work. To
the best of our knowledge, there are no works that consider
the temporal analysis of rating distributions incorporating
potentially anomalous behavior.

2. THE RLA MODEL
In this section, we introduce our RLA model (Robust La-

tent Autoregression) for detecting the users’ base rating be-
havior and anomalies in rating distributions. Following con-
vention, we do not distinguish between a random variable
X and its realization X = x if it is clear from the context.
Vectors of (random) variables are written in bold font, e.g.
b, while the entries of the vectors are given in standard font,
e.g. bi. The number of time steps is denoted with T and the
number of dimensions with D.

Before formally introducing our objective, we discuss the
data, used as the input for our model, in more detail.

Preliminaries - Data Representation. In our work,
we aim at analyzing the temporal evolution of rating dis-
tributions. We assume that users can choose ratings based
on an ordinal rating scale with M different ratings (e.g. star
ratings from 1 to M). Correspondingly, a distribution over
these ratings can be represented by a M -dimensional vector
r ∈ [0 . . . 1]M with

∑M
d=1 rd = 1, where ri denotes the frac-

tion of ratings with value i. The raw data we process is a
time-series R = (r(1), . . . , r(T )) of such rating distributions,
i.e. a multivariate time-series of length T .

Since ratings are given on an ordinal scale, we use the es-
tablished principle of analyzing the cumulative distributions
instead of the raw data [2]. That is, instead of consider-

ing r(t), we analyze the cumulative distributions x(t) with

x
(t)
d =

∑d
d′=1 r

(t)

d′ . By analyzing the cumulative distribu-
tions we preserve the ordering of the ratings and we can
better describe differences in rating distributions.

Consider, e.g., the (non-cumulative) distributions a =
[1, 0, 0, 0], b = [0.5, 0.5, 0, 0], and c = [0.5, 0, 0, 0.5]. Intu-
itively, the distributions a and b are more similar to each
other than a and c, since a represents only 1-star ratings, b
1&2-star ratings and c 1&4-star ratings. By considering the
cumulative distributions a′ = [1, 1, 1, 1], b′ = [0.5, 1, 1, 1],
and c′ = [0.5, 0.5, 0.5, 1] this similarity structure is directly
visible (even without doing cross-dimension comparisons).

Since the last entry of the cumulative distribution is al-
ways 1, we can safely ignore it from our considerations. Ad-
ditionally, to be a valid cumulative distribution, the values

of x
(t)
d have to be non-decreasing in d. As an abbreviation

for later use, we define

CD := {x ∈ [0 . . . 1]D | ∀i : xi ≤ xi+1}

Overall, in the remainder of this paper, we consider the
data X = (x(1), . . . ,x(T )) where each x(t) has dimensionality

D := M − 1 and x(t) ∈ CD.
For easier interpretation, when plotting data, we always

use the non-cumulative distribution.
Generative Process. Given the observed time series

X = (x(1), . . . ,x(T )), our aim is to extract the base be-
havior of the users and the corresponding points in time
where anomalies occur. The challenge of this task is that
the observed data X is already polluted by anomalies, thus,
directly using it for estimating the base behavior might be
misleading.

In our model, we solve this issue by assuming that the ob-
served time series X = (x(1), . . . ,x(T )) is obtained by mixing

the base (but unknown) user behavior A = (a(1), . . . ,a(T ))
with an (also unknown) anomaly behavior y. Thus, the base
behavior A acts as a latent variable which is not directly ob-
served but inferred by our technique.

An overview of our generative process showing the used
variables and their dependencies is illustrated by the graph-
ical model in Figure 2. More formally, we assume that the
observed data follows the random generative process

x(t) = pt · a(t) + (1− pt) · y + εt ∀t = 1 . . . T (1)

where pt ∈ [0 . . . 1] is the mixing coefficient at time t and εt
corresponds to white noise (e.g. a normal distribution). The
higher pt the stronger the effect of the base user behavior
at a certain point. Thus, the vector p is effectively the in-
dicator where the anomalies have been occurred. To ensure
the interpretability of the model, we require that the base
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behavior as well as the anomaly behavior are valid cumula-
tive distributions, i.e. a(t),y ∈ CD.

At this point it is important to highlight the difference
between outliers and anomalies – two different kinds of ir-
regular data (since this difference is not consistently han-
dled in the literature, we describe our notion here). Outliers
are irregular behavior that can be attributed to mostly ran-
dom corruptions of the data (like, e.g., measurement errors).
Anomalies, in contrast, are irregular behavior that follow a
specific pattern (like, e.g., time points with consistently low
ratings due to a change in the product’s quality). In our
method, we consider anomalous behavior, whose character-
istic is described by the distribution y.

While the observed data X might show abrupt changes
due to the anomalies, we assume that the base behavior
changes smoothly over time. An established principle to
model such behavior is the use of (vector) autoregressive
models [20, 21], where the values observed at time t depend
on the values of previously observed time points allowing
slight perturbations. Based on this general idea, we define
the base behavior to be generated by the random process

a(t) = w · a(t−1) + (1− w) · b + ε̂t ∀t = 1 . . . T (2)

Here, w ∈ [0 . . . 1] determines the importance of the previous
time step, b ∈ CD is a vector, which represents the trend,
and ε̂t is again white noise.1 The value a(0), required for a
valid recursion, represents the base behavior of the users at
(the virtual) time point 0.

We want to mention two important differences of Equa-
tion 2 in contrast to usual autoregressive models: First, we
use a convex combination of the vectors a(t−1) and b, i.e.
we use weights w and w′ = 1−w. In general, autoregressive
models allow unbounded values for w and w′. The convex
combination leads to the huge advantage of generating only
“valid” data, i.e. if a(t−1) and b represent valid (cumulative)
distributions, the convex combination is also a valid (cumu-
lative) distribution. This property is in particular useful,
when using the autoregressive model for predicting future
time steps: in this case, the error term will be equal to zero
and, thus, the convex combination leads to a prediction rep-
resenting a valid distribution. As we will see in the exper-
imental analysis, this aspect is neglected by all competing
approaches making their results difficult to interpret.

Second, unlike to traditional autoregressive models, where
the values of a are observed (and thus fixed), we consider a
latent autoregressive model. Thus, similar to the values of
w, and b, the values of a are variables.

Even though Equation 1 and 2 look similar at a first
sight, their underlying principle is very different. While
the weights pt might change over time to allow different
strength of anomalies, the weights w are constant reflecting
the smooth base behavior. While the value of x(t) depends
only on values of the same time point, the value of a(t) de-
pends on the values of the previous time point. And most
important, while the values of x(t) are observed, the values
of a(t) are latent.

Sparsity. So far, we assumed that the values of pt are
independent of each other. Thus, scenarios where we might
observe “anomalies” at every point in time (pt < 1 for all t)
are possible. Since such a scenario would contradict the idea

1Equation 2 is based on a first-order autoregressive process. Ex-
tensions to higher order processes are straightforward, though,
not focus of this work.
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Figure 2: Graphical model of RLA. The observed
data is a mixture of the (potentially evolving) base

behavior a(t) with the anomaly behavior y.

of an anomaly, it is reasonable to require that anomalies are
rare events. Technically speaking, we want to enforce the
vector 1− p to be sparse.

Let λ denote the maximal number of anomalies a user
expects in the data. We require ‖1− p‖0 ≤ λ where ‖.‖0
denotes the L0 pseudo-norm and 1 is the vector consisting
of only ones. In this case, the variables pt are no longer
independent since we effectively use the prior distribution

p(p) ∝

{
const if ‖1− p‖0 ≤ λ
0 else

(3)

from which the values of p are drawn. For illustration pur-
poses we do not show this dependency in our graphical model
in Figure 2.

The above prior distribution is beneficial due to multiple
reasons: First, it is easy to interpret. By using the L0 norm,
the value of λ represents simply an upper bound on the num-
ber of anomalies and one can precisely spot the time steps
where an anomaly has occurred. Second, the distribution
is essentially the maximum-entropy distribution taking into
account the upper bound of λ anomalies. That is, it is a
non-information prior which is not biased to certain p vec-
tors. Finally, as we will show later, by using the above prior
we can use a model selection approach to determine the pa-
rameter λ automatically. Thus, the user does not need to
provide it by hand.

Objective. The ultimate goal of our method is to in-
fer the values of the hidden variables which best describe
the observed data. There are multiple ways to formulate
this objective. In this work, we are interested in finding
the maximum likelihood solution w.r.t. the complete data.
That is, we aim at maximizing the joint probability p(X, Z)
where Z denotes the set of all variables. To make this prob-
lem well-defined we finally have to select appropriate prior
distributions. We simply assume independent, identically
distributed Gaussian error, i.e. εt, ε̂t ∼ N (0, σ2 · I). In this
case, the variables εt, ε̂t can be absorbed into Equation 1
and Equation 2 by writing

x(t) ∼ N̂ (pt · a(t) + (1− pt) · y, σ2 · I)

a(t) ∼ N̂ (w · a(t−1) + (1− w) · b, σ2 · I)

Here, N̂ denotes the Normal distribution restricted to the
domain CD since we require a(t),x(t) ∈ CD.

363



Additionally, we select non-informative priors for the val-
ues of y, a(0), b, and w. That is,

p(a(0)) ∝

{
const if a(0) ∈ CD
0 else

and accordingly for y, b, and w. Note that these are valid
priors since the domain of the vectors is bounded.

Using this setting, we can derive that the likelihood, if all
variables are in their valid domains, is proportional to

p(X, Z) ∝
T∏
t=1

p(a(t)|a(t−1),b, w) · p(x(t)|a(t),y,p) (4)

∝ 1

σD·T ·2
· exp(− 1

2 · σ2
f(a(0), . . . ,a(T ),b,y, w,p))

where the function f is given as

f(...) :=

T∑
t=1

(∥∥∥x(t) − pt · a(t) − (1− pt) · y
∥∥∥2
2

+
∥∥∥a(t) − w · a(t−1) − (1− w) · b

∥∥∥2
2

)
Solving for the optimal value of σ2 that maximizes this

equation leads to σ2 = f(...)
2·D·T (assuming f 6= 0, other-

wise σ2 → 0 is the optimal solution). Using this result in
Equation 4, the likelihood finally becomes proportional to
1/f(a(0), . . . ,a(T ),b,y, w,p)D·T . Thus, overall, maximizing
Equation 4 corresponds to solve the following objective

min
a(0),...,a(T ),b,y,w,p

f(a(0), . . . ,a(T ),b,y, w,p) (P1)

subject to

‖1− p‖0 ≤ λ ∧ a(t),b,y ∈ CD ∧ 0 ≤ w ≤ 1 ∧ 0 ≤ pt ≤ 1

This formulation intuitively states that the optimal solution
is the one that minimizes the (squared) residuals regarding
the observed data and the base user behavior.

Model Selection. Solving problem P1 leads to the opti-
mal solution w.r.t. a specific upper bound λ on the number
of anomalies. To determine the value of λ, we use a model
selection principle. Since we use the L0 pseudo-norm as our
constraint, λ effectively controls the number of free param-
eters in our model. Increasing λ by a value of one, increases
the number of free parameters by two: We allow one addi-
tional pt value to vary, plus we have the freedom to decide
at which time t this happens.2 One exception represents the
step from λ = 0 to λ = 1, which increases the number of
free parameters by 2 +D. The additional term D accounts
for the vector y which is not used in the case of λ = 0.

Given these observations, we use the Bayesian information
criterion [5] to determine the optimal value of λ. That is,
we choose the λ minimizing

BIC(λ) = −2 · lnLλ + kλ · ln(D · T )

where kλ = m+2 ·λ+D ·min(λ, 1) is the number of free pa-
rameters determined based on the observations made above.
Here, the term m represents the remaining parameters of our
model which are not effected by the choice of λ and which,

2It is fair to mention that the value 2 is a slight overestimate:
Due to the inequality constraint ≤ λ, we essentially sample the
timepoints where anomalies occur with replacement. Thus, with
some probability we sample an already drawn point. Being aware
of this effect, we can conclude that our model selection approach
might slightly underestimate the optimal value of λ.

therefore, do not effect the choice of the optimal λ (i.e. for
the model selection step we can simply set m = 0). The term
Lλ is the likelihood of the data which in our case simplifies
to Lλ = 1/f(a(0), . . . ,a(T ),b,y, w,p)D·T (cf. above).

Special Cases. We briefly want to discuss two special
cases of our model. First, when fixing pt = 1 for all t, our
model reduces to a special case of Kalman filtering [5], which
is not able to detect the anomaly signal y. Thus, if anomalies
are present in the data, the estimates of the Kalman Filter
might be highly corrupted. Second, when fixing w = 0, we
ignore the temporal effects of the data modeled via autore-
gression. In this case, only the vectors b and y can be used
to generate the data. When additionally dropping the spar-
sity constraint, the data corresponds to a mixture of two
static components as similar done by classical matrix fac-
torization techniques. Further relations to existing methods
can be found in Section 4.

Prediction. Besides detecting the base behavior and
anomalies for the given data, our method can also be used
to predict the rating distributions of future points in time.
Assuming that anomalies are rare, it is natural to exploit
only the base behavior for the prediction step. Thus, the
most likely (cumulative) distribution at time T + 1 is

x̃(T+1) = w · a(T ) + (1− w) · b (5)

Here, since a-priori no information about the error at the
next time step is known, the original error terms have been
replaced with their expected value of 0. Comparing the
observed distribution at time T + 1 against the predicted
one gives an indicator whether a new anomaly has been ob-
served.

3. ALGORITHM
Finding an exact solution to problem P1 is infeasible due

to two reasons: First, albeit natural, the sparsity constraint
via the L0 norm is NP-hard to optimize in general [8, 24].
Second, the objective function is neither convex nor concave,
which prevents the (direct) application of efficient convex
optimization solvers. Thus, in the following, we present an
algorithm computing a near-optimal solution. An overview
of our method is given in Algorithm 1.

Sparsity. One standard solution to tackle the complexity
of the L0 norm is to replace it with the L1 norm. As shown
in [7], however, an iterative reweighting of the L1 norm out-
performs the simple (unweighted) L1-norm in many situa-
tions. In preliminary experiments, this effect has also been
observed in our scenario: by using the unweighted L1-norm
some values in the 1− p vector were close to (but not ex-
actly) 0 leading to a bad approximation of the L0-norm.

Thus, we follow the study of [7] and we replace the L0

norm with the weighted L1 norm, where the weights are
iteratively updated based on the previously determined so-
lution. This principle leads to a sequence of optimization
problems (cf. line 12 of Algorithm 1). Technically, we use
the constraint

‖Z · (1− p)‖1 ≤ τ (6)

as a proxy for ‖1− p‖0 ≤ λ, where Z = diag(z1 . . . , zT ).
Initially, all weights zt are set to 1, corresponding to the

unweighted L1 norm. After solving our objective using this
constraint, the weights are recomputed based on p:

zt =
1

1− pt + δ
·max

t
(1− pt + δ) (7)
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where δ is a very small constant to ensure that the fraction is
always well defined (default δ = 10−4). The idea is that val-
ues pt which are close to 1 will get higher weights zt. There-
fore, in the next iteration of our method, they are stronger
penalized when deviating from 1 (effectively steering these
values to become exactly 1). An analytical justification for
this principle is given in [7].

It is worth mentioning that Equation 7 differs from the
equation proposed in [7] by introducing the multiplicative
factor maxt(1−pt+δ). Since in [7] the weighted norm is used
as the objective function, any (positive) multiplicative factor
would lead to the same result. In our scenario, however,
we use the weighted L1 norm as a constraint. If we would
allow arbitrary small values for zt, the constraint effectively
becomes useless, i.e. it is no longer guaranteed that 1− p
is sparse. In contrast, by using our definition it holds that
zt ≥ 1 and, therefore,

‖Z · (1− p)‖1 ≥ ‖(1− p)‖1 (8)

Indeed, the factor maxt(1 − pt + δ) leads to the tightest
possible solution that fulfills the above equation. Combining
Equation 8 with Equation 6, it becomes clear that during
each iteration of our method we guarantee

‖(1− p)‖1 ≤ ‖Z · (1− p)‖1 ≤ τ

and, therefore, the sparsity of the vector p is realized.
Since the values of pt (and thus 1 − pt) are bounded be-

tween 0 and 1, Equation 6 can directly be written as

T∑
t=1

zt · (1− pt) ≤ τ ⇔
T∑
t=1

−zt · pt ≤ τ −
T∑
t=1

zt (9)

which corresponds to a simple, linear constraint on the val-
ues of p.

Reduction to quadratic programs. While the objec-
tive function of our original problem definition is not jointly
convex in all variables, we can observe the following: Given
the values of p and w, the objective function is convex in
a(∗), y and b; and simultaneously, given a(∗), y, and b, the
objective function is convex in p and w.

We show an even stronger result: both problems (i.e.

conditioned either on p, w or a(∗),y,b) are instances of a
quadratic program.

Theorem 1. Given p and w. Let (â0, . . . , âT , b̂, ŷ,p, w)
be the optimal solution of problem P1 (when fixing the values

of p and w). Set û = stack(â0, . . . , âT , b̂, ŷ), where stack
denotes the stacking of multiple vectors to a single one.

There exist vectors c•, d• and (sparse) matrices Q•, A•

such that

û = arg min
u∈R(T+3)·D

1

2
·uT ·Q•·u+(c•)T ·u subject to A•·u ≤ d•

Proof. See appendix

Theorem 2. Given a(∗),y, and b. Let (a(0), . . . ,a(T ),b,
y, p̂, ŵ) be the optimal solution of problem P1 (when fixing

the values of a(∗),y,b). Set v̂ = stack(p̂, ŵ).
There exist vectors c◦, d◦ and (sparse) matrices Q◦, A◦

such that

v̂ = arg min
v∈RT+1

1

2
·vT ·Q◦ ·v+(c◦)T ·v subject to A◦ ·v ≤ d◦

Proof. See appendix

Data: series of rating distributions X = (x(1), . . . ,x(T ))
1 z1 = . . . = zT = 1;
2 initialize p, w;
3 until convergence do
4 until convergence do
5 recompute Q•, c• ;
6 determine û via quad. programming (cf. Theo. 1);

7 set a(∗),b,y based on û;
8 recompute Q◦, c◦ ;
9 determine v̂ via quad. programming (cf. Theo. 2);

10 set p, w based on v̂ ;
11 end
12 update weights zt based on Eq. 7
13 end

Algorithm 1: The RLA algorithm

The above two results make it possible to use highly effi-
cient solvers for quadratic programming in our scenario, in
particular by exploiting the fact that the matrices are sparse.

Overall method. As shown in Algorithm 1, our method
uses a block coordinate-descent to alternatively optimize the
variables. In each step it invokes a quadratic programming
solver (line 6 & 9). After updating one set of variables, we
recompute the corresponding matrices/vectors according to
Theorem 1/2, which subsequently are used to compute the
optimal solution for the other set of variables. Per default,
we initialize p with high values since we expect only few
anomalies in the data. w is initialized randomly. We assume
convergence if the relative change in the objective function
value is less than 0.01%. Overall, our method allows to
efficiently compute a near-optimal solution of problem P1.

4. RELATED WORK
The main objective of our work is to spot anomalies in

dynamic rating data by simultaneously detecting the users’
base behavior evolving through the time. In the following,
we discuss methods related to our approach. We first dis-
cuss methods that are related to our method from a techni-
cal perspective (i.e. the methodology of modeling the data
is related). Afterwards, we give a broader perspective on
methods whose application domain is related to ours.

Related Techniques. Autoregression (AR) models [21]
represent data as a random process based on previous time
points as well as noise. An AR model can be written as
xt =

∑M
m=1 wm · xt−m + ε where x is the point series un-

der investigation, M is the order of the AR model, wm
are some coefficients taking arbitrary values and finally ε is
noise. While traditional autoregression models only consider
univariate data, multivariate extensions (so called vector au-
toregression (VA) models) have been proposed [20, 18].

In contrast to our method, where the autoregression model
is used as a latent process, the existing techniques consider
directly the observed data. Thus, these approaches are not
robust to anomalies in the data. It is a well known fact that
in these models an anomaly (or in general a so-called shock)
effects all time points infinitely far into the future. Thus,
these models fail to find good approximations of the data
corrupted by anomalies.

Kalman Filter/Smoother [5] can be considered as a gener-
alization of first-order vector autoregressive models. While
Kalman Filters are very flexible in generating the data, they
share a similar drawback as AR/VA models. They are sen-
sitive to anomalies in the data. The relation to our model
to Kalman Filter has already been discussed in Section 2.
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Robust extensions of vector autoregression [9] and Kalman
Filtering [25] to handle outliers have been proposed. These
methods try to circumvent errors in the data by, e.g., down-
weighting the effect of high residuals (which usually occur
due to outliers) via, e.g., the Huber loss function.

Again we want to highlight the difference between outliers
and anomalies as already described in Section 2. Outliers are
abnormal behavior attributed to mostly independent, ran-
dom corruptions of the data, while anomalies are abnormal
behavior following a specific pattern. It is clear that outliers
and anomalies are two different concepts which should be
handled differently. While all the above mentioned meth-
ods handle outliers, our method is specifically designed to
handle anomalies.

Finally, as already described in Section 2, our model uses
convex combinations of the involved variables, thus ensuring
that the final results are valid distributions and leading to
easy interpretability. The above techniques do not enforce
such a constraint leading to potentially questionable results.

We compare our method against Kalman Filtering, a vec-
tor autoregression technique [18] and an extension to handle
outliers [9] in our experimental section.

Matrix decomposition techniques (e.g., PCA) are designed
to decompose a data matrix into products or sums of other
matrices exhibiting special structure (e.g. low-rank or spar-
sity). These techniques do not consider the temporal char-
acteristics of the data but they treat each time point as an
independent observation, thus, ignoring highly important in-
formation. In particular, these techniques can not be used
to predict future points in time based on the current obser-
vations. Similar as the temporal methods described above,
the standard versions of these methods are not robust to
anomalies or outliers. While robust extensions considering
outliers have been proposed [6, 26], these methods are still
not aware of the data’s temporal characteristics.

In the experimental section, we compare our RLA method
against ICA (Independent Component Analysis) [10], PCA
(Principal Component Analysis) [13], NNMF (Non-Negative
Matrix Factorization) [4], and robust NNMF [26], the latter
one being a robust extension to handle outliers.

Related Applications. Our method can be used to de-
tect anomalies in a time-series of rating distributions and to
describe the base behavior of users regarding the considered
product. In the following we discuss related applications.

Multiple techniques, considering various data types, have
been proposed in the area of outlier detection [1]. While
the majority of techniques tackles the case of independently
distributed data, time-series outlier detection and outlier de-
tection for streaming data are also an active field of research
[1]. Both areas differ from our work. In time-series out-
lier detection one considers a set of time-series, where some
of the time-series might be outliers. In contrast, we oper-
ate on a single multivariate time-series where some points
in time might be anomalous. Streaming outlier detection
assumes that the data under considering is not completely
given but successively arrives over time – additionally coping
with further aspects as limited storage of the data. In our
work, however, we assume the complete history of data is
given, thus, allowing enhanced analysis capabilities. Again,
we have to note that most existing techniques consider out-
lier in the sense of independent, random errors in the data.
We, in contrast, assume the anomalies to be generated from
a specific anomalous behavior.

Change detection techniques try to detect points in time
where the state of the underlying system has changed [16,
14]. A change might not generally indicate anomalous be-
havior. Indeed, since we model the base behavior as an
autoregressive model, even the base behavior might change
over time. Thus, change detection techniques cannot di-
rectly solve the problem tackled in this work.

The study of product ratings has been done in multiple
research areas, all following different goals and objectives.
Recommender Systems often incorporate ratings and their
temporal information [12, 15, 22] to improve the predic-
tion performance. Their goal is to recommend products or
services to users which they most likely are going to use.
Opinion mining or sentiment analysis aims at extracting
the sentiment of users regarding specific products or fea-
tures of a product [19, 3, 23]. This way, opinion mining can
be considered as a technique to infer the ratings. Model-
ing of social rating networks, e.g. to compactly describe the
underlying mechanism driving the network or to generate
synthetic data, has been studied in, e.g., [11, 17].

None of the existing methods is designed to detect anoma-
lies in a time-series of rating distributions under considera-
tion of a potentially evolving base behavior.

5. EXPERIMENTAL ANALYSIS
In the following, we empirically analyze our RLA method.

Datasets. We applied our system on over hundred thou-
sands of product ratings representing a variety of categories:
1) We used an extract of the Amazon website evaluating dif-
ferent food products3 (400k ratings). 2) We analyzed ratings
of restaurants/services in the area of Phoenix based on an
extract of the Yelp website4 (230k ratings). 3) Using an
extract of the TripAdvisor website5 (250k ratings), we used
our method for studying hotel ratings.

The data consists of the IDs of the products/services to
be rated as well as the related user IDs who evaluated them
with star rating scores from 1 up to 5 at different timesteps
(in the case of TripAdvisor, the rating scores range from 0 up
to 5). Additionally, these datasets contain textual reviews,
which we used to understand and describe the results of
our method. Since our method is designed to handle rating
distributions, we can flexibly process the raw data by, e.g.,
using equi-width binning or equi-depth binning. We decided
to use equi-depth binning (each 25 temporally successive
ratings are aggregated) to avoid sparsity effects.

Besides these real world datasets we used synthetic data
generated based on the presented process to analyze the scal-
ability and robustness of our method.

Runtime analysis. We start with a brief runtime analy-
sis. The runtime of our method is primarily affected by two
characteristics: the length T as well as the dimensionality D
(i.e. the number of different ratings) of the time-series. To
analyze these effects, we generated time-series of different
length (100 to 10,000) with a small percentage of anomalies
(5%) according to our model. We used the dimensionali-
ties 4, 5, and 6 since these values reflect the properties of
the frequently used rating schemes. All experiments were
conducted on commodity hardware with 3 GHz CPU’s and
4 GB main memory.

3http://snap.stanford.edu/data/
4http://www.yelp.com/dataset_challenge/
5http://sifaka.cs.uiuc.edu/~wang296/Data/
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The results are illustrated in Figure 3. The runtime in-
creases approximately quadratic in the length of the time-
series; similar to (or even better than) many matrix factor-
ization techniques. While the quadratic complexity might be
theoretically a problem for very long time-series, we want to
mention that the absolute runtimes are small. For a length
of 10,000 (which would already correspond to more than 27
years of data when measured on a daily basis – longer than
most rating websites exist), the absolute runtime for, e.g., 5
ratings is around 80 minutes on commodity hardware.

In Figure 4, we analyze the effect of a varying λ on the
runtime. In the figure, we plotted the results for an ex-
emplary hotel from the TripAdvisor database. We observe
an interesting behavior: Starting from very small values of
λ, an increase in λ also increases the runtime. This effect
might be attributed to the larger amount of variables the
model now needs to fit. Given a certain value of λ, however,
the runtime behaves almost constantly. Even more interest-
ingly, when selecting a very high value, the runtime starts
decreasing again. This last effect might be explained as fol-
lows: when choosing very large λ values, the pt values can be
optimized almost independently. Decreasing the value of λ,
however, increases the dependency, thus, leading to higher
runtimes. We observed a similar behavior across the various
datasets on all of the three studied databases.

Effectiveness and Robustness. Next, we analyze the ef-
fectiveness and robustness of our method. We again start
with synthetic data (100 time points, 10 anomalies, 5 dimen-
sions). Figure 5 shows the minimal sum-of-squared-errors
value (i.e. the value of the function f ; cf. P1) obtained by
our method when varying the parameter λ. Obviously, when
increasing the value of λ, the error decreases since more flex-
ibility is provided. We observe a high decrease in the error
until reaching the value of λ = 10, corresponding to the
true number of anomalies in the data. Afterward, the gain
of allowing further anomalies decreases. The absolute er-

ror obtained by our method is small, showing that we well
describe the underlying data.

On the second y-axis of Figure 5, we illustrate the BIC
values. As shown, the minimal BIC value is obtained for
the value of 10. Thus, the BIC gives a good guideline which
λ parameter to choose.

Figure 6 shows the same type of plot for a real world
dataset (hotel Punta Cana Princess, TripAdvisor – the orig-
inal data is shown in Figure 7, left). Again, the absolute
error converges to a very small value; our method leads to
a good approximation. Additionally, the BIC curve clearly
indicates which λ to choose. In Figure 7, the middle di-
agram shows the detected base behavior for this product.
The behavior evolves smoothly over time and shows the gen-
eral trend for this hotel containing of primarily high ratings.
Mixing this base behavior with the detected anomalies leads
to the right plot in Figure 7, which almost perfectly recovers
the original data.

In Figure 8 we analyze for the same dataset how the error
decreases with an increasing number of iterations of our al-
gorithm until convergence (i.e. on the x-axis we count how
often the inner-loop of Algorithm 1 has been executed, while
the y-axis shows the obtained error). We parametrized our
method with different λ values to show different effects. As
expected, for all λ values, the first iterations (around 10)
lead to the highest decrease of the error. Interesting to note
are the sudden increases in the error for some of the curves
at some points in time. At these points in time, the inner-
loop of Algorithm 1 has been converged, thus, leading to an
update of the weights enforcing the sparsity (Eq. 7). After
updating the weights, our method is forced to select other
(more sparse) solutions for p, which obviously increase the
error. After each sudden increase, the error term again de-
creases corresponding to the iterations of the inner-loop of
our algorithm. Indeed, these increases show that the outer
loop of our method is actually effective, i.e. it steers the
p vector to other solutions. Furthermore, the figure shows
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Figure 7: Left: Rating distributions over time for the hotel Punta Cana Princess (TripAdvisor data).
Middle: Detected base behavior. Right: Reconstructed data after mixing with the anomaly signal.
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that only few iterations of the outer-loop are necessary to
reach convergence. All variants converge in less than 120
iterations. In particular, the variant allowing no anomalies
(λ=0) converges very quickly; though, of course, with a high
error. As already shown in Fig. 6, increasing the value of λ
lowers the obtained error since more flexibility is obtained.

In the next experiment, we analyze the robustness of our
technique. For this experiment, we generated synthetic data
with a varying number of anomalies (from 2-50). Addition-
ally, we varied the strength of the anomalies by allowing
the vector p to take only values from a specific domain:
from very strong anomalies (p values between 0-0.5) to weak
anomalies (p values from 0.75 to 1). For this experiment, we
fixed the value of λ to 10, to show how our algorithm copes
with data which is corrupted more than expected.

Figure 9 shows the result of this experiment. The x-axis
shows the number of anomalies in the data, while the y-axis
shows the reconstruction error of our method. As expected,
if the number of anomalies in the data is less than 10, our
method almost perfectly recovers the data. When exceeding
this threshold, the error successively increases. The stronger
the anomalies, the stronger the increase in the error. If the
anomalies are weak, the errors can somehow be compensated
by the base behavior.

Comparison with related techniques. In the following,
we compare our RLA method against competing approaches.
Due to the heterogeneity of the methods, we first describe
the setup. As mentioned in Sec. 4, we compare against the
(non-temporal) approaches PCA, ICA, and NNMF. To make
these techniques applicable in our scenario – distinguishing
between normal and irregular behavior –, we parametrize
these methods to detect two components. For the temporal
vector-autoregression approaches, we use an order of one, as
our model does, too. The transition model and noise model
of the Kalman Filter are learned via the EM algorithm.

We compare the methods based on their reconstruction
error (i.e. how well these techniques approximate the data).
For PCA, ICA, Kalman Filtering, and the non-robust vari-
ants of NNMF and vector autoregression, computing the
approximated data is straightforward. Similarly, it is easy
to compute the approximation using the result of our tech-
nique by simple mixing the base behavior with the anomaly
signal. The robust NNMF and robust VAR, however, do not
allow such an easy approach: Informally, these approaches
remove points from the data when they are regarded as out-
liers, and the outliers do not need to follow a specific pat-
tern (in contrast to our anomalies). Thus, given the results
of these techniques one cannot simply reconstruct the orig-
inal data. The principle we follow here is to replace the
vectors (or entries) that have been regarded as outliers by

these techniques with the original data. Thus, assuming for
these points optimal reconstruction. Obviously, this gives a
huge advantage to the competing methods.

Given the approximated data X̂, we compute the values
err = ‖X̂ −X‖2F /T , i.e. the approximation error per time
stamp. This relative error allows us to compute the average
over multiple time-series with varying length.

One advantage of our approach is the focus on convex
combinations of valid distributions, thus, leading to only
valid distributions for the approximated data (cf. Section 2
and 4). None of the competing methods considers this as-
pects. In many cases, we observed that the approximated
vectors did not sum up to 1, thus, representing invalid distri-
butions. An interpretation of such results is difficult or even
misleading. Thus, in a second step, we additionally normal-
ize the results of the competing methods to become valid
distributions, leading to the normalized approximated data
X̂norm. Accordingly, we also compute the error errnorm =
‖X̂norm −X‖2F /T .

synth. data real world data
err errnorm err errnorm

te
m

po
ra

l RLA 0.0006 0.0006 0.0177 0.0177
VAR 0.0098 0.0098 0.0368 0.0368

rob. VAR 0.0060 0.0060 0.0330 0.0330
Kalman 0.0091 0.0091 0.0273 0.0273

no
n-

te
m

p. NNMF 0.0040 0.0044 0.0239 0.0252
rob. NNMF 0.0027 0.0030 0.0213 0.0223

PCA 0.0040 0.0044 0.0239 0.0252
ICA 0.0102 0.0102 0.0242 0.0242

Table 1: Reconstruction error of the competing
methods on synthetic and real world data.

Table 1 shows the results of all methods. In the left two
columns ones sees the results on a synthetic dataset with
10 anomalies and 100 time points, the right two columns
show the error averaged over multiple real world datasets.
Considering the synthetic data one sees that RLA clearly
outperforms the other temporal algorithms. In particular,
the (non-robust) VAR and Kalman Filtering are sensitive
to the anomalies in the data. Considering the non-temporal
methods, ICA is not able to recover the hidden structure
in the data. The error of the robust NNMF method is the
smallest among the non-temporal approaches; though, as
explained above, this method has an advantage when com-
puting the error. Still, the error of this technique is larger
than the one of RLA.

For real world data, we can infer similar results: Our RLA
technique obtains the smallest error and, in particular, out-
performs the other temporal techniques.
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Figure 11: Left: Rating distributions over time for the Phoenix Airport (Yelp data). Middle: p vector and
detected anomaly signal y. Right: Detected base behavior.

Comparison via prediction. The temporal techniques al-
low to predict the rating distribution at future points in
time. In the following experiment, we analyze the methods’
prediction accuracy. We generated synthetic data with 100
time points and an increasing number of anomalies, where
we ensured that the rating distribution x at the last point in
time is not an anomaly. We then removed x from the data,
we applied the techniques on the remaining data, and we
predicted the future rating distribution (e.g. in our model
according to Equation 5). Similar as above, we compute the
error errnorm = ‖x̂norm−x‖F , where x̂norm is the (normal-
ized) predicted distribution.

Figure 10 shows the results. The non-robust VAR and
Kalman Filtering show the highest error. In particular, for a
high number of anomalies their error increases quickly since
the hidden structure of the data can no longer be detected.
RLA is more robust to the anomalies and also outperforms
the robust VAR method. Obviously, for all methods a higher
number of anomalies is more challenging when predicting the
future rating distribution.

Discoveries. So far, we surveyed the efficiency and accu-
racy of our algorithm. In the following, we will demonstrate
the application of our algorithm by illustrating some of our
interesting discoveries from the three investigated real world
datasets. Our approach for extracting products with notice-
able rating irregularities relies on strong fluctuations in the
p vector. As described in Section 2, small values in p weight
the anomaly behavior strongly, thus, reflecting irregularities
in the rating behavior. In contrast, the higher pt the stronger
the effect of the base user behavior at a certain point.

(1) As described in the introduction, one of our discov-
eries from the Amazon-Food data is the product “coconut-
water”6, presented in Figure 1. Figure 12 shows the values
of the product’s p vector at different timesteps t (x-axis). It
is clear that during the timesteps 4 − 6, the elements of p
take small values which reflect the irregularities in the rat-
ing behavior. Additionally, Figure 12 shows the detected
anomaly distribution y. While the base behavior (Figure 1
(right)) shows the general trend of the product with pri-
marily good ratings, the anomaly clearly explains the high
amount of negative ratings observed during the time 4− 6.
In particular, the anomaly shows a zero percentage of 5 star
ratings. A closer look at the product’s reviews during this
time explains this behavior: Most of the customers complain
about the “new plastic bottle” and “a bad after taste”. Since
the manufacturer has recently changed his production from
paper bottles to plastic bottles, many customers were disap-
pointed. However, reviews after the anomalous time points
hint to an improvement in the production (e.g., “I can un-

6http://www.amazon.com/dp/B000CNB4LE

derstand a lot of the initial bad reviews as I thought the new
plastic bottle had a bad after taste. . . . I can say that the
taste is much improved . . .”).
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Figure 12: p vector and anomaly behavior y for the
product “coconut-water” (Amazon data).

(2) Another interesting discovery of our algorithm from
the Amazon-Food dataset is the detection of high anomalies
in the rating of a dog food product7. The studied reviews at
the detected time points show that the anomalies occurred
due to the change of the country of manufacturing from the
USA to another country: “Originally, these were made in
US. Now made in xxx ... advertised as natural, cage free, no
hormones, no fillers, no antibiotics ...HUH? Not in xxx... I
will not trust these as safe treats”.

(3) Analyzing the dataset Yelp, an interesting pattern is
found for the Sky Harbor Airport in Phoenix. Figure 11
(middle) shows the p vector for the rating behavior. Clearly,
the elements of the p vector reach small values at the two
intervals [15, 18] and [23, 25]. Comparing this plot with the
original rating data in Figure 11 (left), we are able to spot
the sub-populations which were identified as irregularities
by our method. Ignoring these irregularities, the base rating
behavior looks as presented in Figure 11 (right). It is clear,
that the rating behaves relatively robust with mostly 3-4 star
ratings. The anomalous behavior, in contrast, shows a much
higher fraction of 2 stars, and almost zero percentage of 4-5
stars. Mixing the base behavior with the anomalous signal
using the p vector, our algorithm supplies an approximation
to the real data with a very small residual error of 5.75 ·10−4

per time stamp.
Analyzing the different reviews at yelp, it is noticeable

that the main reasons for the high anomalies are, e.g., “not
many choices for food” and “long walkway between termi-
nals”. However, reviews shortly after the second anomaly
note that “... they are now doing some construction to try
and fix things ...”, giving hint to an improvement of the air-
port which may have caused the better evaluation (almost
no 1 star ratings) at the end of the rating behavior.

(4) In Figure 7 we have already illustrated the distribu-
tion of ratings over time for the hotel Punta Cana Princess

7http://www.amazon.com/dp/B00141OU50
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evaluated on TripAdvisor. While manually detecting irreg-
ularities for this data might be difficult, examining the dis-
tribution of the pt values (cf. Figure 13), clearly shows that
there are 5 time intervals at which most of the anomalies are
positioned. For these points the generally very good rating
of the hotel (cf. Figure 7 (middle)), heavily drops. This
behavior is reflected in the anomaly signal y. Comparing
the noticeable pt values with the corresponding reviews, it
is recognizable that the number of negative criticizes such
as “lack of communication” and “poor service and bad quality
of food” highly increases. Using such information in depen-
dency of their time of occurrence can be used by the hotel’s
management to improve the quality of their service.
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Figure 13: p vector and anomaly behavior y for hotel
Punta Cana Princess (TripAdvisor).

Discoveries via prediction. Since our method exploits the
temporal properties of the data, it allows us to predict fu-
ture points in time. To show this potential of our algorithm
for the scenario of anomaly detection, we deleted the rat-
ing distribution of the last time point from the restaurants
from the yelp database. We then executed our algorithm
on the remaining data, and we predicted the future rating
distribution according to Eq. 5. Comparing the predicted
ratings with the real (previously deleted) data, two products
behaved noticeable among the others. These two products
show huge difference to the predicted data, thus, very likely
indicating anomalous behavior at the last point in time.

Figure 14 illustrates our observations. In each part of the
diagram, the left distribution shows our prediction using the
base behavior, while the right distribution presents the ob-
served rating distribution. Clearly, both products show dis-
tributions which cannot be explained by the base behavior.
The high increase in the number of low rating scores gives
a strong indication for anomalous behavior.

Considering the first restaurant, the reviews at the last
time point well explain the anomaly. Most of the review-
ers comment . . . easily the worst bbq I’ve ever had. . . or . . .I
was so hoping to find a good barbecue restaurant near our
house. Unfortunately, xxx BBQ just misses the mark. . .,
thus, indicating that the expectations of a previously high
rated restaurant (cf. predicted rating distribution) have been
missed. Even more noticeable are the reviews of the sec-
ond restaurant, where most of the customers criticize the
reduced quality using comments as . . . ”What a come down!
I’ve been to the xxx quite a few times and have always had a
pretty good experience but not this last time . . .. This result
gives high indication that the quality of the restaurant has
suddenly dropped, e.g., due to a change of the chef.

With our method, we can spot these recently occurring
anomalies, which can then be used to better inform the cus-
tomers about the new characteristics of the product/service
or to resolve the newly occurring problems from the sales-
man’s perspective.
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Figure 14: Spotting anomalies via prediction.
Restaurants from the Yelp data.

6. CONCLUSION
We presented the RLA method for the temporal analysis

of rating distributions. Our method can be used to detect
the potentially evolving base behavior of users as well as
to spot anomalous points in time where the rating distri-
bution differs from this base behavior. Since our method
exploits the temporal characteristics of the data, it further
allows to predict the rating distributions of future points in
time, which subsequently allows to detect newly occurring
anomalies. The idea of our approach is to model the ob-
served data as a mixture of a latent, autoregressive model
representing the base behavior with a sparse anomaly sig-
nal. Based on this generative process, we derived an efficient
algorithm which invokes a sequence of quadratic programs.
In our experimental study, we demonstrated the strengths
of our RLA method and we presented interesting discoveries
found in rating data from Amazon, Yelp, and TripAdvisor.

As future work, we plan to extend our model to higher-
order autoregressive processes and we want to investigate
how to directly incorporate textual data in our method.
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APPENDIX
Proof of Theorem 1. Let p and w be given. Rewriting

the objective function f(...), it becomes apparent that we
only have to deal with (a) a constant independent of the

variables a(t),b,y, which, thus, does not affect their optimal
values, and (b) terms c · ui, c · u2

i , and c · ui · uj , where

ui and uj are one of the variables a
(t)
d , bd, or yd, and c

is a constant depending on the choice which variables are
considered. Carefully isolating these constants, leads to the
vector c• ∈ R(T+3)·D with

c•i =


−2 · x(t)

d · pt if D < i ≤ (T + 1) ·D
T∑

t=1

2 · x(t)
d · (pt − 1) if (T + 2) ·D < i ≤ (T + 3) ·D

0 else

where we used t :=
⌈
i
D

⌉
− 1 and d := 1 + [(i − 1) modD],

and to the matrix Q• whose diagonal entries are

Q•i,i =


2 · w2 if 1 ≤ i ≤ D

2 · p2
t + 2 + 2 · w2 if D < i ≤ T ·D

2 · p2
t + 2 if T ·D < i ≤ (T + 1) ·D

2 · T · (1− w)2 if (T + 1) ·D < i ≤ (T + 2) ·D
T∑

t=1

2 ·D · (1− pt)
2 if (T + 2) ·D < i ≤ (T + 3) ·D

and off-diagonal entries Q•j,i=Q•i,j (with i < j) and

Q•i,j =


−2 · w if 1 ≤ i ≤ T ·D ∧ j = i + D

−2 · w2 + 2w if 1 ≤ i ≤ D ∧ j = d + (T + 1) ·D
−2 · (1− w)2 if D < i ≤ (T+1)·D ∧ j = d+(T+1)·D
2 · (pt − p2

t ) if D < i ≤ (T+1)·D ∧ j = d+(T+2)·D
0 else

The matrix Q• is sparse because only 7·T ·D+5·D elements
are not zero. Since the set CD used in problem P1, adds
only linear constraints to the variables a(t),b,y, it is easy
to derive matrices A•, d• describing these constraints.

Proof of Theorem 2. Rewriting the objective function
shows that it only involves terms c · vi and c · v2i , where vi is
one of the variables pt or w, and c is a constant depending
on the choice which variable is considered. Isolating these
constants, leads to the vector c◦ with

c◦i =


D∑

d=1

−(a(i)
d − yd)(x

(i)
d − yd) if 1 ≤ i ≤ T

T∑
t=1

D∑
d=1

−(a(t)
d − bd)(a

(t−1)
d − bd) if i = T + 1

and to the diagonal matrix Q◦ = diag(q◦1 , . . . , q
◦
T+1) with

q◦i =


D∑

d=1

2 · (a(i)
d − yd)

2 if 1 ≤ i ≤ T

T∑
t=1

D∑
d=1

2 · (a(t−1)
d − bd)

2 if i = T + 1

Obviously, Q◦ is a sparse matrix. Since the L0 norm used in
the original problem definition has been replaced with the
linear constraint of Equation 9, it is again easy to derive
matrices A◦, d◦ describing these constraints.
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