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Second-Order Sliding Mode
Control of a Perturbed-Crane
A five degrees-of-freedom overhead crane system affected by external perturbations is
the topic of study. Existing methods just handle the unperturbed case or, in addition, the
analysis is limited to three or two degrees-of-freedom. A wide range of processes cannot
be restricted to these scenarios and this paper goes a step forward proposing a control
solution for a five degrees-of-freedom system under the presence of matched and
unmatched disturbances. The contribution includes a model description and a second-
order sliding mode (SOSM) control design ensuring the precise trajectory tracking for
the actuated variables and at the same time the regulation of the unactuated variables.
Furthermore, the proposed approach is supported by the design of strong Lyapunov
functions providing an estimation of the convergence time. Simulations and
experiments, including a comparison with a proportional-integral-derivative (PID) con-
troller, verified the advantages of the methodology. [DOI: 10.1115/1.4030253]

1 Introduction

The maneuvering with overhead crane systems has become the
main part in many industrial activities where the efficiency in the
cargo transportation process is crucial. This has motivated an
intensive research on modeling and control during last decades.
An important summary can be found in Ref. [1] and recent devel-
opments in Refs. [2–6]. Crane systems exhibit a complex behav-
ior, with a nonlinear interaction between the trolley and the
payload, where the acceleration of the trolley induces undesirable
oscillations in the payload. In addition, uncertainties and external
perturbations occur during regular operation conditions, degrading
the overall control performance and increasing the risk of dam-
ages and accidents, see Refs. [2,5,6].

1.1 State of the Art. The solution to this problem remains
still open and several attempts have been considered in the litera-
ture. When measurements are not available, input-shaping has
proven to be useful for payload attenuation, as is shown in
Ref. [7] for the case of a two-dimensional overhead crane and in
Ref. [8] for the case of a tower crane; as well its application for
the transient sway, as in Ref. [9], the skew control in Refs. [10]
and [11] for the residual sway suppression considering damping.
In Ref. [12], the passivity properties of the crane permit the design
of feedback control laws using only the measurements of the trol-
ley position for a two-dimensional overhead crane with constant
cable length. Some methods to measure the payload oscillations
have been proposed in Refs. [13–16], opening new possibilities to
include the payload oscillation measurements in real environ-
ments. Using the measurement of the payload oscillations a non-
linear scheme has been proposed in Ref. [17] for the case of a
three-dimensional (3D) overhead crane with constant cable length.
Considering the measurements of angular and linear displacement
a three degrees-of-freedom overhead crane is studied in Ref. [4]
neglecting unmatched perturbations in the analysis. Mostly,

trajectory planning strategies have been proposed in Ref. [18]. A
partial feedback linearization approach was presented in
Refs. [19,20] for the case of varying cable length. In all mentioned
approaches, unmatched perturbations were not taking into account
in the control design and cannot be handled by the proposed con-
trollers. In addition, when velocity estimation is required the use
of dirty time derivatives is a common practice.

1.2 Methodology. The design of control laws under the pres-
ence of heavy uncertainty conditions is one of the main problems
of modern control theory. In this scenario, the SM methodology
offers very good robustness/insensitivity properties again a wide
variety of external disturbances as well as model uncertainties,
see Ref. [21]. The main disadvantage of the SM controllers is the
so-called chattering effect, a high frequency commutation in the
control signal. This discontinuous input of high frequency is not
suitable for the majority of the actuators. For this purpose, high-
order SMs (HOSM) have proven to reduce the chattering effect
without compromising the SM robustness/insensitivity properties,
see Refs. [22–25].

In particular, for the overhead crane system, SOSM control
techniques have been considered in Refs. [26,27]. A SM antisway
control of an offshore container crane is proposed in Ref. [28]. In
Ref. [29], an adaptable scheme is presented. The actuator fault
diagnosis problem for a 3D overhead crane was studied in
Ref. [30] using HOSM differentiators. However, when unmatched
perturbations are present, the appropriate SM enforcement is an
open challenge, see Ref. [24]. In order to deal with unmatched
perturbations two directions have been taken: the minimization of
unmatched perturbations in combination with robust schemes, see
Ref. [31] and the compensation via observer and sliding-surface
design, see Refs. [32–34]. Considering time-varying linear models
the parametric resonance case was studied in Refs. [5,6].

1.3 Contribution. This paper presents the modeling and
control design for a five degrees-of-freedom overhead crane sys-
tem under the presence of matched and unmatched perturbations.
The approach uses the twisting and super-twisting (ST) algo-
rithms, together with the appropriate design of the sliding surface.
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The trolley and payload angular positions are assumed to be
available for measurement and their corresponding time deriva-
tives are obtained via SOSM differentiators. With this aim, a non-
conventional partial feedback linearization approach, allowing the
inclusion of uncertainties and external perturbations is proposed.
Then, the design of a sliding manifold based on virtual holonomic
constraints, guaranteeing the stability of the zero dynamics under
the presence of unmatched perturbations is presented. Finally, a
SOSM control design is proposed. There are crucial differences
with respect other works which are summarized below:

• First, model uncertainties as well as matched and unmatched
perturbations are introduced in the modeling and control
design for a five degrees-of-freedom perturbed-crane.

• A nonconventional partial feedback linearization approach is
proposed, allowing the inclusion of external perturbations as
well as the SM enforcement via twisting and ST algorithms.

• A new Lyapunov function for twisting algorithm is presented
providing an estimation of convergence time and recovering
Levant’s inequalities.

• Large perturbations and disturbances are introduced in simu-
lations and experiments which include a large initial swing
angle and angular velocity, uncertainties in the parameters, a
gust wind perturbation, and a friction force.

• A comparison with a PID algorithm is presented.

The structure of the paper is organized as follows: In Sec. 2, the
mathematical model is described. Section 3 presents the SOSM
control design. Simulations are presented in Sec. 4. The experi-
mental results performed with a laboratory crane are presented in
Sec. 5. Finally in Sec. 6, the conclusions are drawn for this study.

2 Mathematical Model

In this section, the mathematical model of a 3D overhead crane
system, in the presence of external disturbances is presented. The
test bench is a laboratory Inteco crane, shown in Fig. 1, and fol-
lowing [35] the corresponding coordinate system is described in
Fig. 2. The payload is considered as a point mass and the mass
and stiffness of the cable are neglected. The following notation is
used: mc is the trolley mass, mr the rail mass, mp the payload
mass, and l is the length of the hoisting cable. The control problem
is tracking for the actuated variables x, y, and l, and regulation for
the unactuated variables hx and b, in the presence of the external
perturbations d1ðtÞ and d2ðtÞ.

2.1 Modeling. The position of the load in the fixed
coordinate system is ðxp; yp; zpÞ ¼ ðxþ l sin hx cos b; yþ l sin b;
�l cos b cos hxÞ, where x, y, l, hx, and b are defined as the general-
ized coordinates that describe the motion. The model of the over-
head crane can be obtained applying the Euler–Lagrange

equation, see Ref. [35]. The corresponding Lagrangian is given by
L ¼ T � mpglð1� cos hx cos bÞ, with T ¼ ð1=2Þmpð _x2

p þ _y2
p þ _z2

pÞ
þ ð1=2Þðmx _x2 þ my _y2 þ mp _z2Þ, where mx ¼ mp þ mc þ mr and
my ¼ mp þ mc. The next step is to apply the Euler–Lagrange
equation, obtaining the expression below:

M11€q1 þM12€q2 þ h1 þ /1 ¼ f þ d1;

M21€q1 þM22€q2 þ h2 þ /2 ¼ d2

(1)

where the related terms are q1 ¼ ½x; y; l�
T; q2 ¼ ½hx;b�T;

f ¼
fx
fy
fz

2
4

3
5; M11 ¼

mx 0 mp sin hx cos b
0 my mp sin b

mp sin hx cos b mp sin b mp

2
4

3
5,

M12¼
mplcoshxcosb�mplsinhxsinb

0 mplcosb
0 0

2
4

3
5; M22¼

mpl2cos2b 0

0 mpl2

� �

and M21 ¼
mpl cos hx cos b 0 0

�mpl sin hx sin b mpl cos b 0

� �
. The Coriolis and

centrifugal terms: h1¼ h11;�mplsinb _b2þ2mpcosb _l _b;�mplcos2b _h2
x

�
�mpl _b2�T; h2 ¼

2mpl _l _hx cos2 b� 2mpl2 cos b sin b _hx
_b

2mpl _l _bþ mpl2 cos b sin b _h2
x

� �
, where

h11 ¼ �mpl sin hx cos bð _h2
x þ _b2Þ � 2mp sin hx sin b _l _bþ 2mp cos hx

cos b _l _hx � 2mpl cos hx sin b _hx
_b. The gravitational terms /1 and /2

are /1 ¼ 0; 0; /l½ �T;/2 ¼ mplg cos b sin hxmplg cos hx sin b½ �T,

where /l ¼ �mpg cos b cos hx. The terms d1ðtÞ ¼ ½dx; dy; dl�T and

d2ðtÞ ¼ ½dhx
; db�T represents the matched and unmatched external

perturbations, respectively.

2.2 Partial Feedback Linearization With the Inclusion of
Perturbations. System (1) can be rewritten as it is shown below

M€q1 þ hþ /þ /1 ¼ f þ d0;

M22€q2 þ h2 þ /2 ¼ �M21€q1 þ d2

where / ¼ �M12M�1
22 /2; M ¼M11 �M12M�1

22 M21; h ¼ h1

�M12M�1
22 h2, d0 ¼ d1 �M12M�1

22 d2 ¼ ½�dx; �dy; dl�T, with: �dx¼dx

�ðcoshx=lcosbÞdhx
þð1=lÞsinhxsinbdb and �dy¼ dy�ð1=lÞcosbdb.

The term /1 is considered as an unknown term, as well as theFig. 1 Inteco 3D-crane

Fig. 2 Coordinate system
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external perturbations d0 and d2, nevertheless all of them are

bounded. Setting u¼½u0;ul�;u02R2;ul2R and following the par-
tial feedback linearization proposed in Ref. [36], it is defined:

f ¼ hþ /þMu (2)

obtaining

€q1 ¼ uþM�1ðd0 � /1Þ;
M22€q2 þ h2 þ /2 ¼ �M21uþ �d2

(3)

where �d2 ¼ d2 �M21M�1ðd0 � /1Þ. In this case M�1ðd0 � /1Þ
¼ ½�d1; �dl�T, with �d1 ¼ ½ððdl � /lÞ cos b sin hx þ �dxÞ=ðmp � mxÞ;
ððdl � /lÞ sin bþ �dyÞ=ðmp � myÞ�T and �dl ¼ �dymp sin bþ �dxmp

cos b sin hx � m0ðdl � /lÞ=mpðmp � mxÞðmp � myÞ, with m0 ¼ mp

my sin2 hx sin2 b� ðmy � mp cos2 bÞðmx � mp cos2 hxÞ. Taking into
account that the last column of M21 is a zero vector, system (3)
can be written as

€q10 ¼ u0 þ �d1 (4)

€l ¼ ul þ �dl (5)

M22€q2 þ h2 þ /2 ¼ �M21€q10 þ �d2 (6)

€q10 ¼ ½€x; €y�
T;M21 ¼

mpl cos hx cos b 0

�mpl sin hx sin b mpl cos b

� �
. In conclu-

sion, a system formed by the dynamics (4)–(6) is obtained. The
cable length dynamic, (5), are decoupled and affected by the

perturbation �dl. The dynamics of the trolley, subsystem (4), are

affected by the perturbation �d1. The unactuated dynamics, pay-
load oscillation, are given by Eq. (6) and affected by the vanishing

uncoupled perturbation �d2 and the Coriolis and gravity terms, h2

and /2, respectively.

2.3 Model Simplification. Overhead crane systems have a
restricted workspace, allowing us to introduce the next
assumption:

(a1Þ For an overhead crane, the work space is defined in the
domain D ¼ fq2: kq2k1 < p=2g, which implies that

there exists M�1
22 and M

�1

21 . For practical purposes, it is
considered kq2k1 � p=4 which imply cosðaÞ � 1 and
sinðaÞ � a for a ¼ hx; b in Eq. (6).

In the considered domain, expression (6) has the next form

€q2 þ 2
_lðtÞ
lðtÞ

_q2 þ
g

lðtÞ q2 ¼ �
1

lðtÞ
€q10 þ

1

mpl2ðtÞ
�d2 (7)

In Eq. (7), the logarithmic derivative of l, _l=l, appears as a time
varying damping. In order to avoid this term, it is convenient to
define the new coordinate q20 ¼ lðtÞq2 (angular momentum),
which results in the next representation

€q20 þ
1

lðtÞ ðg�
€lðtÞÞq20 ¼ �u0 � �d1 þ

1

mplðtÞ
�d2 (8)

Note that the terms related with _q20 are canceled in Eq. (8). For
maneuvering operations, it is necessary to specify the desired tra-
jectories; for this purpose, it is possible to define the cable length,
l, as a time varying parameter, satisfying the next properties:
lðtÞ ¼ l0ð1þ erðtÞÞ and 0 < l < lðtÞ < �l, where l0 ¼ ðlþ �lÞ=2
and ejrðtÞj < 1. In addition: 1=lðtÞ ¼ 1=l0ð1þ leðtÞÞ, where
leðtÞ ¼

P1
i¼1 ð�1ÞiðerðtÞÞi and jlej � ðe=1� eÞ ¼ el, see Ref. [6].

Substituting 1=lðtÞ in Eq. (8)

€q20 þ ðx2
0 þ k0ðtÞÞq20 ¼ �u0 � �d1 þ k1ðtÞ�d2 (9)

where x2
0 ¼ ðg=l0Þ; k0ðtÞ ¼ �ð1=l0Þð€lþ ð€l� gÞleÞ and k1ðtÞ

¼ ð1=mplðtÞÞ. In summary, after applying the partial feedback
linearization approach, it is obtained the system dynamics (4), (5),
and (9), valid in the domain D. The control problems of tracking
and regulation will be studied in Sec. 3, proposing the appropriate
design of a sliding manifold.

3 SOSM Control Design

First, the tracking errors, e and el are defined el ¼ l� lref ;

e ¼ q10 � qref , where qref ¼ ½xref ; yref �T and vector e represents
the error of the trolley position in its two components (x, y),
obtaining the error dynamics

€el ¼ ul þ �dl � €lref (10)

€e ¼ u0 þ �d1 � €qref (11)

It is convenient to define the state space representations for
dynamics (9)–(11). Note that Eq. (10) is decoupled with the state
space representation given below:

_el

€el

� �
|ffl{zffl} ¼

0 1

0 0

� �
el

_el

� �
|ffl{zffl} þ

0

1

� �
ðul þ �dl � €lrefÞ

_el el

(12)

On the other hand, dynamics (9) and (11) are coupled sharing the
same control input u0 as well as the matched perturbation �d1. The
state space representation for Eqs. (9) and (11) is given below:

_e

€e

_q20

€q20

2
6664

3
7775

|fflfflffl{zfflfflffl}
¼ �A

e

_e

q20

_q20

2
666664

3
777775

|fflfflffl{zfflfflffl}
þ b0ðu0 þ �d1Þ þ b1€qref þ k1b2

�d2

_q q

(13)

where b0 ¼ 0; I2�2; 0; �I2�2½ �T; �A ¼ A0 þ DA, with

A0 ¼

0 I2�2 0 0

0 0 0 0

0 0 0 I2�2

0 0 �x2
0I2�2 0

2
664

3
775; DA¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 k0ðtÞI2�2 0

2
664

3
775; b1¼

0; �I2�2; 0; 0½ �T and b2¼ 0; 0; 0; I2�2½ �T. Now, consider the
sliding outputs

rl ¼ el;

rq ¼ w1ðe; _eÞ � w2ðq20; _q20Þ
(14)

where w1ð�Þ ¼ C3 _eþ C2eþ C1

Ð t
0

eðsÞds, and w2ð�Þ ¼ C6 _q20

þC5q20 þ C4

Ð t
0

q20ðsÞds. Note that rl has relative degree 2 and

rq ¼ ½rx;ry�T has relative degree 1. The parameters Ci;
i ¼ 1; :::; 6, are 2� 2 diagonal matrices of positive gains. Taking
the first derivative of rq and the second time derivative of rl

€rl ¼ u1 þ �dl � €lref (15)

_rq ¼ ðC3 þ C6Þu0 þKq2 þ dq (16)

where dq ¼ ðC3 þ C6Þ�d1 þ d3 with d3 ¼ �C3€qref � k1ðtÞC6
�d2

�C6ðx2
0 þ k0ðtÞÞq20. The matrix K is given next K

¼ ½C1;C2;�C4;�C5�.
Remark 1. Choosing convenient trajectories €qref and €lref , with

Lipschitz continuous second time derivative, the perturbations sat-
isfy the following bounds j�dlj � Ll; kdqk � L0 and k _dqk � L1.
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From the invariance conditions €rl ¼ _r1 ¼ rl ¼ 0 and

_rq ¼ rq ¼ 0, the equivalent control is obtained: ueq ¼ ½��dl þ €lref ;

��d1 þ ðC3 þ C6Þ�1ð�Kq2 � d3Þ�T. In the sliding manifold, the
virtual holonomic constraints w1ð�Þ ¼ w2ð�Þ and el¼ 0 are
imposed.

3.1 Stability Analysis of Zero Dynamics. With the equiva-
lent control arise the corresponding zero dynamics

_el ¼ el ¼ 0 (17)

_q ¼ ðA0 � bKÞqþ dðq2; tÞ (18)

where b ¼ b0ðC3 þ C6Þ�1
. Stability of Eq. (17) is trivial since

variable l is completely actuated and decoupled. This is not the
case of Eq. (18) where unactuated variables are present as well as
unmatched perturbations. From Eq. (18), it is evident that the
equivalent control compensates exactly the matched perturbation
�d1, and induces the stabilizing term �Kq2; however the
unmatched perturbation dðq2; tÞ ¼ DAq2 þ b0ðC3 þ C6Þ�1

d3

þb1€qref þ k1ðtÞb2
�d2 is still present. Furthermore, with the design

of suitable trajectories for qref and lref, with Lipschitz continuous
second time derivative, it is possible to consider the next
additional assumption

ða2Þ kdðq2; tÞk � �c1kq2k þ �c0

Here �c0 and �c1 are positive constants. Now consider a quadratic

Lyapunov function V ¼ ð1=2ÞqT
2 Pq2 with P ¼ PT > 0. Taking

the time derivative of V: _V ¼ ð1=2ÞqT
2 ðATPþ PAÞq2 þ dTPq2,

where A ¼ A0 � bK, and looking for a matrix P solution of the

Lyapunov equation ATPþ PA ¼ �2I, we obtain: _V � �kq2k
2

þkdkkmax½P�kq2k, which implies the following result:
THEOREM 1. The ultimate bounded stability of system (18) is

guaranteed if the following condition is satisfied:

kdðq2; tÞk
kq2k

� 1

kmax½P�
(19)

where dðq2; tÞ satisfy assumption (a2Þ and P is the solution of the
Lyapunov equation: ATPþ PA ¼ �2I, with A ¼ A0 � bK.

Remark 2. kmaxðminÞ½�� denotes the operation of taking the largest
(smallest) eigenvalue of some symmetric matrix. The Euclidean
norm of a vector f and the induced norm of a matrix A are
denoted by kfk and kAk, respectively.

Further details of this theorem can be found in Ref. [37],
Sec. 13.9. In the case of �c0 ¼ 0, condition (19) implies the expo-
nential stability of the zero dynamics.

3.2 SM Enforcement. In this section, the SM enforcement
design is introduced. Furthermore, the Lyapunov analysis for the
twisting controller using a new nondifferentiable strong Lyapunov
function, providing an estimation of the convergence time, is
presented.

The SM enforcement of Eq. (16) can be achieved by the ST
algorithm. For this purpose, the next control law is proposed

u0 ¼ ðC3 þ C6Þ�1ð�Kq2 þ �Þ (20)

� ¼ �K1

jrxj
1
2signðrxÞ

jryj
1
2signðryÞ

" #
�K2

ðt

0

signðrxÞ
signðryÞ

� �
ds

The parameters K1 and K2 are 2� 2 diagonal matrices of positive
gains. A necessary condition of convergence for ST algorithm is
kmin½K2� > L1, if in addition, we select a kmin½K1� sufficiently
large, the controller u0 guarantee the appearance of a SOSM
r0 ¼ _r0 ¼ 0 in system (16). A very crude condition is
2ðkmin½K2� þ L1Þ2=ðkmin½K1�2ðkmin½K2� � L1ÞÞ < 1. Recently, in

Ref. [38] it was demonstrated that for any c0 > 0;
c0 ¼ kmin½K2� � L1, and d > 0, there exists k such that ri, i ¼ x; y,
is reduced to zero in finite time less than ðrið0Þ=c0Þ þ d, if
kmin½K1� > k. The convergence time cannot be less than
rið0Þ=c0; i ¼ x; y.

On the other hand, the SM enforcement of Eq. (15) can be
achieved by the twisting algorithm

u1 ¼ �r1signðrlÞ � r2signð _rlÞ (21)

where r1 and r2 are positive constants. In particular, for the twist-
ing algorithm, the convergence condition, stated by Levant, is
r1 > r2 þ Ll and r2 > Ll, see Ref. [22]; with this condition the
SOSM €rl ¼ _rl ¼ rl ¼ 0 is achieved in finite time. Recently, in
Refs. [39,40] we can find the design based on strict Lyapunov
functions which provides an estimation of the convergence time.
In Sec. 3.3, a new strong Lyapunov function is proposed. In com-
parison with Ref. [40], the new Lyapunov function provides a
reduced number of inequalities in the analysis and it preserve the
conditions stated by Levant.

3.3 Convergence Time, Twisting Algorithm. One of the
most important features of the SM approach is a finite-time reach-
ing phase. However the corresponding Lyapunov functions may
be nonsmooth in this case, see Ref. [41] where recently a detailed
survey is presented. First, setting r1 ¼ rl and _rl ¼ r2, Eq. (15)
can be rewritten as below:

_r1 ¼ r2; _r2 ¼ ul þ �dl (22)

where j�dlj � Ll. Consider the candidate Lyapunov function

V ¼ V2
0 þ c1jr1j

3
2r2signðr1Þ (23)

where V0 ¼ ð1=2Þr2
2 þ r1jr1j and c1 is a positive constant, c1 > 0.

Taking the time derivative of Eq. (23) along Eq. (15)

_V ¼ 2V0
_V0|fflffl{zfflffl} þ 3

2
c1jr1j

1
2r2

2|fflfflfflfflfflffl{zfflfflfflfflfflffl} þ c1jr1j
3
2ðul þ �dlÞsignðr1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a: b: c:

a. 2V0
_V0 ¼ 2V0ð�r2jr2j þ �dir2Þ � 2ðr2 � LlÞjr2jV0

� �ðr2 � LlÞjr2j3 � 2ðr2 � LlÞr1jr1kr2j

b. 3
2
c1jr1j

1
2r2

2 � c1ðr3
2 þ jr1j

3
2Þ

c. c1jr1j
3
2ð�ui þ �diÞsignðr1Þ � �c1rjr1j

3
2

with r ¼ r1 � r2 � Ll > 0. Considering c1 < minfr2 � Ll; rg

_V � ��rðjr1j
3
2 þ jr2j3Þ (24)

where �r ¼ minfr2 � Ll � c1; ðr � 1Þc1g. On the other hand,

defining n1 ¼ jr1j1=2
signðr1Þ and n2 ¼ r2, function V can be

rewritten as: V ¼ ð1=4Þr4
2 þ jr1jnTPnn, where n ¼ ½n1; n2�T and

Pn ¼ r2
1 c1=2

c1=2 r1

� �
. Taking into account r1 >

1

4
1
3

c
2
3

1, it implies

Pn > 0. Moreover, kmin½Pn�knk2jr1j�V� 1
4
r4

2þkmax½Pn�knk2jr1j,
where knk2¼jr1jþr2

2. Considering the right-hand side of the pre-

vious inequality, we have V� �cðr4
2þjr1j2þknk4Þ, with

�c¼maxf1
4
;1

2
kmax½Pn�g. Taking into account knk4�2ðjr1j2þr4

2Þ,
the next condition is obtained: V�3�cðjr2j4þjr1j2Þ. Finally using
Jensen’s inequality
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V � 3�cðjr2j4 þ jr1j2Þ � 3�cðjr2j3 þ jr1j
3
2Þ

4
3 (25)

From Eqs. (24) and (25), it follows _V � �ð�r=ð3�cÞ
3
4ÞV3

4. We just
have proved the following:

THEOREM 2. Using twisting algorithm, and considering the next
expressions

r1 > r2 > Ll; r1 > r2 þ Ll; r1 >
1

4
1
3

c
2
3

1;

0 < c1 < minfr2 � Ll; rg

with r ¼ r1 � r2 � Ll. The point �r ¼ ½r1;r2� ¼ ½0; 0�T of system
(22) is globally exact finite time stable. Moreover, an upper
bound, Treach, of the convergence time of a trajectory starting

at �rð0Þ can be estimated by: Treach � ð4=cÞV
1
4

1ð�rð0ÞÞ, with

c ¼ ð�r=ð3�cÞ
3
4Þ, where �r ¼ maxfr2 � Ll � c1; r � c1g and

�c ¼ maxf1
4
; 1

2
kmax½Pn�g with Pn ¼

r2
1

c1

2c1

2
r1

� �
.

4 Simulations

Simulations were performed in MATLAB/SIMULINK
TM, using the

Euler integration method with a sample time of 1 ms. The consid-
ered parameters are mp ¼ 1 kg;mc ¼ 0:6 kg;mr ¼ 1 kg, and
g ¼ 9:81 m=s

2
; the initial conditions are: xð0Þ ¼ 0:045 m;

_xð0Þ ¼ 0 m=s; yð0Þ ¼ 0:055 m; _yð0Þ ¼ 0 m=s; lð0Þ ¼ 0:55 m;
_lð0Þ ¼ 0 m=s; hxð0Þ ¼ 4 deg; _hxð0Þ ¼ 0:57 deg=s;bð0Þ ¼ 3 deg
and _bð0Þ ¼ 1:14 deg=s. The reference trajectory for the
trolley position is qrefðtÞ ¼ ½xref ; yref �T, with: arefðtÞ ¼ bi þ ai

sinðxxtþ /iÞa ¼ x; y; where bx ¼ by ¼ 0:25; ax ¼ ay ¼ 0:2;
xx ¼ xy ¼ 0:5;/x ¼ ðp=2Þ and /y ¼ 0. Besides, the reference
for the rope length is given by lref ¼ 0:55þ 0:2 sinð0:6tÞ. The
external perturbations, considered in the simulation, are described
below:

• For perturbation d1, a friction model previously considered
in Refs. [4,42] is used in simulation: d1 ¼ ½dx; dy; dl�T
with da ¼ �la _a� qa tanhð _aÞ, for a ¼ x; y; l, and lx ¼ ly

¼ ll ¼ 4 kg=s and qx ¼ qy ¼ 2 and ql ¼ 10.
• For perturbation d2, a gust wind model, usually considered in

wind studies, see Refs. [3,43], is considered: d2 ¼ ½dhx
; db�T

with

di ¼

0; t < ta;

amax

2

2p
tb

sin
2p
tb

t� ta
tb

� �
; ta < t � ta þ tb;

0; t > ta þ tb

8>>><
>>>:

where amax ¼ 0:1, tb¼ 2, and ta¼ 3.

The control design is composed of three elements: partial feed-
back linearization (2), twisting algorithm (21) for the length l, and
ST algorithm (20) for the tracking of the trolley position and the
attenuation of payload oscillations. In addition to the perturba-
tions, a deviation of 20% in the values of mp, mc, and mr was
included in the simulation. The proposed twisting control parame-
ters are given next: r1 ¼ 46 and r2 ¼ 25. In this case Ll¼ 12 and
choosing c1 ¼ 1:5, Theorem 2 give us an estimation of the conver-

gence time, Treach � 147V
1
4ð�rð0ÞÞ, ensuring the SM _rl ¼ rl ¼ 0.

Besides, the proposed parameter for the ST controller are:
K2 ¼ 0:5I2�2 and K1 ¼ I2�2. In this case L1 ¼ 0:4, which implies
kmin½K2� > L1. Then, with kmin½K1� sufficiently large we ensured
_r ¼ r ¼ 0 in finite time, see Ref. [38]. The sign function is

approximated by signðrÞ � ðr=ðjrj þ eÞÞ, with e ¼ 10�4. The time
derivatives were obtained with the HOSM differentiator introduced
in Ref. [23].

In order to adjust the desired system response, the parameters
of matrix K should be selected. In the simulation we used:

C6 ¼ 2I2�2; C5 ¼ 12I2�2;C4 ¼ 2I2�2; C3 ¼ 2I2�2;C2 ¼ 14I2�2;
C1 ¼ 4I2�2. With this parameters, the eigenvalues of the matrix,
A0 � bK, are located at E ¼ ½�4:9887;�4:9887;�0:313;
�0:313; �0:599163:3261i;�0:599163:3261i�. Other parame-
ters can be selected using pole place assignment or linear-
quadratic-regulator (LQR) method. In our case the system param-

eters are given by b0 ¼ 0; I2�2; 0; �I2�2½ �T; A0

¼

0 I2�2 0 0

0 0 0 0

0 0 0 I2�2

0 0 � 9:81
0:55

I2�2 0

2
664

3
775

Defining the vector E containing the desired eigenvalues for the
closed-loop system A0 � b0K, the vector K can be obtained using
the MATLAB command K ¼ placeðA0; b0;EÞ. On the other hand,

defining appropriate matrices Q 2 R8�8;R 2 R2�2 and

N 2 R8�2 the MATLAB command ½K; S;E� ¼ lqrðA0;b0;Q;R;NÞ
can be used. A suggestion is given: R¼I2�2;N

¼ �I2�2; �I2�2; 0; 0½ �T and Q¼diagð 10I2�2; 10I2�2; 500I2�2;½
500I2�2�Þ. In order to compare the performance of the SOSM dif-
ferentiators [23], a comparison with an optimal spline approxima-
tion is presented. The spline approximation is an offline method,
and it uses previous and future values of the measured position,
see, e.g., Ref. 44. The smoothing spline is tuned in order to obtain
the smoothest possible estimation and keeping the fitting error
within the quantization interval. The simulation results are
presented in Fig. 3. Figure 4 shows the time derivatives obtained
(online) with the SOSM differentiator and the offline estimation.

5 Experiments

Experiments were performed on a laboratory IntecoTM 3D-
crane. This crane is instrumented with high performance encoders
for the measurement of the variables ðx; y; l; hx; bÞ, and they are
interfaced to a personal computer with an IntecoTM data acquisi-
tion board. The control algorithms are implemented on MATLAB/
SIMULINK

TM environment. The estimation of the velocities
ð _x; _y; _l; _hx; _bÞ are obtained with the HOSM differentiator proposed
by Levant in Ref. [23]. In the experiment, we consider the same

Fig. 3 Simulation: trolley position and rope length (m), pay-
load oscillations (deg), control actions (N) versus time (s)
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parameters as in simulation, with the exception of the perturbation
d2, in the experiment the perturbation d2 consists of a sequence of
several impacts over the payload, trying to simulate a gust wind
disturbance during regular operation. Also, an initial payload
swing was induced in the experiment.

The obtained results are presented in Fig. 5. Figure 6 shows the
time derivatives obtained (online) with the SOSM differentiator
and the offline estimation via splines, verifying a very good esti-
mation of the velocities. Videos of experiments are available at1.

Remark 3. The comparison of Fig. 3 versus Fig. 5 and Fig. 4
versus Fig. 6 shows how well resembles the experimentation ver-
sus simulations. Several sources of disturbances were introduced

in the experiment presented in Fig. 5: Initial swing angle, gravity
term /1, uncertainty in the payload weight as well as matched and
unmatched perturbations d1 and d2, respectively. Simulations and
experiments verify the good performance of the proposed control
law.

In addition, a comparison with the PID controller is presented.
For comparison purposes, we implemented the PID control
provided by IntecoTM. This control law has the form: fa
¼ kpaea þ kda _ea þ kia

Ð t
0

eadsþ kaha, where ea represents the posi-
tion error, for a ¼ x; y. Additionally, fl ¼ kplel þ kdl _el þ kil

Ð t
0

elds.
The considered parameters are: kpx ¼ kpy ¼ kpl ¼ 10, kdx¼ 2,
kdy ¼ kdl ¼ 1, kix¼ 10, kiy¼ 15, kil¼ 20, and kx ¼ ky ¼ 10. Since
tuning rules are not well understood for underactuated mechanical
systems, we adjust the parameters in order to obtain the best possi-
ble performance, increasing of this gains resulted in decreasing of

Fig. 5 Experiment: trolley position and rope length (m), pay-
load oscillations (deg), control actions (N) versus time (s)

Fig. 6 Velocity estimation: trolley and rope length (m/s) and
payload oscillations (deg/s) versus time (s)

Fig. 7 PID: trolley position and rope length (m), payload oscil-
lations (deg), control actions (N) versus time (s)

Fig. 4 Velocity estimation: trolley and rope length (m/s) and
payload oscillations (deg/s) versus time (s)

1https://sites.google.com/site/carlosvazquezcontact/videos
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performance. Figure 7 shows the obtained results with the PID
controller. From Fig. 7 is evident that the performance offered by
the PID controller is not very good in order to achieve the tracking
of the trolley and the attenuation of the payload oscillations under
the presence of perturbations.

6 Conclusions

An overhead crane system affected by external perturbations is
studied in the paper. The design of a SOSM controller, using
twisting and ST algorithms is proposed in order to deal with
model uncertainties and the external perturbations. An initial
swing angle, uncertainties in the parameters, a gust wind perturba-
tion and a friction force were successfully compensated with the
proposed methodology. The performed simulations and experi-
ments verified the expected performance for an overhead crane
system. Additionally, a comparison with a PID controller is pre-
sented. Extensions for a large class of underactuated mechanical
systems are considered for future work.
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