
Brainstorming Under Constraints: Why
Software Developers Brainstorm in Groups

Patrick C. Shih
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 USA

patshih@ics.uci.edu

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA, 98052 USA
gina.venolia@microsoft.com

Gary M. Olson
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 USA

gary.olson@uci.edu

Group brainstorming is widely adopted as a design method in the domain of software
development. However, existing brainstorming literature has consistently proven group
brainstorming to be ineffective under the controlled laboratory settings. Yet, electronic
brainstorming systems informed by the results of these prior laboratory studies have failed to gain
adoption in the field because of the lack of support for group well-being and member support.
Therefore, there is a need to better understand brainstorming in the field. In this work, we seek to
understand why and how brainstorming is actually practiced, rather than how brainstorming
practices deviate from formal brainstorming rules, by observing brainstorming meetings at
Microsoft. The results of this work show that, contrary to the conventional brainstorming practices,
software teams at Microsoft engage heavily in the constraint discovery process in their
brainstorming meetings. We identified two types of constraints that occur in brainstorming
meetings. Functional constraints are requirements and criteria that define the idea space, whereas
practical constraints are limitations that prioritize the proposed solutions.

Brainstorming, Idea Generation, Creativity, Problem-solving, Decision-making

1. INTRODUCTION

Idea Generation has been a topic of creativity
research for centuries. Brainstorming, in particular,
has grown to become synonymous with idea
generation. Brainstorming was developed in the
1930s by Alex Osborn, an advertising executive
who co-founded the world’s largest advertising
agency network. Osborn (1953) first coined this
process “brainstorming” and published it in his
book, Applied Imagination. Contrary to decision-
making techniques that aim to systematically
eliminate unsuitable ideas to reach a final
consensus, the brainstorming process focuses on
gathering as many ideas as possible. The four
brainstorming rules are:

(i) Focus on quantity
(ii) Withhold criticism
(iii) Welcome unusual ideas
(iv) Combine and improve ideas

In his initial description of brainstorming, Osborn
claimed that by reducing the amount of criticism
from self and others during this creative process, a
group of individuals could produce better results in
terms of quantity and quality.

In the past half-century, a plethora of studies
focused on enhancing the brainstorming process
have been published. Surprisingly, research has
shown that group brainstorming is not as effective
as brainstorming separately as individuals. Diehl
and Stroebe (1987) reviewed brainstorming
productivity losses and laid out five of the most
common hindrances of the group brainstorming
process:

 Evaluation apprehension: “working in a
group makes one’s contributions visible to
others, and despite the usual brainstorming
instructions not to evaluate others’ ideas,
the members of a group can still be reticent
to contribute their ideas.”

 Free riding: “individual members of a group
might not expend the effort since other
members of the group are contributing
ideas.”

 Limited air time: “when only one person can
speak at a time, there is limited time for
each individual to contribute.”

 Production blocking: “at each moment only
one line of ideas is being generated, since
they are reported serially; groups will
therefore tend to pursue fewer different
kinds of ideas.”

74

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357632257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

 Cognitive inertia: “because of limited air
time, individuals often have to hold on to
their contributions until they get a chance to
report them, and as a result they might
forget them, or they might decide not to
offer them; in either case, the act of holding
on to them will prevent them from thinking
of other ideas.”

Alternative methods have been developed to
overcome these hindrances. The nominal group
technique (NGT) is one effective method in which
each member is given time to brainstorm alone
without communicating with other members. The
individually generated ideas are later pooled
together in a merged list. This process essentially
eliminates idea evaluation and criticism during the
idea generation process; some researchers choose
to call this “deferred judgment” because idea
selection is postponed until a later stage of the
process (Grossman, 1984). Dennis and Valacich
(1993) reported that in more than 50 laboratory
studies, groups employing NGT generated a far
greater number of creative ideas than groups
brainstorming while communicating with each other
(also known as interactive groups). Other reviews
of brainstorming research also found brainstorming
using NGT to consistently produce better ideas in
terms of quality and quantity (e.g., Barki &
Pinsonneault, 2001; Mullen, Johnson, & Salas,
1991). However, NGT can lack the social and
collaborative aspects of brainstorming as a group
exercise because it prevents participants from
actively engaging and building upon group ideas.
Many studies reported that participants have more
positive reactions in interactive group sessions than
in nominal groups, including overall satisfaction and
perceptions of group effectiveness (e.g., Mullen,
Johnson, & Salas, 1991; Stroebe, Diehl, &
Abakoumkin, 1992). For this reason, despite the
obvious performance gains under the nominal
group settings, practitioners continue to brainstorm
in interactive groups. Some researchers choose to
call this common notion, the “illusion of group
productivity” (Pinsonneault et al., 1999; Stroebe,
Diehl, & Abakoumkin, 1992).

Subsequently, researchers have considered how
collaborative technologies such as electronic
meeting systems and group decision support
systems might influence the brainstorming process.
These electronic brainstorming systems (EBSs)
often incorporate benefits of NGT by supporting
anonymous and parallel input (e.g., Connolly,
Jessup, & Valacich, 1990), which eliminate both
evaluation apprehension and production blocking
(Diehl & Stroebe, 1987). Usage of an EBS typically
involves multiple users entering ideas anonymously
into a central repository in parallel. The ideas
stored in the central repository are selected at
random and presented to the participants at

specific intervals or upon request in order to trigger
new ideas. A review of prior studies by Barki and
Pinsonneault (2001) reported that EBS groups
produced more, as well as better ideas, than
conventional interactive brainstorming groups.
However, existing empirical evidence that
compares performance of EBS and nominal
brainstorming groups remains inconclusive.
Despite the increased idea performance
experienced in laboratory settings, most of these
solutions have not been widely adopted because
they have failed at providing group well-being, such
as reinforcement of group culture and socializing
activities, and member support, which involves
establishing personal status by demonstrating
expertise and building knowledge networks (Dennis
& Reinicke, 2004). For this reason, brainstorming in
interactive groups without the help of EBSs
continues to dominate brainstorming practices in
both corporate and academic environments
(Dennis & Reinicke, 2004).

In software engineering, brainstorming is often
taught and used in the context of a design
methodology (Robinson, 2004). Studies have
shown that brainstorming is often used in the
informal and early-stage idea generation phase of
software design (e.g., Wu, Graham, & Smith, 2003)
and has been incorporated into requirement
engineering and agile software development
methodology as a standard idea generation
technique (Nuseibeh & Easterbrook, 2000;
Paetsch, Eberlein, & Maurer, 2003). In fact, some
researchers claimed that brainstorming and its
variations have become the “definitive basic
method for finding ideas” in software design
(Koberg & Bagnall, 1974). Given the prevalence of
brainstorming practices in software design
methodology, the proposed work aims to
characterize brainstorming practices in the domain
of software development. The resulting findings can
then be used to provide design recommendations
that are both feasible and adoptable for
brainstorming groups in real world settings. First,
we discuss the motivation and research questions
for this study. Then, we present work that is
relevant to brainstorming in context. We then
describe the research site, Microsoft Corporation,
and the employees that use brainstorming to
complete their tasks. After, we discuss the data
collection and analysis methods. We then discuss
preliminary findings from the data analysis. We
highlight the key contributions of this research.
Finally, we discuss future work that would further
enhance the research.

2. MOTIVATION AND RESEARCH QUESTIONS

Most of the past attempts on improving
brainstorming productivity by inducing process and

75

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

technology modifications have been shown to be
successful in laboratory studies but have failed to
gain acceptance in practice. To date, interactive
group brainstorming in face-to-face settings
continues to be the preferred method. Researchers
attributed the failures to the lack of support for
group well-being and member support (Dennis &
Reinicke, 2004). The lack of support for social
needs resulted in lowered overall satisfaction and
perceptions of group effectiveness when using the
EBS systems (Mullen, Johnson, & Salas, 1991;
Stroebe, Diehl, & Abakoumkin, 1992). However,
besides the social benefits, little is known about
how brainstorming is appropriated and adapted to
fit a variety of different contexts. There have not
been many studies that focus on detailing why and
how brainstorming is actually practiced, rather than
how brainstorming practices deviate from the
prescribed rules. Furthermore, research has shown
that people who produced the fewest ideas
produced about the same number of outstanding
and high quality ideas as the people who produced
the most ideas (Briggs, Reinig, & Shepherd, 1997).
Therefore, there appears to be more than just the
sheer performance measurements such as quantity
and quality at stake when practitioners view
brainstorming efficiency. Assessing the underlying
intention and understanding brainstorming
practices in real settings is essential for developing
brainstorming productivity metrics that matter to
practitioners.

Since brainstorming is a technique that is designed
to support the inherent needs of generating better
ideas, we want to understand idea generation from
the perspective of its practitioners. This work
focuses on a naturalistic field study of
brainstorming practice in the domain of software
engineering. The observational study attempts to
address the following research questions:

 Why do software teams continue to
brainstorm in groups? Is it because they
strive for idea quantity, quality, or a
combination of the two? Are there other
external factors that are not typically
measured by the traditional brainstorming
productivity metrics? If so, what contextual
requirements do software teams fulfill in the
group brainstorming sessions?

 How do software teams brainstorm? Do
software teams follow the brainstorming
rules in their brainstorming sessions, or do
they practice brainstorming differently?

 Given that the software industry is one that
focuses on technological innovation and
that the employees tend to be early
adopters of technology, why is there not a
collaborative brainstorming tool that has
been successfully developed and adopted?
Are there technology or process changes to

the brainstorming process that would be
helpful for this population?

These questions can lead to understanding the
factors that influence brainstorming behaviors and
best practices in organizational settings. By taking
the different goals, expectations, and norms of
users and those in the organizational ecosystem
into account, we are hoping to discover the
underlying values of organizational brainstorming
practices that are essential for making idea
generation more effective in different parts of the
software development cycle.

3. RELATED WORK

As the “illusion of group productivity” continues to
puzzle brainstorming researchers, many have
attempted to resolve the mystery in laboratory
experiments. Researchers have uncovered
important social benefits such as active social
interaction, criteria negotiation, and social
comparison—the act of being exposed to a high
number of ideas and to common ideas, and found
that they enhanced the generation of additional
ideas (e.g., Dugosh & Paulus, 2005; Shepherd et
al., 1995). Rietzschel et al. (2006) questioned the
effectiveness of reducing evaluation apprehension
by postponing idea evaluation and compared the
differences between quality and quantity of ideas
generated in interactive and nominal groups. Their
results indicated that without actively engaging in
group discussions—though nominal groups are
capable of generating higher quantity ideas that are
more original—the ideas were generally less
feasible than those generated by interactive
groups. More importantly, the final decisions made
from ideas generated in both nominal and
interactive groups were of equal quality. Therefore,
higher idea quantity resulting from following strict
brainstorming rules is not sufficient to lead to better
solutions, and groups may choose to continue
brainstorming in interactive groups because the
inconvenience brought by the imposed process
changes does not outweigh the perceived
performance gain by the group. While these prior
studies can be used to explain why brainstorming
practitioners choose to brainstorm in groups than
alone, the performance metrics still focus strictly on
idea quantity and quality. Other hidden yet
dominant factors that continue to drive groups to
brainstorm interactively still remain to be
uncovered.

In the organizational context, the word
“brainstorming” has been appropriated to fit a
variety of different idea generation needs (Isaksen,
1998). Sutton and Hargadon (1996) published an
influential study on the brainstorming practices at
IDEO, an internationally renowned product design
firm. Deviating from the quantity- and quality-centric

76

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

views, they exposed the organizational, social, and
economical dimensions that were not evident in
traditional brainstorming literature. Brainstorming
groups at IDEO did not care about the productivity
losses. Instead, brainstorming acted as an “idea
theater” that satisfied other practical needs such as
supporting the organizational memory and
impressing clients when it was practiced within
IDEO’s organizational context.

Olson et al. (1992) conducted a series of studies on
how software designers carried out their design
meetings. They found that teams spent about a
third of their time on idea clarification – both
orchestrating and sharing expertise among group
members. Further research has shown that
creative thinking in different design domains is
predominantly characterized by their different
patterns of criteria constraints and the methods
designers employ to manage these constraints
(Stacey & Eckert, 2009). In the domain of software
development, software designers face a different
set of contextual requirements from those
encountered at a product design firm, a controlled
research laboratory, or an advertising agency. The
requirements are different among the various
software teams across different parts of the
software development process cycles. In order to
better support their idea generation process, a
thorough understanding of the intricate details of
the brainstorming sessions at different software
development stages is paramount.

4. FIELD STUDY

4.1 Research Site

Microsoft is one of the world’s largest software
development organizations. We selected
Microsoft’s headquarter campus in Redmond, WA
as our field study site because that is where the
majority of the research and development groups
are located. Approximately half of Microsoft’s
90,000 employees are in the Puget Sound region.
The workforce is spread across over 100 buildings
designated by product lines and job functionalities.
Since the goal of this work was to provide a
contextualized account of activities in brainstorming
meetings at different software development
phases, Microsoft Corporation was the ideal venue
of investigation.

4.1 Software Development Cycle

Software teams at Microsoft typically consist of
members with the following job roles: program
manager (PM), software development engineer
(SDE), and software development engineer in test
(SDET). A standard software development cycle
involves the following stages:

(i) Planning
a. PMs gather information about

product features and draft specs for
them.

b. PMs, SDEs, and SDETs meet and
discuss the features, make changes,
and get general agreement on the
specs.

c. SDEs define the architecture plan for
implementing the features.

d. SDETs define the object models to
the features and describe them in
test specs.

e. PMs, SDEs, and SDETs meet and
discuss the feature specs,
architecture plan, and test specs,
and agree that the specs are
accurate representations of the
features.

(ii) Implementation
a. SDEs begin implementing the

features.
b. SDETs implement the object models,

and then start writing test cases
against them.

c. As features become available, SDEs
and SDETs run tests together
against the features.

(iii) Stabilization
a. SDEs fix bugs while SDETs continue

to analyze test failures.
(iv) Future Planning

a. PMs, SDEs, and SDETs meet and
discuss about customer feedback,
requirement changes, feature
support changes, and bugs.

4.3 Brainstorming Occurrences

In order to understand the status of brainstorming
usage at Microsoft’s Redmond campus, we sent
out a short survey to 100 randomly selected
software developers asking for their brainstorming
practices. We received 42 responses, a 42%
response rate. The results indicated that a majority
of the software teams have participated in
brainstorming meetings (95.2%). Our interviews
also revealed that most of the software developers
have received formal training on the brainstorming
process as described by Osborn (1953). The
software developers also noted that brainstorming
meetings served a very particular purpose and
were unique from other early-stage activities such
as design and storyboarding meetings.

As Table 1 shows, although brainstorming is
considered to be an early-stage activity that
typically occurs in the beginning of the software
development cycle, the activity actually takes place
across all software development stages.

77

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

Table 1: Brainstorming Occurrences across Different
Stages of Software Development

Planning 89.5%
Implementation 42.1%
Stabilization 36.8%
Future Planning 23.7%

In terms of frequency, over half of the developers
brainstorm on a weekly basis, and over three
quarters of the developers participate in
brainstorming meetings at least once a month
(Table 2).

Table 2: Frequency of the Brainstorming Meetings

Daily 21.1%
Weekly 34.2%
Monthly 21.1%
Yearly 10.5%
Every Milestone 23.7%
As Needed 13.2%

5. RESEARCH METHODS

5.1 Data Collection

Initial informal interviews and email exchanges
were used to build relationships with the software
teams and to understand the basic brainstorming
practices at Microsoft. Knowledge learned from the
informal discussions was used to identify groups
that are representative of the software development
process. We conducted an in-depth case study by
selecting one team from each of the software
development phases and observing each team
complete a brainstorming topic in its entirety over
time:

 Planning. PMs meet daily over a span of a
week to brainstorm about feature specs

 Implementation. SDEs meet biweekly over
a span of 8 weeks to brainstorm about an
architecture plan for a security update
platform.

 Stabilization. SDETs meet once per
milestone to brainstorm about possible
causes and solutions to software bugs and
strategies for supporting products on
different operating systems.

Overall, we observed about 20 hours of
brainstorming sessions. All meetings were video
and audio recorded. Informal follow-up interviews
were conducted to clarify intentions, job
specifications, and other technical details.

5.2 Data Analysis

Both quantitative and qualitative methods were
used in analyzing the collected data. All recorded
meetings were transcribed. The transcripts were
first coded using the grounded theory approach to
see if any general themes emerged from the
brainstorming conversations (Strauss & Corbin,
1998). We then compared the emerged categories
with existing literature in order to correlate and
cross-validate our findings. We found that the
Issues-Alternatives-Criteria coding scheme
developed by Olson et al. (1992) for analyzing
coordination in design meetings of software
development teams had many overlaps with our
meeting coordination categories, and that the
creative process stages described by Amabile
(1996) best described our task categories.
Therefore, we constructed a coding scheme based
on our analysis while borrowing the language used
in prior literature. The coded results were used to
compare brainstorming activities across different
software development stages. The coding scheme
is described below (Table 3).

Table 3: Frequency of the Brainstorming Meetings

Theme Coding
Category

Examples of
Activity

Task-focused

Identifying
Problem

Raising an issue,
Clarifying goals,
Discussing agenda
items

Gathering
Information Looking up specs

Generating
Idea

Proposing
alternatives

Evaluation
Criteria,
Constraints,
Limitations

Coordination-
focused

Logistics

Project
Management,
Meeting
Management

Recap and
Scenarios

Summary,
Walkthrough

Miscellaneous Digression,
Other

The coding scheme is separated into two major
categories: activities that are task focused and
activities that are geared toward group
coordination. Considerable theoretical work (e.g.,
Amabile, 1996; Stein, 1953) has suggested that the
creative process involves several stages, including:
(1) Identifying a problem/opportunity, (2) Gathering
information or resources, (3) Generating ideas, and
(4) Evaluating, modifying, and communicating
ideas. Therefore, the task-focused activities mimic
those different creative process stages:

78

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

 Identifying a problem/opportunity. This
includes agendas, goals, problems, and
action items that are the focus of the
brainstorming meeting.

 Gathering information or resources. This
includes looking for requirements and
background information that are essential in
understanding and resolving raised issues.

 Generating ideas. This includes proposing
solutions and alternatives.

 Evaluating, modifying, and communicating
ideas. This includes evaluating whether the
proposed idea is suitable for the issue at
hand.

The group coordination focused activities contain
the following categories:

 Logistics. This includes scheduling,
delegating tasks, keeping time, and other
activities not directly related to the
brainstorming topic.

 Recap and Scenarios. This includes
restating and summarizing the current
ideas, as well as scenario walkthroughs in
order to make sure all meeting participants
are on the same page

 Miscellaneous. This includes digressions,
jokes, and other activities that are not
relevant to the categories listed above.

In order to check for coding reliability, a 30-minute
session was coded by two researchers. We
achieved high degrees of reliability in our coding
(Cohen’s Kappa = 0.75). The agreed coding
scheme was then applied to the rest of the
brainstorming sessions. We describe the findings in
the sections below.

6. RESULTS AND DISCUSSIONS

6.1 Time Spent on Activities

The coded conversations are broken down into the
following categories listed in Table 4. Overall,
software teams spent the least amount of time
gathering information about the brainstorming topic.
This is due to the fact that most members of the
team are domain experts and specialists who
already have prior knowledge and experience in
dealing with the issues under investigation. In their
brainstorming meetings, time spent on gathering
information typically involved searching for existing
emails, agenda list, and feature specs. Those were
then projected onto the projector screen in the
conference room. However, the projected
information was only meant to be used as a
reference to guide the discussion. If a piece of
information was deemed to be important, it was
usually forwarded to other team members following
the meeting. Therefore, the conversation in the

brainstorming meeting tended to be fluid, and
software team members often responded to raised
issues without the need to look up additional
information.

The category that had the most disparity across the
software development phases was problem
identification. This was because of the nature of the
tasks that PMs, SDEs, and SDETs face at different
phases of the development process. In the
planning phase, PMs arrived at the meeting
knowing the topic of focus, thus they spent more
time on building scenarios and use cases when
they generated ideas. In the implementation phase,
SDEs broke down the features into multiple
problem spaces and attempted to tackle each
problem one after another by walking through the
necessary components in order to make sure that
the proposed architecture accommodated all
project requirements. In the stabilization phase,
SDETs went down a long list of bugs and support
issues and discussed potential solutions for them.

Accounting for over a third of the brainstorming
meetings, evaluation stood as the dominant
category of activities across all three phases of
software development. These preliminary findings
suggest that on top of the two primary decision-
making phases—idea generation and idea
selection—the brainstorming participants spent
over a third of their time on “constraint discovery”.
This was in clear violation of the brainstorming
rules that demand participants to postpone
evaluation until after the idea generation phase. In
fact, teams only spent about 12% to 20% of their
time generating ideas. Since the participants all
received formal training on the brainstorming
process, two questions remain to be addressed: (1)
what drove them to conduct brainstorming in this
fashion, and (2) why do they continue to call the
deviated idea generation process “brainstorming”?
We will address the first question in the remaining
sections of this proposal and delegate the second
question to future work.

Table 4: Time Spent in Meetings

Planning Implementation Stabilization
Identifying
Problem 1.8% 7.5% 14.8%

Gathering
Information 2.6% 4.4% 5.5%

Idea
Generation 14.5% 19.4% 12.3%

Evaluation 39.3% 29.7% 44.8%
Logistics 21.5% 11.9% 12.2%
Recap and
Scenarios 17.6% 20% 2.7%

Misc. 15% 7.1% 7.7%

79

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

6.2 Constraint Discovery

In our observations, software teams spent the
majority of their time seeking clarifications that
would more clearly define the problem space,
identify resource limitations, and discover
constraints that had not previously been discussed.
These constraints came in a variety of different
flavors. In order to understand the activities coded
under the evaluation category, we separated the
constraints into “functional constraints” and
“practical constraints” and discuss them in more
detail below.

6.2.1. Functional Constraints
The functional constraints included domain
expertise, past experience, and tacit knowledge
about the topic. When a question was raised in the
brainstorming meeting:

 A domain expert could shed light on the
capabilities or limitations of a certain
application platform.

 A developer who had prior experience
dealing with a specific API could provide
insight on the applicability of the API on the
current feature set.

 A program manager who had been
informed on a requirement modification
could update the group on last minute
changes.

Functional constraints are the bread-and-butter of a
successful brainstorming meeting. Without them,
there would be no way to shape the brainstorming
discussions.

6.2.2. Practical Constraints
The practical constraints are limiting constraints
that are associated with the lack of human
resources, funding, time, or stakeholder interests.
These factors are typically used to discount a
series of potential ideas that may be useful but is
not of primary concern to the group due to more
pressing issues.

6.3 Examples of Brainstorming Practices

6.3.1. Functional Constraint Example
(Implementation)
In this episode, a team of SDEs were trying to
decide whether a top-down or bottom-up way of
retrieving relevant system data objects was more
suitable for the problem. The two software
developers discussed about why the existing
process of combining both approaches was
applicable instead of going with solely a single
approach.

P1: Well, we know that there are two ways of
filling data up and usually we start with bottom-
up and then go top-down and that’s how it works

right now. So, we can stick to that. I don’t see a
problem with that process.

P2: Right. Another thing is that certain things,
you don’t have any choice. For certain things
you need to do bottom-up.

P1: Correct. Exactly. So…

P2: Otherwise you’re not going to be able to
create – no matter when you do it. So, even if
you – let’s say you create all this skeleton and
then you don’t have the information, you need to
come back here again, even if you say that I’m
doing top-down, you need to come back here,
populate this and then populate this here. It’s a
bottom-up again. So, certain things you don’t
have any choice.

P1 suggested keeping the same data fill up
process because he did not see any need for
changes. P2 further justified with a functional
constraint by walking through examples in which
both methods must be used in order to satisfy all
cases of data.

6.3.2. Functional Constraint Example (Stabilization)

Several SDETs were brainstorming about whether
they were able to support automated test cases on
different browser environments. An SDET, P3,
suggested utilizing the adapter infrastructure, but it
was deemed unfeasible for the Safari browser
because Apple does not provide adequate support
documentation for extension development on
Safari. Here, the domain experts who had
previously encountered similar issues, P4 and P5,
contributed by sharing development limitations
about the browser. The functional constraints were
necessary in keeping the ideas within the possible
ways of implementation as restricted by limitations
imposed by technology.

P3: Something we can do is an adapter and
develop [product name]. Because I think there’s
a couple of other [platform name] browsers and
we may be able to just get them all with one
solution.

P4: But I don’t think that we have a way to hook
up. We can’t automate that browser, so that’s a
problem. For [competing product name 1] and
[competing product name 2], we know how to
talk across processes. For this guy we don’t,
right?

P5: Right. [competing company name] doesn’t
do anything like that. They’re all [technology
name] and they don’t talk to anything about
technology. That’s where we’re at.

6.3.3. Practical Constraint Example (Planning)
Two PMs were discussing about the fidelity of the
prototype. P8 suggested creating a high visual
fidelity prototype in order to generate better

80

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

feedback, but it was shut down because of the
existing time pressure.

P6: And no visual.

P7: I would not do visuals at this point.

P6: Even though I feel like it’s a help {...} Usually
I even get more or better feedback on visuals.

P7: I agree. And we have to keep in mind what
this is here is to kind of get us a quick feedback
of which direction seems to be the most
plausible. We’re not necessarily trying to get
feedback that we’re going to directly incorporate
into the scenario itself. If we’re lucky we can, but
we have a tight deadline, and so it’s more about
validating direction than it is trying to glean new
insights.

P7 acknowledged that while a visual prototype was
a superior choice in generating more concrete
feedback, but an impending deadline, a practical
constraint, was keeping them at bay and was
forcing them to settle with a quicker and less time
consuming approach that would hopefully generate
enough feedback for their deliverables.

6.3.4. Practical Constraint Example (Stabilization)
A group of SDETs engaged in a discussion about
whether to remove test support to the feature of a
product. Accompanying the discussion, P11
mentioned the need to remove even more test
support on other features because there were not
enough resources to fulfill the existing
assignments. The practical constraint of not having
enough manpower to support all the proposed
features was the driving force for prioritization.

P8: So, we can remove our custom proxy now?

P9: Um-hum.

P10: It has been removed. With the [product
name] conversion. We tossed that out.

P11: So, one thing that – sorry, we’re jumping to
a different topic, but one thing I feel that we
need to think is, if we always do additive – things
that add, right? Like we were saying, we need
to do this, we need to provide that. We need to
add one more component. I think that one thing
we need to look into is, how do we trim down
what we have and support? Like, what – it’s
clear that – the resources that we have are
bounded.

7. SUMMARY OF EMPIRICAL RESULTS

As illustrated from the field data, brainstorming in
the context of software development is about
discovering constraints—drawing the proper
boundaries to ground the ideas. However, the high
dependency on using constraints to shape the idea
generation process contradicts with the

fundamental notion of brainstorming, which is to
reduce evaluation apprehension by postponing
idea evaluation until a later stage. The contradiction
between the prescribed brainstorming rules and
actual deployment in practice is particularly
challenging for brainstorming practitioners. One
developer commented that:

The most difficult part most of the time seems to
be keeping the discussion within the realm of
true brainstorming. As far as I understand, heavy
discussions of implementation, ramifications,
etc. of an idea fall outside the bounds. On our
team, at least, we tend to think of an idea, then
discuss its feasibility for a bit, then maybe come
up with another idea, then discuss for a bit. It
seems difficult to keep the idea generation the
focus.

This divide can be explained by more succinctly
examining the role of constraints in brainstorming
meetings. Due to the complex nature of software
development, most large-scale software projects
are faced with overly constrained problems. When
members of a software team meet in a
brainstorming meeting, each member brings a view
of non-overlapping constraints that the project must
satisfy. The primary purpose of the brainstorming
meeting in the context of software development at
Microsoft is essentially to identify all possible
constraints and to find the right balance to satisfy
the most important ones. When asked about his
brainstorming experience, one program manager
made the following remark:

Coming up with ideas is not hard, but being able
to discover the proper constraints that help
shape those ideas and implementing the most
beneficial ideas is the difficult part.

Although both are important from the business
operation perspective, functional and practical
constraints play different roles in shaping ideas.
Functional constraints are value-neutral constraints
that are necessary for bounding the idea within the
desirable context. On the other hand, practical
constraints such as time and resources that must
be met in order to ensure the survival of a business
hinder the creativity of the problem space and room
for trial and exploration. Therefore, the
brainstorming process could use a helpful
amendment that would require brainstorming
groups to state their functional constraints upfront
without having to worry about the practical
constraints. Furthermore, providing a
communication channel to negotiate criteria and
incentives in evaluating idea quality as a group in
the idea generation process could benefit the group
decision-making process as a whole.

Researchers on other creativity processes have
also started to analyze the role of constraints in
early-stage design meetings (Onarheim &

81

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

Wiltschnig, 2010; Stacey & Eckert, 2009), and our
findings contribute to the existing literature. Overall,
our findings provide the following contributions to a
relatively scarce body of brainstorming research in
the field:

 From the theory perspective, the study
generates empirical results that could
enhance the current idea generation model
by accounting for constraint discovery,
which is technically forbidden by formal
brainstorming rules.

 From the system perspective, the design
recommendations generated from the
findings could result in innovative
collaborative brainstorming systems. Rather
than simply allowing the participants to
input their ideas, systems should provide a
platform to scaffold the constraint discovery
process.

 From the experimental design perspective,
the findings could generate more
naturalistic tasks that incorporate constraint
components to better emulate real world
scenarios. The constructed tasks would
allow experimental research in the
laboratory setting to more accurately
measure and predict brainstorming’s
impact.

8. LIMITATIONS AND FUTURE WORKS

The results of this work identified two types of
constraints that occur in brainstorming meetings.
Functional constraints are requirements and criteria
that define the idea space, whereas practical
constraints are limitations that prioritize the
proposed solutions. However, there still remains a
significant amount of work to be done before these
preliminary findings can fully represent the general
brainstorming practices. The field study was
conducted at Microsoft, which is known to be
peculiar in many of its software practices
(Cusumano & Selby, 1998), and may not share the
same design methodologies, development
practices, and culture with other large software
companies, smaller start-ups, or open-source
communities.

Two eminent questions immediately follow the
results of our study. First, why do software teams
continue to call these meetings “brainstorming”
even if they choose not to follow the conventional
brainstorming rules? Is it simply a matter of
convenience? This could potentially be a deeper
issue, especially because the software teams that
we have observed were all familiar with the
conventional brainstorming rules. It is important to
unpack the meaning so we can more effectively
design for the purpose of brainstorming meetings
and better incorporate the findings into future

brainstorming models and systems. We plan to
develop a survey that could be used to validate the
empirical findings based on observations of the
software teams at Microsoft.
Second, can the brainstorming model generated
based on the software development practices at
Microsoft be generalized to other software
communities? We will survey other software
organizations in order to verify these findings on a
more general level.

9. ACKNOWLEDGEMENTS

This research was supported by the Microsoft
Corporation and the Donald Bren Foundation. The
authors are very grateful to the software teams that
participated in this study, especially given the
sensitive nature of early-stage ideation meetings.

10. REFERENCES

Amabile, T.M. (1996) Creativity In Context: Update
To The Social Psychology Of Creativity. Westview
Press.

Barki, H. and Pinsonneault, A. (2001) Small Group
Brainstorming and Idea Quality: Is Electronic
Brainstorming the Most Effective Approach? Small
Group Research 32, 2, 158-205.

Briggs, R.O., Reinig, B.A., and Shepherd, M.M.
(1997) Quality as a Function of Quantity in
Electronic Brainstorming. IEEE Comp. Society, 94.

Connolly, T., Jessup, L.M., and Valacich, J.S.
(1990) Effects of anonymity and evaluative tone on
idea generation in computer-mediated groups.
Manage. Sci. 36, 6, 689-703.

Cusumano, M.A. and Selby, R.W. (1998) Microsoft
Secrets: How the World’s Most Powerful Software
Company Creates Technology, Shapes Markets,
and Manages People. Free Press.

Delbecq, A.L., Ven, A.H.V.D., and Gustafson, D.H.
(1975) Group Techniques for Program Planning: A
Guide to Nominal Group and Delphi Processes.
Scott, Foresman, and Company.

Dennis, A.R. and Reinicke, B. (2004) Beta vs. VHS
and the Acceptance of Electronic Brainstorming
Technology. MIS Quarterly 28(1), 1-20.

Dennis, A., Valacich, J., and Nunamaker, J. (1990)
An experimental investigation of the effects of
group size in an electronic meeting environment.
Systems, Man and Cybernetics, IEEE Transactions
on 20, 5, 1049-1057.

Dennis, A.R. and Valacich, J.S. (1993) Computer
brainstorms: More heads are better than one.
Journal of Applied Psychology. Vol. 78(4) 78, 4,
531-537.

82

Brainstorming Under Constraints – Why Software Developers Brainstorm in Groups
Shih Venolia Olson

Diehl, M. and Stroebe, W. (1987) Productivity loss
in brainstorming groups: Toward the solution of a
riddle. Journal of Personality and Social
Psychology. Vol. 53(3) 53, 3, 497-509.

Dugosh, K.L. and Paulus, P.B. (2005) Cognitive
and social comparison processes in brainstorming.
Journal of Experimental Social Psychology 41, 3,
313-320.

Gallupe, R.B., Dennis, A.R., Cooper, W.H.,
Valacich, J.S., Bastianutti, L.M., and Nunamaker,
J.F. (1992) Electronic Brainstorming and Group
Size. The Academy of Management Journal 35, 2,
350-369.

Grossman, S.R. (1984) Brainstorming Updated.
Training & Development Journal 38, 2, 84.

Isaksen, S.G. (1998) A review of brainstorming
research: Six critical issues for inquiry. Creativity
Research Unit-Monograph 302.

Koberg, D. and Bagnall, J. (1974) The Universal
Traveler: a Soft-systems Guide: To Creativity,
Problem-solving, and the Process of Design. W.
Kaufmann.

Mullen, B., Johnson, C., and Salas, E. (1991)
Productivity Loss in Brainstorming Groups: A Meta-
Analytic Integration. Basic and Applied Social
Psychology 12, 1, 3.

Nuseibeh, B. and Easterbrook, S. (2000)
Requirements engineering: a roadmap.
Proceedings of the Conference on The Future of
Software Engineering, ACM, 35–46.

Olson, G.M., Olson, J.S., Carter, M.R., and
Storrøsten, M. (1992) Small group design
meetings: an analysis of collaboration. Human-
Computer Interaction 7, 4, 347-374.

Onarheim, B. and Wiltschnig, S. Opening and
constraining: constraints and their role in creative
processes. Proceedings of the 1st DESIRE
Network Conference on Creativity and Innovation in
Design, Desire Network (2010), 83–89.

Osborn, A.F. (1953) Applied Imagination. Charles
Scribner's Sons.

Paetsch, F., Eberlein, A., and Maurer, F. (2003)
Requirements engineering and agile software
development. Proceedings of Twelfth IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 308-
313.

Pinsonneault, A., Barki, H., Gallupe, R.B., and
Hoppen, N. (1999) Electronic Brainstorming: The
Illusion of Productivity. Information Systems
Research 10, 2, 110-133.

Rietzschel, E.F., Nijstad, B.A., and Stroebe, W.
(2006) Productivity is not enough: A comparison of
interactive and nominal brainstorming groups on
idea generation and selection. Journal of
Experimental Social Psychology 42, 2, 244-251.

Robinson, J.A. (2004) Software design for
engineers and scientists. Elsevier.

Shepherd, M.M., Briggs, R.O., Reinig, B.A., Yen,
J., and Nunamaker, J. (1995) Invoking Social
Comparison to Improve Electronic Brainstorming:
Beyond Anonymity. Journal of Management
Information Systems 12, 3, 155-170.

Sosik, J.J. (1997) Effects of Transformational
Leadership and Anonymity on Idea Generation in
Computer-Mediated Groups. Group Organization
Management 22, 4, 460-487.

Stacey, M.K. and Eckert, C.M. (2009) Reshaping
the Box: Creative designing as constraint
management. International Journal of Product
Development.

Stein, M.I. Creativity and Culture. (1953) The
Journal of Psychology: Interdisciplinary and Applied
36, 2, 311.

Strauss, A.C. and Corbin, J. (1998) Basics of
Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage
Publications, Inc, Thousand Oaks, CA, USA.

Stroebe, W., Diehl, M., and Abakoumkin, G. (1992)
The Illusion of Group Effectivity. Pers Soc Psychol
Bull 18, 5, 643-650.

Sutton, R.I. and Hargadon, A. (1996) Brainstorming
Groups in Context: Effectiveness in a Product
Design Firm. Administrative Science Quarterly 41,
4, 685-718.

Valacich, J.S., Mennecke, B., Wachter, R., and
Wheeler, B. (1993) Computer-mediated idea
generation: the effects of group size and group
heterogeneity. Proceeding of the Twenty-Sixth
Hawaii International Conference on System
Sciences, 152-160 vol.4.

Valacich, J.S., George, J.F., Nunamaker, J.F., and
Vogel, D.R. (1994) Physical Proximity Effects on
Computer-Mediated Group Idea Generation. Small
Group Research 25, 1, 83-104.

Wu, J., Graham, T., and Smith, P. W. (2003) A
Study of Collaboration in Software Design. In
Proceedings of the 2003 International
Symposium on Empirical Software
Engineering, 304-313.

83

