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ABSTRACT
A reduced-order model for the two-dimensional flow over a

stationary circular cylinder is examined. The lift is modeled with
the van der Pol equation with three parameters; it models self-
excited self-limiting systems. The drag is modeled as the sum of
a mean term and a time-varying term proportional to the product
of the lift and its time derivative. The transient and steady-state
flows are calculated using a CFD code based on the unsteady
Reynolds-averaged Navier-Stokes equations. The steady-state
lift and drag CFD results are used to identify the three parame-
ters in the lift model using a combination of higher-order spectral
techniques and perturbation methods. The model is validated us-
ing steady-state numerical simulations for three cases describing
low, moderate, and high Reynolds number flows. Then, the model
is shown to reproduce the transient lift and drag calculated with
the CFD code.

INTRODUCTION
The flow around a circular cylinder has been the subject of

intense research mostly by experiments [1–4] and also by us-
ing numerical simulations [5–8]. In addition to being a build-
ing block in the understanding of the flow over bluff bodies, it
has many applications in several engineering branches. Vortex-
induced vibration (VIV) of structures is of practical interest in
many engineering problems and the prediction of VIV has re-
ress all correspondence to this author. 1
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ceived a wide interest by experimental, analytical, and numerical
researchers [9–11]. Experimental studies of such structures are
quite costly and often not feasible. Modeling of VIV of circular
cylinders is of particular interest in offshore oil production riser
systems. These vibrations involve complicated nonlinear inter-
actions between the cylinder motions and the fluid forces, the lift
and drag forces. The cylinder motion and fluid forces can af-
fect each other and may lead to resonance. An ultimate solution
for this problem would be a time-domain numerical simulation
of the fluid flow and the cylinder response, including elastic ef-
fects. In this solution, the fluid and the cylinder would be treated
as a single dynamical system and all of the governing equations
would be solved simultaneously and interactively in the time do-
main. Obviously, this is a formidable task, especially when con-
sidering the fact that the Reynolds numbers (Re) associated with
full-scale flows in oil production riser systems are quite large.
Alternatively, one could construct a simple model that takes into
consideration all of the physical aspects, and yet is capable of
predicting the VIV.

A well-known model for the lift force acting on a circular
cylinder in a uniform flow field is the lift wake oscillator pro-
posed by Hartlen and Currie [12]. In this model, the lift is repre-
sented by the Rayleigh equation. Currie and Turnbull [13] pro-
posed a similar model for the fluctuations of the drag coefficient.
Iwan and Blevins [14] also used the Rayleigh equation to model
the fluctuating lift, but assumed that the force coupling the struc-
ture and fluid depends only on the relative velocity and acceler-
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ation of the flow. Skop and Griffin [15] introduced a modified
van der Pol lift model that includes an additional term, which is
cubic in the lift. Skop and Balasubramanian [16] used the van
der Pol equation with a parametric nonlinear coupling forcing,
whose form is constructed based on the experimental synchro-
nization results of Williamson and Roshko [4]. Skop and Bal-
asubramanian [17] also extended their model to the problem of
shear flows by adding an axial diffusion term. Billah and Ah-
mad [18] also considered the VIV problem of a cylinder under a
parametric excitation.

To investigate vortex-induced vibrations of flexible cylindri-
cal structures, Skop and Balasubramanian [19] assumed that the
fluctuating lift is comprised of two parts. They modeled one part
with the van der Pol equation and the second by a “stall” term
proportional to the cylinder velocity. Kim and Perkins [20] mod-
eled the lift and drag by two nonlinearly coupled van der Pol
equations in their study of resonant responses of suspended elas-
tic cables. The coupling terms were introduced based on the fact
that the main frequency of the drag component is twice the main
frequency of the lift component.

Most of the aforementioned analytical works are based on
modeling the lift by either the Rayleigh or the van der Pol
oscillator. Nayfeh et al. [21] numerically simulated the two-
dimensional flow past a stationary cylinder for a wide range of
Reynolds numbers. By integrating the pressure, they calculated
the lift and drag. They employed higher-order spectral analy-
sis to determine the phase relations among the different spectral
components of the lift. Then, they compared the CFD obtained
phase information with those obtained from closed-form approx-
imate solutions of the van der Pol and Rayleigh oscillators. They
concluded that the van der Pol oscillator is the more accurate rep-
resentation of the lift. They also proposed to model the drag as
the sum of a mean term and a time-varying term proportional to
the product of the lift and its time derivative.

In all of the previous models, the emphasis is on reproducing
the steady-state lift and drag. However, to investigate the fluid-
structure interaction more thoroughlyrequires modeling the tran-
sient as well as the steady-state lift and drag. In the current study,
we extend the work of Nayfeh et al. [21] by investigating the va-
lidity of their model in the transient region. In other words, is the
model identified based on the steady-state lift and drag capable
of reproducing the transient lift and drag obtained with the CFD
code? We examine this question for three cases representing low,
moderate, and high Reynolds number flows. Furthermore, by ex-
tending the perturbation analysis to second order, we show that
the frequency in the van der Pol equation is not exactly equal to
the shedding frequency, but that there exists a slight shift between
them.
2
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NUMERICAL SIMULATION

Direct numerical simulation (DNS) of flows with engineer-
ing relevance remains a challenging task even with current ad-
vances in hardware and software capabilities. Hence, some type
of modeling or approximation is introduced to simplify the flow
computations and make them feasible on existing computer plat-
forms. Usually, the approximation is introduced in the represen-
tation of the turbulent scales in the form of a turbulence model,
which significantly reduces the spatial and temporal resolution
requirements. An alternative to DNS is the large-eddy simulation
(LES) approach, which resolves the energy-containing turbulent
scales while modeling the subgrid scales (SGS). LES provides
information about a wide range of spatial and temporal scales in
the flow at a cost that is significantly lower than DNS. However,
LES computations of high Reynolds number flows with com-
plex geometries remain a formidable task. In the conventional
Reynolds-averaged Navier Stokes (RANS) modeling, which is
used extensively in the engineering community, the model repre-
sents the effect of all of the turbulent fluctuations. Such a model-
ing approach with its variants is much cheaper in terms of com-
putation cost than DNS and LES, yet it is an accurate, efficient
analysis tool.

The unsteady RANS equations are solved numerically us-
ing the artificial compressibility method. This method couples
the continuity and momentum equations by adding an artificial
time derivative of the pressure term to the continuity equation.
Without this term, there is no coupling between the pressure and
the velocity and convergence can be remarkably slow. For tur-
bulent closure, the Spalart-Allamras (SA) method [22] is used
to model the turbulent fluctuations. The equations are solved
on a non-uniform structured grid using a second-order finite-
difference scheme. The convective terms are discretized using a
second-order upwinding difference scheme. The physical time
terms, which represent flow unsteadiness, are switched to the
right-hand side and used as source terms; they are discretized
using a second-order three-point backward-difference formula.
Different boundary conditions are used in the simulations, in-
cluding inflow, outflow, and no-slip. All of the boundary condi-
tions are treated implicitly in the code to reduce the restriction on
the time step and to increase its stability. At the inflow bound-
ary, the velocity components are specified, while the pressure
is extrapolated from the interior points. At the outflow bound-
ary, the pressure is specified, whereas the velocity components
are extrapolated from the computational domain. In addition,
similar boundary conditions are set for the turbulence quantities.
The numerical solution provides the pressure distribution over
the surface, which is integrated to determine the lift and drag
forces over the cylinder. These fluid forces are the input to our
reduced-order model.
Copyright c© 2005 by ASME
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SUGGESTED LIFT MODEL
In a previous work, Nayfeh et al. [21] investigated two wake-

oscillator models for modeling the lift force, namely, the van der
Pol and Rayleigh oscillators. By examining the steady-state lift
data they obtained from the numerical simulation, they found out
that the lift force is always composed of the odd components of
the shedding frequency fs, such as fs and 3 fs. This is illustrated
in Fig. 1, where we present the time histories and spectra of the
lift and drag coefficients for a flow at Re = 10,000. In addition
to the component with amplitude a1 at the shedding frequency
fs, the lift spectrum clearly shows a non-negligible contribution
with amplitude a3 at the harmonic 3 fs.

In addition, using higher-order spectral moments analysis,
Nayfeh et al. [21] found that the phase angle between the lift
components 3 fs and fs is approximately 90◦ (or π/2 rad), which
means that only the van der Pol oscillator can be used to represent
the lift. So, the van der Pol model was deemed to be an efficient
but simple tool to model the lift in the steady-state regime.

Here, we show that this capability extends to the transient
part of the lift. The van der Pol equation in terms of the lift
coefficient CL(t) is

C̈L +ω2CL = µĊL−αC2
LĊL (1)

where ω is related (but not equal) to the angular shedding fre-
quency ωs = 2π fs and µ and α represent the linear and nonlinear
damping coefficients, respectively. The values of µ and α are
positive, so that the linear damping is negative and the nonlin-
ear damping is positive. As a result, small disturbances grow
and large ones decay, both eventually approaching a stable limit
cycle. These parameters change with the Reynolds number Re.

Analytical Solution of the van der Pol Equation
We consider the problem when the damping and nonlinearity

are weak; that is, we take µ = O(ε) and α = O(ε) in Eqn. (1)
where ε � 1 is a bookkeeping parameter. We use the method of
multiple scales [23,24] to determine a second-order approximate
solution in ε for the lift coefficient. To this end, we transform
Eqn. (1) into a complex-valued first-order equation using the
transformation

CL(t) = ζ(t)+ ζ̄(t) (2)

subject to the constraint

dCL(t)
dt

= iω[ζ(t)− ζ̄(t)] (3)
3
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Figure 1. Time histories and spectra of the (a) lift and (b) drag coeffi-

cients as obtained from the CFD simulation at Re = 10,000.

Solving Eqns. (2) and (3) for ζ and ζ̄ yields

ζ(t) =
1
2

(
CL−

i
ω

dCL

dt

)
and ζ̄(t) =

1
2

(
CL +

i
ω

dCL

dt

)
(4)
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Then, differentiating the first of Eqns. (4) and using Eqns. (1)-
(3), we obtain the following first-order complex-valued equation:

ζ̇ = iωζ+ ε
1
2

µ(ζ− ζ̄)− ε
1
2

α
(
ζ3 +ζ2ζ̄−ζζ̄2− ζ̄3) (5)

Next, we introduce the fast, slow, and slower time scales
T0 = t , T1 = εt , and T2 = ε2t , respectively, and expand ζ in the
form

ζ =
2

∑
j=0

ε jζ j(T0,T1,T2)+O(ε3) (6)

In terms of these time scales, the time derivative becomes d/dt =
D0 +εD1 +ε2D2 + · · · , where D j = ∂/∂Tj. Substituting Eqn. (6)
and its complex conjugate into Eqn. (5) and separating coeffi-
cients of like powers of ε, we obtain

O(ε) : D0ζ0 − iωζ0 = 0 (7)

O(ε2) : D0ζ1 − iωζ1 = −D1ζ0 +
1
2

µ(ζ0 − ζ̄0)

− 1
2

α
(
ζ3

0 +ζ2
0ζ̄0−ζ0ζ̄2

0 − ζ̄3
0

)
(8)

O(ε3) : D0ζ2 − iωζ2 = −D2ζ0 −D1ζ1 +
1
2

µ(ζ1− ζ̄1)

− 3
2

α
(
ζ2

0ζ1 − ζ̄2
0ζ̄1

)
+

1
2

α
(
ζ̄2

0ζ1 −ζ2
0ζ̄1

)

−α
(
ζ0ζ̄0ζ1 −ζ0ζ̄0ζ̄1

)
(9)

The solution of Eqn. (7) is

ζ0(T0,T1,T2) = A(T1,T2)eiωT0 (10)

Substituting Eqn. (10) into Eqn. (8) yields

D0ζ1− iωζ1 =
(

µ
2

A− α
2

A2Ā− ∂A
∂T1

)
eiωT0 − α

2
A3e3iωT0

−
(µ

2
Ā− α

2
AĀ2

)
e−iωT0 +

α
2

Ā3e−3iωT0 (11)

Eliminating the terms that lead to secular terms (i.e., the terms
proportional to eiωT0) from Eqn. (11) yields the solvability con-
dition

∂A
∂T1

=
1
2

µA− 1
2

αA2Ā (12)
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Then, the solution of Eqn. (11) becomes

ζ1(T0,T1,T2) = − i
4ω

(
µĀ−αAĀ2)e−iωT0 +

iα
4ω

A3e3iωT0

+
iα
8ω

Ā3e−3iωT0 (13)

Substituting for ζ0 and ζ1 in Eqn. (9) and eliminating the secular
terms leads to the second solvability condition

∂A
∂T2

= −
i

16ω
(
2µ2A−12αµA2Ā+11α2A3Ā2) (14)

To obtain the final solution, we substitute Eqns. (10) and
(13) into Eqn. (6) and obtain

ζ(T0,T1,T2) = AeiωT0 + ε
i

4ω

[(
αAĀ2 −µĀ

)
e−iωT0 +αA3e3iωT0

+
1
2

αĀ3e−3iωT0

]
+O(ε2) (15)

Then, we substitute Eqn. (15) into Eqn. (2), replace the Tn with
εnt , and obtain

CL(t) = Aeiωt + Āe−iωt − ε
i

4ω

[(
αA2Ā−µA

)
eiωt

−
(
αAĀ2 −µĀ

)
e−iωt − α

2

(
A3e3iωt − Ā3e−3iωt

)]

+O(ε2) (16)

Furthermore, it follows from Ȧ(t) = εD1A + ε2D2A + · · · and
Eqns. (12) and (14) that the reconstituted solvability condition
is

dA
dt

=
1
2

ε
(
µA−αA2Ā

)
− ε2 i

16ω
(
2µ2A−12αµA2Ā

+11α2A3Ā2)+O(ε3) (17)

Introducing the polar transformation A(t) = 1
2 a(t)eiγ(t) into

Eqn. (16) and setting ε = 1, without any loss of generality, we
arrive at the following approximate expression for the lift coeffi-
cient:

CL(t) = a(t)cos[ωt + γ(t)]

− 1
4ω

{[
µa(t)− 1

4
αa(t)3

]
sin[ωt + γ(t)]

+
1
8

αa(t)3 sin[3ωt +3γ(t)]
}

+ · · · (18)
4 Copyright c© 2005 by ASME
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Equation (18) may further be reduced to the following:

CL(t) = a(t)

√
1+

1
16ω2

[
µ− 1

4
αa(t)2

]2

sin[ωt + γ(t)+η(t)]

− α
32ω

a(t)3 sin[3ωt +3γ(t)]+ · · ·

≡ a1(t) sin[ωt + γ(t)+η(t)]−a3(t) sin[3ωt +3γ(t)]+ · · ·
(19)

where η(t) = tan−1
[

16ω
αa(t)2−4µ

]
. Introducing the polar transfor-

mation into Eqn. (17) and setting ε = 1 yields the modulation
equations

da
dt

=
1
8
(4µa−αa3) (20)

dγ
dt

= − 1
8ω

(
µ2 − 3

2
αµa2 +

11
32

α2a4
)

(21)

Setting ȧ = 0 in Eqn. (20), we obtain a(4µ−αa2) = 0, which
gives the steady-state value of a to be either the trivial solution
a = 0 or a = 2

√
µ/α. For the nontrivial solution, the amplitude

a1 reduces to a and the phase angle η = π/2. Hence, it follows
from Eqn. (19) that

a1 = 2

√
µ
α

and a3 =
µ

4ω

√
µ
α

(22)

Moreover, it follows from Eqn. (21) that the steady-state expres-
sion for γ̇ is −µ2/16. Consequently, the shedding frequency is
given by

ωs = ω+ γ̇ = ω− µ2

16ω
(23)

Equation (23) shows that the van der Pol oscillator frequency ω
is not the same as the angular shedding frequency ωs, as pre-
dicted by the first-order expansion [21]. Consequently, an im-
proved second-order approximate expression for the steady-state
lift coefficient is

CL(t) ≈ a1 cos(ωst)+a3 cos(3ωst + π
2 ) (24)

Identification of the van der Pol Parameters
We use the CFD solver and the analytical solution of the van

der Pol equation to estimate the parameters in the latter equation
as follows. For a given Reynolds number, we first run the CFD
5
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solver to calculate the time history of the lift coefficient. Second,
we perform spectral analysis of the steady-state part of this time
history and determine a1, a3, and fs (or ωs). In Fig. 1a, we show
the time history of the lift coefficient for Re = 10,000 and its
spectrum. Also, in Fig. 2, we show the steady-state time histories
of the lift coefficients for Re = 200, 10,000, and 100,000; and
in Tab. 1, we list the parameters a1, a3, fs, and ωs obtained from
their spectra. Third, using these values, we solve Eqns. (22) and
(23) for the nonlinear and linear damping coefficients α and µ
and the frequency ω. These results are also listed in Tab. 1 for
three Reynolds numbers.

Table 1. Lift parameters at different Reynolds numbers.

Re = 200 Re = 10,000 Re = 100,000

fs 0.19259 0.23898 0.25471
a1 0.61470 1.79180 1.05304
a3 0.00396 0.05816 0.02040
ωs 1.21008 1.50156 1.60039
α 0.66030 0.48784 0.89603
µ 0.06237 0.39156 0.24840
ω 1.21028 1.50791 1.60280

Having identified all of the parameters in the van der Pol
equation, we integrate it using a Runge-Kutta routine for the lift
coefficient CL. In Fig. 2, we compare the time history of the
steady-state lift obtained with the CFD simulation with that ob-
tained by integrating Eqn. (1) for three Reynolds numbers. We
note that the steady-state solution of the van der Pol equation is
independent of the initial conditions. It is clear that the van der
Pol oscillator accurately models the CFD results for low, moder-
ate, and high Reynolds number flows.

Transient Lift
Next, we check whether the van der Pol oscillator identified

using the steady-state lift can also model the transient lift. This
serves two purposes. The first is that it gives confidence that
we are modeling the physics correctly. The second is that we
are capable of simulating the transient as well as the steady-state
problem.

To compare the transient lift predictions of the above iden-
tified van der Pol equation with the transient lift obtained with
the CFD solver, we use the values of α, µ, and ω obtained from
the steady-state lift CFD data and integrate it using initial condi-
tionsCL(t0) and ĊL(t0) corresponding to those of the transient lift
coefficient at some time t0. Because the CFD results only yield
the values of CL, the initial values of ĊL are approximated by in-
terpolating between two points around t0 where the slope is not
changing rapidly, so that any inaccuracy is minimal. In Figs. 3-5,
Copyright c© 2005 by ASME
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Figure 2. Comparisons between the simulated and modeled steady-

state lift coefficients.

we present the transient results for the lift coefficient obtained
from the CFD code for Re = 200, 10,000, and 100,000, respec-
6
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tively. We also present the transient solutions obtained from the
van der Pol model when initiated at four different initial times.

For the case Re = 200, we simulate the transient lift using
the initial starting times t0 = 34, 39, 45, and 50. We see from
Fig. 3 that, the larger the starting time is, the more accurate is the
model in simulating the CFD results. For example, when t0 = 34,
the van der Pol oscillator underestimates the amplitude of the lift
markedly; also, there is a phase shift between its prediction and
the CFD lift. These differences, however, diminish as the starting
time t0 is increased, as shown in the results for t0 = 50, which are
in excellent agreement with the CFD results.

For the case Re = 10,000, we show in Fig. 4 the predicted
transient lift using the initial starting times t0 = 12, 14, 16, and
18. And for the case Re = 100,000, we show in Fig. 5 the pre-
dicted transient lift using the initial starting times t0 = 10, 12,
14, and 16. It follows from Figs. 4 and 5 that the discrepancy
in modeling the lift amplitude for moderate and high Reynolds
number flows is resolved. However, there is still a phase differ-
ence between the two results, which again is minimized by using
larger starting times.

One possible explanation for these deviations is the fact that
the CFD results contain two types of transients: those arising
physicallyand those arising from numerical analysis effects (e.g.,
impulsive initial conditions). It seems that the rate of decay of the
latter depends on the Reynolds number. We note from Figs. 3-
5 that the larger the Reynolds number is, the faster is the rate
of convergence to the physical solution. For Re = 200, it follows
from Fig. 3 that the transients due to numerical effects in the CFD
simulation might propagate for some time after the initial condi-
tions and might take up to 50 time units to decay completely. On
the other hand, for Re = 10,000 and Re = 100,000, it follows
from Figs. 4 and 5 that the transients due to numerical effects de-
cay much faster, possibly lasting for about 18 and 16 time units,
respectively.

Clearly, the agreement between the van der Pol and CFD
results is excellent once the transients arising from numerical ef-
fects have died out. Therefore, the van der Pol oscillator can
model both of the steady-state and transient lifts on a cylinder in
a uniform flow.

SUGGESTED DRAG MODEL
Currie and Turnball [13] proposed a model for the drag simi-

lar to the lift-wake oscillator proposed by Hartlen and Currie [12]
who represented the lift by the Rayleigh equation. To study reso-
nant responses of suspended elastic cables, Kim and Perkins [20]
modeled the lift by a van der Pol equation with frequency fs

and the drag with another van der Pol equation with frequency
2 fs and coupled the two equations nonlinearly. These couplings
were introduced based on the fact that the main frequency of the
drag component is twice the main frequency of the lift compo-
nent. Qin [25] proposed a drag model that has a linear term and
Copyright c© 2005 by ASME
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Figure 3. Simulated and modeled transient lift coefficients for different

starting times for Re = 200.

a quadratic term in the lift.
Because the drag and lift are the result of the pressure dis-

tribution on the surface of the cylinder, it is feasible to relate the
drag to the lift directly. The drag consists of two components:
the first is a mean component independent of the lift and the sec-
ond is a periodic component related to the unsteady periodic lift.
The fact that the major component in the spectrum of the drag
coefficient is at twice the shedding frequency, as illustrated in
Fig. 1b, suggests that the drag is a quadratic function of the lift;
that is, the drag is proportional to either C2

L, Ċ2
L, or CLĊL. Of

these three forms, the correct form must yield the right phase re-
7
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Figure 4. Simulated and modeled transient lift coefficients for different

starting times for Re = 10,000.

lation between the drag and the lift. As shown in Hajj et. al. [26],
this phase can be measured as the phase of the cross bispectrum
between 2 fs in the drag and fs in the lift.

Based on the analysis of the CFD solutions, Nayfeh et al.
[21] found that the phase relation between the periodic drag com-
ponent and the lift to be near 270◦ (or 3π/2 rad) in all records.
From that, they concluded that the periodic component of the
drag must be proportional to −CLĊL. Consequently, the drag co-
efficient CD(t) is modeled as

CD(t) = C̄D −2
a2

ωsa2
1

CL(t)ĊL(t) (25)
Copyright c© 2005 by ASME
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Figure 5. Simulated and modeled transient lift coefficients for different

starting times for Re = 100,000.

where C̄D is the mean component of drag, which is constant for
steady-state behavior but time-dependent for transient behavior,
and a2 is the amplitude of the drag component at 2 fs. The value
of C̄D is determined from the CFD steady-state time history of
the drag and the value of a2 is determined its spectral analysis.
In Tab. 2, we present their values for the three Reynolds numbers
Re = 200, 10,000, and 100,000.

Steady-State Drag
The van der Pol equation for the lift coefficient is first inte-

grated to evaluate the steady-state CL(t) and ĊL(t). Then, Eqn.
8
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Table 2. Drag model parameters at different Reynolds numbers.

Re = 200 Re = 10,000 Re = 100,000

a2 0.0369 0.1291 0.0623
C̄D 1.18 1.62 0.85

(25) is used to evaluate the drag coefficient CD(t). In Fig. 6,
we compare the results obtained from the model with the CFD
results for the three Reynolds numbers Re = 200, 10,000, and
100,000. It follows from Fig. 6a for Re = 200 that there is excel-
lent agreement between the two solutions. Moreover, it follows
from Figs. 6b and 6c for Re = 10,000 and Re = 100,000 that
the agreement is good. The small deviation appears to be more
amplified at Re = 10,000 and could be attributed to the fact that
the CFD results (both the spectrum in Fig. 1b and time history
in Fig. 6b) show the drag coefficient to be modulated. This as-
pect of the drag does not seem to be completely modeled by Eqn.
(25).

Transient Drag
As with the proposed lift model, we also examine the capa-

bility of drag model to predict the transient drag with the param-
eter values in Tabs. 1 and 2 obtained using the steady-state lift
and drag. We first integrate the van der Pol equation for the lift
coefficient with initial conditions CL(t0) and ĊL(t0) in the tran-
sient regions. Then, we use the outcome in Eqn. (25) to calcu-
late the drag coefficient. However, because the mean drag C̄D is
time-dependent in the transient region, modeling it as a constant
following the steady-state results brings about a mismatch with
the CFD solution. To avoid this, we extracted the transient pro-
file of the mean drag from the CFD simulation as a function to
replace the constant value of C̄D in Eqn. (25). Hence, both of the
analytical and CFD solutions exhibit the same trend when plotted
together. In other words, Eqn. (25) with C̄D being constant fully
models the steady-state drag, models the fluctuating part of the
transient drag, but does not model the mean part of the transient
drag.

In Figs. 7-9, we present results from the CFD code and the
drag model for the three Reynolds numbers Re = 200, 10,000,
and 100,000. Again, we find that, in general, the accuracy of the
proposed model improves for later starting times. For the low
Reynolds number flow in Fig. 7, we find that the proposed model
underestimates the amplitude of CD when starting at t0 = 40, but
it does an excellent job when starting at t0 ≥ 60, which is still in
the transient region. For the moderate and high Reynolds number
flows in Figs. 8 and Figs. 9, respectively, we find that the model
does an excellent job in predicting the amplitude of CD; however,
there exists a small phase difference between the two solutions.

This conclusion is similar to the conclusion for the transient
lift. This is expected because the drag model is based on the
Copyright c© 2005 by ASME
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Figure 6. Comparisons between the simulated and modeled steady-

state drag coefficients.

lift model. We recall that transients due to numerical effects in
the modeled lift at Re = 200 decay after 50 time units, whereas
9
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they decay after 18 and 16 time units for Re = 10,000 and Re
= 100,000, respectively. Therefore, the agreement between the
drag model and the CFD results is excellent once the transients
arising from the numerical effects have died out.
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Figure 7. Simulated and modeled transient drag coefficients for different

starting times for Re = 200.

CONCLUSIONS
Lift and drag coefficients for the two-dimensional flow over

a stationary circular cylinder were modeled. The model accounts
for the coupling between these coefficients and covers the steady-
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: http://www.asme.org/about-asme/terms-of-use



Dow
10 15 20 25 30 35 40
0.8

1

1.2

1.4

1.6

1.8
t
o
=12

Time

C
D

Drag mode
CFD

10 15 20 25 30 35 40
0.8

1

1.2

1.4

1.6

1.8
t
o
=16

Time

C
D

10 15 20 25 30 35 40
0.8

1

1.2

1.4

1.6

1.8
t
o
=24

Time

C
D

10 15 20 25 30 35 40
0.8

1

1.2

1.4

1.6

1.8 t
o
=28

Time

C
D

Figure 8. Simulated and modeled transient part of the drag coefficients

for different starting times for Re = 10,000.

state and transient behaviors. This simple but efficient model is
based on representing the lift coefficient by the van der Pol equa-
tion. Furthermore, the drag coefficient is represented by a mean
drag term and a nonlinear term proportional to the lift coefficient
times its time derivative. The parameters for this model were ob-
tained by matching a second-order approximate solution of the
van der Pol equation with the CFD steady-state lift. The latter
was obtained by numerically integrating the unsteady Reynolds-
averaged Navier-Stokes equations (RANS). The numerical sim-
ulations utilize the artificial compressibility concept by intro-
ducing an artificial pressure unsteadiness term in the continuity
equation.
10
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Figure 9. Simulated and modeled transient part of the drag coefficients

for different starting times for Re = 100,000.

Numerical simulations were carried out for several Reynolds
numbers, representing a wide range of flows. Here, we present
results and comparisons for the three Reynolds numbers: Re
= 200, Re = 10,000, and Re = 100,000. For the steady-state
lift and drag coefficients, we found that the model does an ex-
cellent job in matching the CFD results. As for the transient lift
and drag coefficients, we found that the accuracy of the model
depends on the starting point at which the initial conditions are
taken. The closer the starting point is to the steady-state part, the
more accurate is the prediction of the model. In summary, the
model can be used reliably to predict the steady-state as well as
the transient lift and drag coefficients.
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