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Abstract: The conventional analysis of surface plasmon modes on
dielectric–metal interfaces requires clearly defining the permittivity dis-
continuity at the interface. A pivotal assumption of such an analysis is
that the formation of the dielectric-metal interface does not change the
material properties and the materials forming the interface have identical
permittivities before and after the formation of the interface. However, this
assumption breaks down if an interface is made between a metal and a semi-
conductor which is commonly known as a Schottky junction. Under certain
conditions, such an interface can sustain a surface plasmon polariton (SPP)
mode. It is also possible to change the properties of the media surrounding
the Schottky junction interface by applying an external potential difference
across the junction. Central to the understanding of the SPP mode behaviour
in such a complex morphological interface is the dispersion relation which
defines the feasible SPP modes and their characteristics. Here, we carry
out a detailed analysis to derive an analytical expression for the dispersion
relation for a Schottky junction. Our analysis takes into account the space
charge layer formed due to the charge distribution across the Schottky
junction and resulting new boundary conditions.
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1. Introduction

Surface plasmon polartions (SPPs) are hybrid transverse magnetic optical waves that are
bounded and propagate along metal–dielectric interfaces and oscillate collectively with free
electrons in the metal [1]. The ability of metal–dielectric interfaces and metal nano structures
to localize and manipulate SPP modes at nano scale have opened up intensive research av-
enues in areas such as photonics and integrated optics, biomedical imaging, molecular sensing
and spectroscopy [2–4]. The new capabilities of SPP are being explored using various struc-
tures ranging from simple metal–dielectric interfaces to complex nano structures consisting
of semiconductor-dielectric interfaces, enabling inter-operability and integration with existing
semiconductor technology. The enhanced performance of plasmonic structures are achieved by
modifying a simple metal–dielectric interface into multi layered structures or by modifying the
metal geometry itself, which include metal grooves, ridges or changing the properties of the
medium [5–8].

SPP has been widely studied for many decades to understand the physics behind the phe-
nomena and to extend the knowledge towards device applications. But it was only recently
the interest grew towards gain assisted SPP amplification to overcome high propagation losses
experienced in plasmonic structures [9–13]. Among plethora of technologies available for pro-
viding gain for SPPs, one promising approach is the replacement of passive dielectric material
by a semiconductor and use electrical pumping to achieve gain [11]. So, there is great need to
have a clear understanding of the behaviour of SPPs on semiconductor– metal junctions. Even
though there are a large number of papers analysing the SPP behaviour on metal–dielectric
interfaces [1, 4], the associated results cannot be directly ported to semiconductor–metal inter-
faces. This is mainly due the reason that the conventional analysis of surface plasmon modes
on metal–dielectric interfaces rely on knowing the exact value of permittivity at either side of
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the interface [1]. A pivotal assumption of such an analysis is that the formation of the metal–
dielectric interface does not change the material properties and the materials forming the inter-
face have identical permittivities before and after the formation of the interface [4].

However, this assumption breaks down if an interface is made between a metal and a semi-
conductor, which is commonly known as a Schottky junction. The properties of Schottky junc-
tion interface predominantly depends on the size and shape of the interface, doping density of
impurities in the semiconductor medium and type and quality of the metal [14]. Interestingly,
some of these interface properties of the Schottky junction can be changed by applying an ex-
ternal potential difference across the junction. It is this potent property of Schottky junctions
makes it very attractive for modern plasmonic applications. Later we show that under certain
conditions, such an interface can sustain one or two surface plasmon polariton (SPP) mode/s.
Central to the understanding of the SPP mode behaviour in such a complex morphological
interface is the dispersion relation which defines the feasible SPP modes and their charac-
teristics [1, 4]. The analysis demands special care because, unlike in a metal–dielectric inter-
face, a region of nonuniform free charge carrier density profile develops surrounding a metal–
semiconductor interface. The width of this region is in the range of hundreds of nanometers.
This substantial variations in the free charge density in the vicinity of the metal–semiconductor
interface influence the permittivity seen by the SPP wave propagating along the interface. More-
over, such charge variations may give rise to energy confinement at the junction and severely
constrain the features of electromagnetic waves that can collectively oscillate with the free
electron plasma [15–17].

In this paper, we carry out a detailed analysis to derive an analytical expression for the dis-
persion relation for a Schottky junction and show that a very good agreement exists between
analytical and numerical dispersion relations. Our analysis takes into account the space charge
layer formed due to the charge distribution across the Schottky junction and resulting new
boundary conditions. Unlike in a dielectric–metal interface where a single SPP mode is sup-
ported, we show that the solution of the new analytical dispersion relation correctly predicts two
SPP modes of low energy and high energy, which have already observed in bi-metallic systems
experimentally. Moreover, SPP mode behaviour under various charge density profiles, varying
external potential and different metals (e.g. Au, Ag, Al and Cu) are presented. This paper is
organized as follows. In Section 2, we outline an analytical description of Schottky junction
and derive the characteristic equations for the existence of plasmon modes in a model four lay-
ered system introducing new boundary conditions for space charge layer. Section 3 describes
the numerical solution for the SPP dispersion relation of the junction. The effect of system pa-
rameters on dispersion characteristics are also examined. Section 4 concludes this paper after
summarising the main result and emphasizing the importance of this study.

2. Characterization of the surface plasmon field at the Schottky junction

The metal–semiconductor contact creates a hetero-interface (widely called a Schottky junction)
and consists of a space charge region with a varying free charge carrier density profile formed
according to the band structure of the semiconductor and the metal [18, 19]. In electronics
engineering, junctions play an important role because of their ability to rectify currents, which
is a direct result of having a space charge layer on the semiconductor side of the interface. In this
section, we briefly describe the junction properties and associated charge distribution before
deriving an analytical expression for the dispersion relation for the SPP modes propagating
along the vicinity of the Schottky junction interface.
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Fig. 1. The energy band diagram of a metal and n–type semiconductor junction in equilib-
rium. The work functions are denoted by φM ad φs where φM > φs and χs denotes electron
affinity of the semiconductor.

2.1. Description of the metal-semiconductor junction

To introduce the notation used and the major parameters considered in our model, this section
briefly defines the intrinsic and extrinsic parameters of the Schottky junction. The band structure
for a metal and n-Semiconductor contact is shown in Fig. 1. Here Ef is the Fermi energy level
and Ec, Ev are the conduction and valence band edges, respectively. The built in potential across
the depletion layer φbi is given by,

qφbi = qφbn − (Ec −EF) = qφbn −VT ln
Nc

Nd

where φbn, Nc, Nd and VT denote Schottky barrier height, effective density of states in the
conduction band, doping concentration of semiconductor and thermal voltage. We can apply
full depletion approximation to find the width of the space charge region when an external
voltage VA is applied across the junction [19],

d = τ

√
2εs(φbi −VA)

qNd
. (1)

Here τ is a parameter which depends on the surface characteristics of the semiconductor. Ac-
cordingly, for Si-Au and Si-Ag contacts, width of the space charge layer assumed to be in the
range of 0.1 ∼ 1 μm for doping concentration around 1028m−3.

2.2. Analytical estimation of the plasmonic field distribution

The dispersion characteristics of plasmon modes at a semiconductor–vacuum interface has been
studied by Wallis et al. under the approximation in which the space charge layer is represented
by a piecewise linear variation [16,20]. Even though several attempts have been made to replace
this linear variation assumption by much smoother transition (e.g. for exponential profile see
[21].), no substantial improvements can be gained but lead to complex set of equations that
are hard to solve [21]. As our prime aim of this paper is to obtain an analytical result for
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the dispersion relation, without loss of generality, we assume a piecewise linear variation of
the charge profile in the subsequent analysis [20]. However, it must be emphasised that any
complex profile can always be approximated by a reasonably chosen piecewise linear variation
and thus the fundamental does not allude a limitation of our analysis.

In this context, the Schottky Junction is represented by four layers as shown in Fig. 2. The
structure consisting a semi-infinite semiconductor film in contact with a semi-infinite metal.
The dielectric function for both media is defined by the lossless Drude model in the absence of
interband transitions as given below,

εζ (z,ω) = εHζ

[
1−

ω2
pζ

ω2

]
, ζ ∈ {m,s} (2)

where the indexes m and s refer to metals and semiconductors, respectively. εHζ ,ζ ∈ {m,s}
is the static dielectric constant of the medium and ωpζ ,ζ ∈ {m,s} is the plasma frequency of
the medium. It is important to note that for a metal εHm = 1 and for a semiconductor ω2

ps(z) =
4πq2n(z)/(εHsm∗)≡ ω2

ps0n(z)/nb, where nb is a reference cross-sectional carrier density to be

defined later and ω2
ps0 = 4πq2nb/(εHsm∗). Here q and m∗ are the magnitude of electron charge

and the effective mass of charge carrier, respectively and n(z) is the position dependent free
charge carrier density. Depending on the value of n(z), the junction can be divided into four
region as shown in Fig. 2. In the regions A , B and D, n(z) is spatially constant. In the region
C, n(z) is approximated by a linear variation as given below [20].

n(z) = nb(rz+ ς). (3)

Here r and ς denote the slope and vertical intersect of the linear function. Substitution of Eq.
(3) to Eq. (2) enables us to write the dielectric constant in the region C as

εs(z,ω) =−εHsrω2
ps0

ω2 (z− z0)

where z0 = (ω2/ω2
ps0 −ς)/r. With the definition of these new variables, we can summarise the

permittivity of the A, B, C and D sections of Fig. 2 as follows:

region A: z ≤ 0, εmA(z,ω) = 1− ω2
pm

ω2 (4a)

region B: 0 < z ≤ d1 εsB(z,ω) = εHs (4b)

region C: d1 < z ≤ d2 εsC(z,ω) =−εHsrω2
ps0

ω2 (z− z0) (4c)

region D: d2 < z εsD(z,ω) = εHs

[
1− ω2

ps0

ω2

]
(4d)

Even though there is a possibility to have both TE and TM SPP modes to propagate along the
junction in x axis of the Fig. 2, application of the Maxwell’s equations with proper boundary
conditions to the bounded mode at the junction shows that only the TM modes are supported [4].
For such a TM mode, only the components Ex, Hy and Ez are non-zero. Noting that these
components propagate along the +x direction, we can write

Eν(x,z, t) = Eν(z)exp(ikx− iωt), ν ∈ {x,z},
where k is the longitudinal wave number along the direction x and Eν(z) is the amplitude of
Eν(x,z, t) where ν ∈ {x,z}. For these TM modes, the Maxwell’s equations give the following
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Fig. 2. A Schematic illusion of the Schottky Junction including the division of the junction
to sections A, B, C, and D based on the carrier density distribution.

set of partial differential equations for the electric field components if the external charges and
currents are absent in the medium,

∇×∇× (Ex(x,z, t)x̂+Ez(x,z, t)ẑ) =−ε(z,ω)

c2

∂ 2

∂ t2 (Ex(x,z, t)x̂+Ez(x,z, t)ẑ)

where x̂ and ẑ are the unit vectors in the x, z directions, respectively and ε(z,ω) is the local
permittivity of the medium as specified in Eq. (4). It is much more useful if these equations are
written using their component form. Collecting and matching terms in x̂ and ẑ directions gives

ik
∂Ez(z)

∂ z
− ∂ 2Ex(z)

∂ z2 =
ω2ε(z,ω)

c2 Ex(z) (5a)

ik
∂Ex(z)

∂ z
+ k2Ez(z) =

ω2ε(z,ω)

c2 Ez(z) (5b)

To solve these simultaneous partial differential equations, it is better to eliminate one dependent
variable. We choose to eliminate the Ex(z) from the Eq. (5a). This can be done by taking the
derivative of Eq. (5b) with respect to z and substitution of the resulting equation in Eq. (5a).
The resulting second order partial differential equation reads

∂ 2Ez(z)
∂ z2 +

∂ ln(ε(z,ω))

∂ z
∂Ez(z)

∂ z

−
[

k2 − ω2ε(z,ω)

c2 − 1
ε(z,ω)

∂ 2ε(z,ω)

∂ z2 +

(
1

ε(z,ω)

∂ε(z,ω)

∂ z

)2
]

Ez(z) = 0
(6)

Once found, this solution can be used to calculate the Ex(z) component from the following
relation obtained using Eq. (5a) and Eq. (5b).

Ex(z) =
i
k

(
∂Ez(z)

∂ z
+

∂ ln(ε(z,ω))

∂ z
Ez(z)

)
(7)
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This equation assumes different forms depending on the permittivity of regions A, B, C and
D given in Eq. (4). Because the solution and the format of the equation change in each of
these sections, we solve the above equation for each section separately below. It is important to
notice that we need these solutions at each section because the dispersion relation applicable to
Schottky junction is obtained by ensuring the continuity conditions of the field components as
described later.

(i) Solution of Eq. (6) in region A where z ≤ 0 :

Here the dielectric function is spatially constant (see Eq. (4a)) and hence Eq. (6) assumes the
following simple form:

∂ 2Ez

∂ z2 +(k2
0εmA − k2) = 0 (8)

Once found this solution, we can get Ex(z) using the Eq. (7) where the second term goes to zero
because of the permittivity is constant in the region A.

Ex(z) =
i
k

∂Ez

∂ z
(9)

The solution of the Eq. (8) is well-known and can be written directly as

Ez(z) = EA exp(βAz), βA ∈ R>0 (10)

where EA is a constant and the longitudinal wave vector is given by β 2
A = k2 − k2

0εmA. We have
ignored the exp(−βAz), βA ∈ R>0 solution because it diverges in the region z ≤ 0. Substitution
of Eq. (10) to Eq. (9) gives

Ex(z) =
iβA

k
EA exp(β z), βA ∈ R>0.

(ii) Solution of Eq. (6) in region B where 0 < z ≤ d1 :

The presence of the electrical field in the Schottky junction has completely depleted the free
carriers in the region B, and thus the permittivity is constant and given by the Eq. (4b). There-
fore, as in the region A, we get the following simplified version of Eq. (6),

∂ 2Ez

∂ z2 +(k2
0εsB − k2) = 0,

which has the following general solution

Ez(z) = EB1 cos(βBz)+EB2 sin(βBz), βB ∈ R≥0 (11)

where β 2
B = k2 − k2

0εsB and EB1 and EB2 are constants. We keep the most general solution here
because the boundary conditions are finite and hence the general solution never diverges within
the region of interest. Substitution of Eq. (11) to Eq. (9) gives

Ex(z) =
iβB

k
(−EB1 sin(βBz)+EB2 cos(βBz)).
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(iii) Solution of Eq. (6) in region C where d1 < z ≤ d2 :

The carrier density is assumed to vary linearly in this section as shown in Fig. 2. This carrier
density dependency translates to the variation of the permittivity as shown in Eq. (4c). Substi-
tution of the permittivity variation to Eqs. (6) and (7) result in the following equations:

∂ 2Ez(z)
∂ z2 +

1
(z− z0)

∂Ez(z)
∂ z

−
[

k2 +
εHsrω2

ps0

c2 (z− z0)+
1

(z− z0)2

]
Ez(z) = 0 (12)

Ex(z) =
i
k

[
∂Ez(z)

∂ z
+

Ez(z)
(z− z0)

]
(13)

Noting that when d1 < z ≤ d2, the inequality
εHsrω2

ps0

c2 (z− z0)
3 +1 � k2(z− z0)

2, we get

∂ 2Ez(z)
∂ z2 +

1
(z− z0)

∂Ez(z)
∂ z

−
[

εHsrω2
ps0

c2 (z− z0)+
1

(z− z0)2

]
Ez(z) = 0

This equation has the following analytical solution

Ez(z) =
EC1

z− z0
Ai′

(
z− z0

ξ

)
+

EC2

z− z0
Bi′

(
z− z0

ξ

)
(14)

where EC1 and EC2 are constants, Ai′(z) is the first derivative of the Airy function with respect
to the variable z [22], Bi′(z) is the first derivative of the Bairy function with respect to the
variable z and ξ 3 = c2/εHsrω2

ps0. Substitution of Eq. (14) to Eq. (13) gives,

Ex(z) =
i
k

[
EC1

ξ 2 Ai

(
z− z0

ξ

)
+

EC2

ξ 2 Bi

(
z− z0

ξ

)]

(iv) Solution of Eq. (6) in region D where z > d2 :

Here the dielectric function is spatially constant (see Eq. (4d)) and hence Eq. (6) assumes the
following simple form:

∂ 2Ez

∂ z2 +(k2
0εsD − k2) = 0 (15)

As in the region A the solution of the Eq. (15) is well-known and can be written directly as

Ez(z) = ED exp(−βDz), βD ∈ R>0, (16)

where ED is a constant and the longitudinal wave vector is given by β 2
D = k2 − k2

0εsD. We have
ignored the exp(βDz),βD ∈ R>0 solution because it diverges in the region z > d2. Substitution
of Eq. (16) to Eq. (9) gives

Ex(z) =− iβD

k
ED exp(−βDz), βD ∈ R>0.

2.3. Surface plasmon dispersion relation

The dispersion relation for the Schottky junction relates the angular frequency, ω of the SPP
field to its wave vector magnitude, k. The allowed values of this relationship determine the SPP
modes that are supported on the Schottky junction. The dispersion relation can be found by
applying self-consistent boundary conditions at z= 0, z= d1 and z= d2 to ensure the continuity
of electromagnetic field components Ex and Hy, as required by Maxwell’s equations. As in the
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Fig. 2, the carrier density slope and vertical intersect in region C can be derived from d1 and
d2 where r = 1/(d2 −d1) and ς = −d1/(d2 −d1). The application of the boundary conditions
leads to

M6×6(ω,k)E6×1 = 0

where M6×6(ω,k) is a 6×6 square–matrix,

M6×6(ω,k) =⎡
⎢⎢⎢⎢⎢⎢⎣

εmA(ω) −εHs 0 0 0 0
βA 0 −βB 0 0 0
0 cos(βBd1) sin(βBd1) −Ec

z1(d1) −Ec
z2(d1) 0

0 −βB sin(βBd1) βB cos(βBd1) −Ec
x1(d1) −Ec

x2(d1) 0
0 0 0 Ec

z1(d2) Ec
z2(d2) −exp(−βDd2)

0 0 0 Ec
x1(d2) Ec

x2(d2) βD exp(−βDd2)

⎤
⎥⎥⎥⎥⎥⎥⎦

and E6×1 = [EA,EB1 ,EB2 ,EC1 ,EC2 ,ED]
T is a 6× 1 column–matrix containing undermined co-

efficients of the solutions given in Eqs. (10), (11), (14) and (16). The matrix elements, Ec
z1(z),

Ec
z2(z), Ec

x1(z) and Ec
x2(z) are defined using the Airy function, Ai(z), derivative of Airy function

Ai′(z), Airy function of the second kind, Bi(z) and its derivative Bi′(z) as follows:

Ec
z1(z) =

1
z− z0

Ai′
(

z− z0

ξ

)
,

Ec
z2(z) =

1
z− z0

Bi′
(

z− z0

ξ

)
,

Ec
x1(z) =

i
k

[
1

ξ 2 Ai

(
z− z0

ξ

)]
,

Ec
x2(z) =

i
k

[
1

ξ 2 Bi

(
z− z0

ξ

)]
.

In order to obtain a non trivial solution for the coefficient matrix E6×1 for permissible {ω,k}
values, the determinant of the matrix, M6×6(ω,k) must be equal to zero. This condition results
in a secular equation relating ω and k; which is the dispersion relation for the Schottky junction:

Dispersion Relation of the Schottky Junction: Det(M6×6(ω,k)) = 0

The compact form of this dispersion relation enable us to carry out normally computationally
expensive studies involving the Schottky junction with much ease. For example, the solutions
of the dispersion relation can be used to study plasmonic pulses propagating along the Schottky
junction by integrating the corresponding wave equation. Another use of such a solution is to
use the values as a initial guess for a high accuracy numerical polishing routine with a nonlinear
carrier density profile in the vicinity of the Schottky junction interface.

It is instructive to look at the accuracy of this dispersion relation against a detailed numeri-
cal solution constructed using an infinite series for the region C. The solutions we previously
obtained for regions A, B and D are exact and hence do not need any numerical refinement.
Based on the work of Frobenius [23], we assume that the Eq. (12) has an infinite series in the
following form

Ez(z) = (ECF1 +ECF2 ln |z− z0|)
∞

∑
n=0

un(z− z0)
n−1 +ECF2

∞

∑
n=0

vn(z− z0)
n−1 (17)
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where ECF1 and ECF2 are constants to be determined using boundary conditions. Substituting
Eq. (17) to Eq. (12) and equating coefficients of the (z− z0)

n terms to 0, we arrive at following
recurve relations for the coefficients of the infinite series:

u0 = 0, u1 = 0, u2 =
k2

2
, un =

k2un−2 +
εHsrω2

ps0

c2 un−3

n(n−2)
, n ≥ 3

v0 = 1, v1 = 0, v2 =−k2

4
, vn =

−2(n−1)un + k2vn−2 +
εHsrω2

ps0

c2 vn−3

n(n−2)
, n ≥ 3.

Substitution of Eq. (17) to Eq. (13) gives,

Ex(z) =
i
k

(
ECF1 +ECF2 ln |z− z0|+ ECF2

z− z0

) ∞

∑
n=1

nun(z− z0)
n−2

+
i
k

ECF2

∞

∑
n=1

nvn(z− z0)
n−2.

Figure 3 shows the plasmonic dispersion curves calculated using our Airy function
based method and the Frobenius series solution above. We obtained the same result for
semiconductor–vacuum interface given in Ref. [20] based on the Frobenius solution. The result
in Fig. 3 is obtained for the metal-semiconductor interface for easy comparison. The difference,
ωdi f f , between two solutions is shown in the inset of Fig. 3, which is below 1.0%. This confirms
the high accuracy of the analytical dispersion relation and we use it exclusively in the analysis
below.

3. Behaviour of SPP modes on the Schottky junction

To gain some insight into the types of modes supported by the Schottky junction depicted in
Fig. 2, a set of interesting scenarios are considered in this section. Unless otherwise stated, we
assume that the Schottky junction is made by interfacing Gold (Au) to doped Silicon (n–Si)
(see Fig. 1). It is known that SPP propagation in multi-layer systems support multiple modes
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Fig. 3. Plasmonic dispersion curves for a metal–semiconductor interface using our Airy
function method and Frobenius series solution method. The difference ωdi f f between the
curves is shown in the inset, which is below 1.0%.
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Fig. 4. The dispersion curves of Schottky junction for ωps0 = 2ωpm. The frequencies
marked in the figure are normalized to bulk plasma frequency of the semiconductor. Two
dispersion modes are shown where lower mode is magnified in the inset of the figure. The
calculations are carried out for εHs = 11.9, ωpm = 1.36×1016rad/s and d1, d2 values are
taken for doping concentration of 10−28m−3.

depending on layer widths [24]. Here we noted two surface plasmon modes for the Schottky
junction at high frequency and low frequency regions. The two modes are plotted in Fig. 4
where the low frequency mode is magnified in the inset. The lower mode behaves similar to the
SPP dispersion of metal-dielectric system where it stays right to the bulk Si light line and level
off at asymptotic value ωsp,L. The high frequency mode is more similar to the SPP dispersion
of a bi-metallic system, where this mode only supports in between bulk plasma frequencies of
the metal and the semiconductor. The mode starts from plasma frequency of the metal rising
parallel to Au light line and reaches the asymptotic value ωsp,U thereafter showing a slight
negative slope. The limiting conditions for the two modes can be defined when d2 → 0 and
d1 → ∞. When d2 → 0, the space charge layer vanishes and creates a bi-metallic interface.
Therefore the asymptotic value of upper mode (high frequency mode) is always ωsp,U ≤ ω ′

sp,U .
When d1 → ∞, the metal-dielectric interface dominates. Hence asymptotic value of lower mode
(low frequency mode) is always ωsp,L ≤ ω ′

sp,L. Here ω ′
sp,U and ω ′

sp,L are defined as [25],

ω ′
sp,U =

√
ω2

pm + εHsω2
ps0

(1+ εHs)

ω ′
sp,L =

√
ω2

pm

(1+ εHs)

A set of dispersion curves are depicted in Figs. 5–7 to illustrate the effect of free carrier charge
density profiles, applied voltage and plasma frequency for the SPP dispersion in a Schottky
junction. The carrier density profile decides the d1 and d2 values of the junction (cf. Fig. 2).
As in Fig. 5(a), the negative slope of the upper mode can be controlled by changing d1 and
d2. The negative slope increases when d1 is increased while d2 is decreased. In contrast, the
upper level of low frequency mode decreases when d1 is increased and d2 is decreased (see Fig.
5(b)). Also an externally applied potential can be used to control the width of the space charge
layer according to Eq. (1), which is considered to be the major advantage of our model. By in-
creasing the reverse biased potential, values of d1 and d2 can be shifted by similar amount and
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Fig. 5. Dispersion curves for varying carrier density profiles shown in the inset. (a) variation
of upper modes with slope r and (b) variation of lower modes with slope r. The frequencies
marked in the figure are normalised to bulk plasma frequency of the semiconductor, ωps0
and d1, d2 values are normalised by c/ωps0.
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Fig. 6. Dispersion curves for different space charge layer widths by varying externally
applied potential. (a) Upper modes for different d1 and d2 values as in the inset. (b) Lower
modes for different d1 and d2 values as in the inset of (a) The values of d1 and d2 vary
by 0.1 steps starting from 0.05 and 0.1 respectively. The frequencies marked in the figure
are normalised to bulk plasma frequency of the semiconductor, ωps0 and d1, d2 values are
normalised by c/ωps0.

accordingly the maximum level of two modes can be shifted along the frequency axis (see Figs.
6(a) and 6(b)). Moreover, the externally applied potential can cause to bend the energy band
at the semiconductor surface downward or upward creating accumulation or inversion layer
depending on forward or reverse biased conditions, respectively. The dispersion characteristics
for these conditions can also be found using a similar approach where accumulation layer re-
duces our model into three layers while inversion layer replaces it with five layers. The plasma
frequency of metal decides frequency margin values for the upper mode and also controls the
maximum level of the lower mode as illustrated in Figs. 7(a) and 7(b). Altogether, it is clear
that the space charge layer formed in a Schottky junction plays a significant role on its SPP dis-
persion characteristics with more controllability compared to the SPP modes of conventional
metal-dielectric interfaces.

Now consider the scenario where the dielectric function εmA of the metal is complex. The
imaginary part of the dielectric constant is responsible for the losses seen by the SPPs, makes
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Fig. 8. Dependence of effective propagation length of the plasmon mode with varying for-
ward biased voltage across the Schottky junction. The attenuation coefficients of Au and
Ag at ω = 1.1×1015 rad/s are 7.953×105 cm−1 and 7.542×105 cm−1.

the SPP wave vector complex valued. The imaginary part of this SPP wave vector kimg and
associated mode propagation length Lspp can be found using attenuation coefficient of the metal
αm and optical gain coefficient of the semiconductor g(n), where n denotes the minority carrier
concentration:

Lspp =
1

2kimg
=

1
αm −g(n)

Here g(n) = go(n− nt) where go and nt are the gain constant and the transparency density.
These two constants are calculated numerically by solving the one-electron model which de-
fines the optical gain with band to band transition of the semiconductor [11, 26]. Also the
variation of SPP propagation length with the externally applied voltage is analysed for two dif-
ferent metals as depicted in Fig. 8. As is apparent, the propagation length increases with the
biased voltage which has defined below the breakdown voltage of the semiconductor. Here we
used n-type Ga0.47In0.53As for the semiconductor material for easy comparison of the results
obtained with reference [11]. At ω = 1.1× 1015rad/s, the attenuation coefficients of Au and
Ag are 7.953× 105 cm−1 and 7.542×105 cm−1 while the constants go and nt are found to be
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8.76×10−16cm2 and 3.7×1016cm−3. So when the forward biased voltage across the junction
increases, the width of space charge layer decreases (as in Eq. (1)) and under certain conditions
set by the energy bands, it causes an inversion layer to be formed. It means the minority carrier
concentration near the contact exceeds the majority carrier concentration leading to reduction
of losses seen by the SPP field (Ref. [11, 26]). In other words, we can control the losses seen
by the SPP field by changing the space charge layer width using an external voltage and thus
effectively gaining the ability to control the mode propagation length.

4. Conclusion

We derived a highly accurate (i.e. within 1% of the full numerical solution) analytical dispersion
relation for surface plasmon modes on a Schottky junction interface. Our derivation takes into
account the appearance of the depletion region in the vicinity of the junction and the resulting
nonuniform permittivity along the depletion region. The compact form of this dispersion rela-
tion enable us to carry out normally computationally expensive studies involving the Schottky
junction with much ease. For example, the solutions of the dispersion relation can be used to
study plasmonic pulses propagating along the Schottky junction by integrating the correspond-
ing wave equation. Another use of such a solution is to use the values as an initial guess for a
high accuracy numerical polishing routine with a nonlinear carrier density profile in the vicinity
of the Schottky junction interface. Unlike a metal- dielectric interface which supports a single
SPP mode, we found that the Schottky junction is able to support two basic SPP modes, that are
termed upper mode and lower mode. The upper mode behaves very similar to a SPP mode on a
bi-metallic interface. In contrast to this, the lower mode behaves much more like a SPP mode on
a metal-dielectric interface. It is interesting to note that the two modes obtained in this paper for
the plasmon dispersion in a Schottky junction are qualitatively in agreement with the results of
Inkson [17]. Moreover, the effects of charge density profile, plasma frequency of metal and ex-
ternally applied potential on dispersion characteristics were also discussed. The charge density
profile controls the negative slope of the upper mode curve and bulk plasma frequency controls
the frequency margins of the two modes. It was found that using an externally applied potential
across the junction, the maximum level of two modes can be shifted along the frequency axis.
Thus, it is clear that the Schottky junctions provides a greater controllability over SPP modes on
its interface compared with the conventional metal–dielectric interfaces. Especially given that
a population inversion can be made in the vicinity of the Schottky junction (cf. [11]), it is very
likely that SPP waveguides will be made incorporating Schottky junctions for next generation
integrated optics/plasmonics applications requiring long propagation distances.
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