
Supplement to - A Bayesian Approach to Constraint Based Causal
Inference

Abstract

This article contains additional results and
proofs related to §3.3 ‘Unfaithful inference:
DAGs vs. MAGs’ in the UAI-2012 submission
‘A Bayesian Approach to Constraint Based
Causal Inference’.
It has three main parts: section one de-
fines causal- and graphical model terminol-
ogy used throughout the supplement. Section
two relates to the mapping from uDAGs to
logical causal statements; much of this builds
on (Bouckaert, 1995). The third section de-
tails the result that in the large sample limit
all required minimal independencies and de-
pendencies can be found. The supplement
follows the numbering in the original submis-
sion.

1 Notation and terminology

A causal model GC is a directed acyclic graph (DAG)
over a set of variables V where the arcs represent
causal interactions. A directed path from A to B in
such a graph indicates a causal relation A⇒ B in the
system, where cause A influences the value of its effect
B, but not the other way around. An edge A→ B in
GC indicates a direct causal link such that A influences
B, but not the other way around. A causal relation
A⇒ B implies a probabilistic dependence AB.

The joint probability distribution induced by a causal
DAG GC factors according to a Bayesian network
(BN): a pair B = (G,Θ), where G = (V,A) is DAG
over random variables V, and the parameters θV ⊂ Θ
represent the conditional probability of variable V ∈ V
given its parents Pa(V ) in the graph G. Probabilistic
independencies can be read from the graph G via the
d-separation criterion: X is conditionally independent
of Y given Z, denoted X ⊥⊥ Y |Z, iff there is no un-
blocked path between X and Y in G conditional on

the nodes in Z, see (Pearl, 1988; Neapolitan, 2004).
A minimal independence X ⊥⊥Y | [Z] implies that re-
moving any node from the set surrounded by square
brackets turns it into a dependence, and vice versa.

Independence relations between arbitrary subsets of
variables from a causal DAG can be represented in
the form of a (maximal) ancestral graph (MAG) M,
an extension of the class of DAGs that is closed un-
der marginalization and selection. In addition to di-
rected arcs, MAGs can contain bi-directed arcs X ↔ Y
(indicative of marginalization) and undirected edges
X−−Y (indicative of selection), see (Richardson and
Spirtes, 2002).

The equivalence class [G] of a graph G is the set
of all graphs that are indistinguishable in terms of
(Markov) implied independencies. For a DAG or MAG
G, the corresponding equivalence class [G] can be rep-
resented as a partial ancestral graph (PAG) P, which
keeps the skeleton (adjacencies) and all invariant edge
marks, i.e. tails (−) and arrowheads (>) that appear
in all members of the equivalence class, and turns the
remaining non-invariant edge marks into circles (◦)
(Zhang, 2008). A potentially directed path (p.d.p.) is
a path in a PAG that could be oriented into a di-
rected path by changing circle marks into appropriate
tails/arrowheads. For an edge A ∗→ B in P, the in-
variant arrowhead at B signifies that B is not a cause
of A. An edge A → B implies a direct causal link
A⇒ B.

A logical causal statement L is statement about pres-
ence or absence of causal relations between two or
three variables of the form (X ⇒ Y ), (X ⇒ Y )∨(X ⇒
Z), or (X ; Y ) ≡ ¬(X ⇒ Y ).

A DAG G is an (unfaithful) uDAG approximation to
a MAGM over a set of nodes X, iff for any probability
distribution p(X), generated by an underlying causal
graph faithful to M, there is a set of parameters Θ
such that the Bayesian network B = (G,Θ) encodes
the same distribution p(X). The uDAG is optimal if
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there exists no uDAG to M with fewer free parame-
ters.

We use D to indicate a data set over variables V from a
distribution that is faithful to some (larger) underlying
causal DAG GC .  L denotes the set of possible causal
statements L over variables in V. We use MX for
the set of MAGs over X, and MX(L) to denote the
subset that entails logical statement L. We also use G
to explicitly indicate a DAG, M for a MAG, and P
for a PAG.

2 Inference from uDAGs

A uDAG is a DAG for which we do not know if it is
faithful or not. Reading in/dependence relations from
a uDAG goes as follows:

Lemma 3. Let B = (G,Θ) be a Bayesian network
over a set of nodes X, with G a uDAG for a MAG
M that is faithful to a distribution p(X). Let GX‖Y
be the graph obtained by eliminating the edge X − Y
from G (if present), then if Z is a set that d -separates
X and Y in GX‖Y , then:

(X ⊥⊥GY |Z)⇔ (X ⊥⊥P Y |Z),

Proof. See §3.3.3 (Bouckaert, 1995) starting from the
graphoid axioms. Our assumption of an underlying
faithful MAG is stronger. Among other things it im-
plies that a node U cannot have a dependence with a
node X (or Y ) given Z if there is no unblocked path
between U and X in G conditional on Z. As a result, a
dependence relation between X and Y given Z cannot
be destroyed by including or excluding such a node U
from the set Z. This applies whether U is in the parent
set of X or Y in G or not, relaxing one of the coupling
criteria.

So, all independencies from d -separation remain valid,
but identifiable dependencies put restricitions on the
set Z For optimal uDAGs additional information can
be inferred.

Lemma 4. If G is an optimal uDAG to a faithful
MAGM, then all in/dependence statements that can
be inferred for any uDAG instances of the correspond-
ing equivalence class [G] via Lemma 3 are valid.

Proof. All instances in an equivalence class can
describe the same distribution, with the same
in/dependencies, and have the same number of free
parameters. Therefore, if one is a optimal uDAG to
the faithful MAG M, then they all are, and a validly
inferred statement, e.g. via Lemma 3, for any of these
is therefore valid.

For absent causal relation this ultimately reduces to:

Lemma 5. Let G be an optimal uDAG to a faithful
MAGM, then the absence of a causal relation X ⇒� Y
can be identified, iff there is no potentially directed
path from X to Y in the PAG of [G].

Proof. The optimal uDAG G is obtained by (only)
adding edges between variables in the MAG M to
eliminate invariant bi-directed edges, until no more are
left. At that point the uDAG is a representative of the
corresponding equivalence class P, see Theorem 2 in
(Zhang, 2008). For any faithful MAG all and only the
nodes not connected by a p.d.p. in the corresponding
PAG have a definite non-ancestor relation in the un-
derlying causal graph. At least one uDAG instance in
the equivalence class of an optimal uDAG over a given
skeleton leaves the partial order of the original MAG
intact, because extra parameters are needed to force
additional arrowheads on edges into v -structures that
run counter to the ancestor relation in the MAG, which
means the uDAG was not optimal. Therefore, any re-
maining invariant arrowhead in the PAG P matches
a non-ancestor relation in the original MAG. So all
nodes not connected by a p.d.p. in P are definite non-
ancestors, as they certainly would not be connected
by such a path in a graph containing less edges and a
superset of invariant arrowheads on those edges. But
no more then these can be inferred, as the uDAG also
matches itself as MAG, and for that MAG the nodes
not connected by a p.d.p. in P are all that can be
identified.

For causal alternatives a similar, but more complicated
criterion can be found:

Lemma 6. Let G be an optimal uDAG to a faithful
MAGM, then (Z ⇒ X)∨ (Z ⇒ Y ) may be inferred if
X ⊥⊥G Y | [Z] in G, and for each Z ∈ Z, either a path
to X or Y with an invariant tail at Z can be validated,
or both paths to X and Y can be validated, where
validation implies that no edge along the unblocked
path from X/Y to Z is part of the collider part of a
shielded collider triangle.

We do not claim that the current uDAG mapping, in
combination with deduction on standard causal prop-
erties, is complete in the sense that they are guaran-
teed to extract the maximum amount of information
from all possible uDAGs. However, a brute-force check
showed that they cover all valid mappings for uDAGs
up to five nodes.

3 Finding invariant arrowheads

The submission mentions the fact that, even though
individual optimal uDAGs can hide in/dependencies



present in the underlying MAG, in the large sample
limit a strategic search using uDAGs is still guaranteed
to find the entire skeleton and all invariant arrowheads.
The practical relevance of this result is limited, as it
can involve scoring DAGs over large sets of nodes, not
to mention infinite sample sizes, which is why it is
largely left out of the current submission.

The proof is still fairly convoluted, so as a guide to the
steps involved (in reverse order):

- At Theorem 1, the entire skeleton and all invariant
arrowheads are found.

- Before that, Lemma 13 and Corollary 14 show
that we can find all nodes that destroy an inde-
pendence, from which to find the arrowheads from
uDAGs;

- Similarly, Lemmas 10 and 11, together with
Corollary 12, show the skeleton is found. First
assuming causally sufficiency, then for the general
case.

- These lemmas rely on Lemma 8 and Corollary
9, on (in)dependence relations that hold between
nodes in a minimal conditional independence.

3.1 Minimal independencies

We start by showing that all minimal independencies
X ⊥⊥M Y | [Z] are guaranteed to show up in a optimal
uDAG over just those nodes. The proof is split in two
parts: first for the case where all separating nodes Z
are adjacent to either X and/or Y . Then the general
proof that also allows non-adjacent separating nodes:
assuming causal sufficiency this case cannot occur, but
without causal sufficiency it can, invalidating many
causal discovery methods that rely on finding separat-
ing sets from neighbouring nodes. It was this possibil-
lity that inspired/necessitated the development of the
FCI-algorithm (Spirtes et al., 1999, 2000). The proof
for this general case, dubbed ‘FCI-DSep’, follows nat-
urally from the causally sufficient case. Both proofs
use Lemma 7 to derive a contradiction between the
presence of an edge X−Y in the uDAG over (X,Y,Z)
and the assumption that the uDAG is optimal.

First three results used in subsequent proofs.

Lemma 7. Let G be a DAG over nodes X. Let
XC ⊆ X be a fully connected subset in G (clique),
that all share the same external parents (from X\XC).
Then all arcs between nodes in XC are reversible, and
XC forms a fully connected circle component in the
equivalence class of G.

Proof. The DAG G induces a partial order in which
the nodes XC (can) form a successive block. Each rel-
ative ordering of XC leaves all in/dependencies intact,

and is therefore member of the same equivalence class
as G. As all different orderings imply that all arcs
(parent-child relation) between nodes in XC can be
interchanged, and so none of the tail-arrowheads are
invariant, and therefore obtain a circle mark in the
corresponding PAG; see also (Meek, 1995).

In the proof to show that we can find all required (min-
imal) independencies, we use the next result about de-
pendencies that apply to all nodes in the conditioning
set:

Lemma 8. In a faithful MAG M, let X ⊥⊥M Y | [Z],
Z ∈ Z and Z′ ⊆ Z\Z , then:

1. Z is dependent on both X and Y given all Z\Z ,

2. Z is dependent on (at least one of) X and/or Y
given any subset Z′,

3. if X /∈ An(Y ), then Z is dependent on Y given
any Z′ ∪X, and

4. all {Zi, Zj} ∈ Z are dependent conditional on any
set Z′ ⊆ Z\{Zi,Zj} ∪ {X,Y }.

Proof. (1.) Follows from directly from ‘minimal’ (so it
is the only noncollider on some unblocked path given
all others);
(2.) By theorem 3.x, each Z ∈ Z has a directed path
inM to X and/or Y , and is therefore dependent given
the empty set; each node in Z is either adjacent to X
inM, or, if not adjacent to X, connected to it via a se-
quence of bi-directed edges (Spirtes et al., 1999). Same
holds for Y (although non-adjacent nodes may differ).
Every path π between X and Y that is only blocked
by noncollider Z given Z is either a direct edge or a
sequence of colliders. Any subset Z′ ⊂ Z that lacks
one of the (descendants of) these colliders on π may
break the dependency along the path π, but opens up
a new dependence via the directed path from the first
eliminated node along π (in both directions, starting
from Z) to either X and/or Y . As a result, conditional
on any set at least one dependence (unblocked path)
will remain intact.
(3.) If Z was already dependent on Y given Z′, then
conditioning on collider X can never block that path.
If not, then Z′ is a strict subset of Z\Z , by (1). By
(2) it then has an unblocked path π to X given Z′.
As Z is minimal, there is now also an unblocked path
π′ given Z′ between X and Y , as not all remaining Z
are included. If X is not an ancestor of Y then both
these paths are into X, and so conditioning on collider
X will unblock the path π + π′ from Z to Y , and so
Z ⊥⊥�P Y |Z′ ∪X.
(4.) If X ∈ An(Y ), then all Z are adjacent to descen-
dant Y (Colombo et al., 2011), so then conditioning



on any set that includes Y will make them dependent;
vice versa for Y . If neither is ancestor of the other,
then all paths are into X and Y . By (2), if both Zi

and Zj are dependent on X, or both on Y , then in-
cluding these as collider will unblock a path, making
them dependent. Same holds if Z′ contained all other
nodes, for then Zi and Zj would have unblocked paths
to both X and Y (or each other). If Z′ did not contain
all other nodes, then (as Z was minimal) there is an
unblocked path between X and Y . So in that case, if
Zi and Zj have unblocked paths to different nodes from
(X,Y ) given Z′, then also conditioning on both X+Y
will unblock the path Zi −X − Y − Zj , leaving them
dependent again, ergo Zi ⊥⊥�P Zj |Z′ ∪ {X,Y }.

This lemma also implies the following independence
result, used in the proof for causal sufficiency:

Corollary 9. Let X ⊥⊥M Y | [Z] in a faithful MAG
M, and let G be a optimal uDAG over {X,Y } ∪Z. If
all Z are both non-descendants of Y and adjacent to
Y , then no two nodes from (X ∪ Z) are independent
conditioned on any subset of other nodes in G that
includes Y .

Proof. There are two cases, depending on whether X
is part of the pair or not. Case (1): for the pair
{Zi, Zj} ⊆ Z, the path Zi ∗→ Y ←∗Zj is unblocked
in M given any subset that includes Y . Case (2): for
the pair {X,Z}, with Z ∈ Z, for any strict subset
Z′ ( (Z \ Z) there is an unblocked path from Y to X
given Z′, and so the path Z ∗→Y ←∗ ..X is unblocked
inM given any set Z′∪Y ; for the subset Z′ = (Z\Z),
by Lemma 8, there is an unblocked path between X
and Z given Z′ which cannot be blocked by condition-
ing on Y .
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Figure 1: Illustration for proof of Lemma 10: (a) MAG
with X ⊥⊥Y | [V, W, Z], (b) (non-optimal) uDAG with arc
X−→Y

When causal sufficiency applies, all minimal indepen-
dencies can be found from the right uDAGs:

Lemma 10. Let X ⊥⊥M Y | [Z] be a minimal con-
ditional independence in a faithful MAG M over

{X,Y } ∪ Z, and let G be an optimal uDAG approxi-
mation to M. If all separating nodes are adjacent to
either X or Y , i.e. if either Z ⊆ Adj(X) or Z ⊆ Adj(Y )
in M, then (in the large sample limit) G implies
X ⊥⊥P Y |Z.

Proof. By contradiction. Let X ⊥⊥P Y | [Z], and let
G be the (alleged) optimal uDAG over (X,Y,Z) with
edge X − Y . As it is a minimal independence, in the
underlying MAG all nodes Z are ancestor of either X
or Y , see (Spirtes et al., 1999), so at least one of these,
say Y is not ancestor of any. As stated, we assume
that the independence is not of the FCI-DSep form
that requires nodes not adjacent to either X or Y in
the MAG to separate them. Therefore, in the marginal
MAG over (X,Y,Z) all nodes Z are adjacent to (non-
ancestor) Y . In G, the set Z can be divided into a
subset W ⊆ Z containing descendants of both X and
Y in G, and a set V = Z \W that are ancestor of at
least one of {X,Y }. Note that the set V d -separates
X and Y in GX‖Y . Also note that W cannot be empty,
as otherwise G would erroneously imply X ⊥⊥�P Y |Z.

We now show that if this W exists, then it must be
of a very specific, heavily connected form. First, all
nodes in W have an incoming arc from Y , as they are
assumed to be descendant of Y in G, and were adjacent
to Y in M(X,Y,Z), and the skeleton of G must be a
superset of M.

Next, all nodes in W must be fully connected to each
other in G. Otherwise, G would imply a conditional
independence of the form Wi ⊥⊥P Wj | .. ∪ Y , which is
impossible by Corollary 9. Also, all nodes in W must
be connected to all nodes in V, as otherwise again a
conditional independence Wi ⊥⊥P Vj | .. ∪ Y is implied
which is not present according to Corollary 9. By
the same token, all W are directly connected to X,
because any implied independence Wi ⊥⊥P X | .. ∪ Y
would again be prohibited by Corollary 9. So all W
are descendants of and adjacent to X implying all in-
coming arcs X−→W.
Now assume (case 1): X −→ Y in G. Then all edges
V − Y are arcs into Y :

- any node Vi ∈ V that is not adjacent toX must be
connected as X −→ Y ←− Vi, otherwise it implies
an independence with Y in the conditioning set,
which is forbidden by Corollary 9,

- any node Vi ∈ V that is adjacent to X and has
an arc Y −→Vi must also have an arc X−→Vi (by
acyclicity, given X −→ Y −→ Vi), but that would
make Vi part of W, so it too must have an arc
Vi−→Y

By acyclicity, that also implies that all edges between
V −W are arcs into W, which makes W ∪ Y a fully



connected set with the same external parents V ∪X.
Next assume (case 2): X←−Y in G. Then every node
Vi ∈ V must be connected toX, otherwise it would im-
ply an impossible independence X ⊥⊥P Vi | .. ∪ Y (by
Corollary 9). All edges Vi − X must be arcs into X,
otherwise acyclicity would also require an arc Vi←−Y ,
which would make Vi ∈ W. But that makes W ∪ X
a fully connected set with the same external parents
V ∪ Y . By Lemma 7, in both cases this means the
graph G is equivalent with (in the same equivalence
class as) a DAG G′, in which either X or Y is the
last node in the induced order, with only incoming
arcs. But for that instance the edge X − Y would
not be needed, and so at least one of the equivalent
graphs would need fewer parameters than G, and be re-
turned as the minimal instead. Ergo, if X ⊥⊥M Y | [Z],
then the optimal DAG approximation G(X,Y,Z) has
no edge X−Y , and the independence can therefore be
identified from the graph.

The case for minimal separating sets in general, i.e.
that may involve ‘FCI-DSEP’ nodes in the separating
set Z that are not adjacent to either X or Y in
the marginal M goes similar, but with a somewhat
modified ‘adjacent to Y ’ part. First note that this
remaining case implies that neither X nor Y is an
ancestor of the other (Colombo et al., 2011), and
that in the marginal MAG the non-adjacent nodes
Q ⊂ Z are connected to X and/or Y via a sequence of
bi-directed edges, i.e. π = X←→Zi←→ ..←→Zj←∗Qk

in M. Note that nodes ‘nonadjacent to X’ can still
be adjacent to Y: the FCI-DSEP case only implies
that there is no set Z ⊆ Adj(X) or Z ⊆ Adj(Y ) that
separates X and Y .
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Figure 2: Illustration for proof of Lemma 11: (a) MAG
with X ⊥⊥ Y | [V, W, Z, Q] with non-adjacent node Q,
(b)/(c) (non-optimal) uDAGs with arc X −→ Y , (d)/(e)
different optimal uDAGs

We can now do the general proof for minimal separat-
ing sets:

Lemma 11. Let X ⊥⊥M Y | [Z] be a minimal con-
ditional independence in a faithful MAG M over
{X,Y } ∪ Z. If G is a optimal DAG approximation
to M, then G implies X ⊥⊥P Y |Z.

Proof. By contradiction. The case for all Z adjacent
is covered in Lemma 10. That leaves the case with a
nonempty subset Q ⊂ Z that is not adjacent to either
X or Y inM. As before, we use W ⊆ Z to denote the
nodes in the (optimal) DAG G, that are descendants
of both X and Y , and V = Z \W to denote the ones
that have not. Again, W is not empty, otherwise an
edge X−Y would erroneously imply X ⊥⊥�P Y |Z, and
so we derive a contradiction from the assumption of
non-empty W through equivalent structures.

First, all W ∈ W are connected to X and Y by a
direct incoming arc. Suppose there is no edge W − Y ,
such that W ⊥⊥P Y |ZWY , for some set ZWY . Then
by Lemma 8(2) W is dependent on ancestor X (in G),
i.e. there is an unblocked path π between X and W
given ZWY . If either π or the edge X −Y is out of X,
then X is the only noncollider on an unblocked path
between Y and W , and must therefore be included in
the set ZWY . But that would imply an independence
that does not hold inM by Lemma 8(3). If both π and
the edge X − Y are into X, then (any descendant of)
X cannot be included in ZWY , for then there would
still be an unblocked path. But as W is a descendant
of X, that would leave the path Y −→X −→ ..−→W
unblocked, and so there is no set in G that can separate
W and Y without contradiciting M. Ergo, all nodes
W have a direct, incoming arc from Y ; and similarly
an incoming arc from X.

Like before, W itself is also fully connected in G, oth-
erwise it would imply some conditional independence
Wi ⊥⊥P Wj |ZWi‖Wj

∪ {X,Y }, which does not hold in
the MAG: by Lemma 8(4).

By the same rationale, all V are connected to all nodes
W in G. If not, then G would again imply some con-
ditional independence Vi ⊥⊥P Wj |ZVi‖Wj

∪ {X,Y },
which does cannot hold in M. (Note that X and Y
may not necessarily be needed in the separating set
between Vi and Wj , but they never unblock a path to
W (as noncolliders with outgoing arcs to W).

Finally, using Lemma 8(2) above, we show that at least
either all V are connected to X in G, or all V are
connected to Y (and probably many to both). Suppose
the edge X−Y has the form X−→Y in G, and assume
there is a set VQ‖Y that separates Q and Y , so there
is no edge Q − Y in G or M. (Note that there can
be no node from the colliders in V −→W ←− Y in
the separating set.) By Lemma 8(2), any set VQ‖Y
that separates Q and Y in M, also makes Q and X



dependent in M, and so also in G. But then X is
needed to block the path Q..X −→ Y in G given the
other separating nodes, and so X ∈ VQ‖Y . But if X is
necesarily included in VQ‖Y , then by Lemma 8(3) Q
and Y are conditionally dependent inM given VQ‖Y ,
implying an edge Q − Y in G. So, if X −→ Y in G,
then all V are adjacent to Y in G as well. Similarly, if
X←−Y in G, then all V are adjacent to X. Therefore,
if there is an edge X−Y in G, then either all nodes V
are adjacent to X, or all nodes V are adjacent to Y .

We now show that for each node Vi ∈ V this link
must be an arc out of Vi. Assume X−→Y in G, so Vi

is adjacent to Y , then:

- if Vi−→X in G, then acyclicity requires Vi−→Y ,
- if Vi←−X in G, then this also requires Vi −→ Y ,

otherwise Vi ∈W,
- if there is no link Vi − X in G, then, like before,

any set that separates them inM unblocks a path
to Y , and so including Y makes them dependent.
Therefore Y is not in a separating set between Vi

and X in G, and so it has to be a collider between
them, which implies again Vi−→Y .

Similar for Vi−→X in case of X←−Y .

So if there is an arc X −→ Y in G, then all nodes V
have arcs into Y , making W ∪ Y a fully connected
component with the same parents V∪X. As a result,
the edge X−→Y can be eliminated by putting Y last
in the queue. The resulting DAG G′ is equivalent with
G but requires fewer parameters and would therefore
be returned instead. Therefore, if G is a optimal DAG
approximation to M, then G implies X ⊥⊥P Y |Z.

So all (minimal) conditional independencies that are
present in M can be inferred from a optimal uDAG
G over an appropriate subset of nodes. To illustrate
this principle, consider the minimal independence
X ⊥⊥M Y | [{V,W,Z,Q}], with node Q not adjacent
to either X or Y , in the MAG in Figure 2(a).
Depending on the multiplicity of the nodes, either
(d) or (e) will be found as the optimal uDAG in the
large limit. Both correctly exhibit the independence
X ⊥⊥P Y | {V,W,Z,Q}, even though node Q is now
adjacent to X or Y . However, only (d) allows to
infer directly from the model that this independence
is also minimal; for (e) this follows only indirectly
from the absence of the independence in smaller
models, as node W blocks both X ←−W −→ Y and
X←−W −→Z←−Y .

Corollary 12. For a MAG M over variables V that
is faithful to a distribution p(V), all (minimal) con-
ditional independencies needed to obtain the skeleton

of M can be found using uDAGs over subsets of vari-
ables up to the minimum size of the largest required
minimal conditional independence.

Proof. From Lemma 11 we know that any X ⊥⊥P

Y | [Z] will show up in a uDAG over {X,Y } ∪Z. So if
there is a constantK such that for all separable pairs of
nodes {X,Y } there is a set Z such that X ⊥⊥P Y | [Z],
with size bounded by |{X,Y } ∪ Z| ≤ K, then we are
guaranteed to find all of these in one or more uDAGs
up to size K. From this we can reconstruct the entire
skeleton of M.

3.2 Minimal dependencies

Once we find a (minimal) independence, we can also
find the nodes that destroy it:

Lemma 13. Let M be a faithful MAG over nodes
{X,Y,W} ∪ Z, for which X ⊥⊥M Y | [Z] and
X ⊥⊥�M Y |Z ∪ [W ]. Then, if G is an optimal uDAG
approximation to M, then X ⊥⊥�P Y |Z ∪ [W ] can be
inferred from G, provided it is (already) known that
X ⊥⊥P Y |Z.

Proof. Invariant bi-directed edges in the equivalence
class of a MAG can only be eliminated by adding
one or more edges between unshielded colliders at the
bi-directed edge. An optimal uDAG only adds such
edges until all invariant bi-directed edges are elimi-
nated. Therefore, if conditioning on W does not make
X and Y dependent given Z, then X and Y are not an
inducing pair for any invariant arrowhead in M, and
so adding an edge X − Y is always superfluous and
always results in a uDAG requiring more parameters
than the smallest one without that edge. Therefore,
if we know that X ⊥⊥P Y |Z, and X and Y are con-
nected in G, then W must be the node that makes
them dependent, and so W ⇒� (X,Y,Z). If X and
Y are not connected in G, then all nodes Z are again
needed to separate them, and then including W must
make X and Y dependent, otherwise it would imply
an invalid independence, which in a uDAG means a
path X −→W ←− Y . If X and Y are not connected
in G and conditioning on W leaves them independent,
then it automatically implies that W also does not
make them dependent in M. Remains to be shown
that if X and Y are not connected in G, then W can-
not be a collider between them in a optimal uDAG if
W does not make them dependent in M. If there are
edges or unblocked paths X −W and W − Y in the
(underlying) MAG M over nodes (X,Y,W,Z) condi-
tional on all Z, then without W this would imply an
unblocked path between X and Y given Z (via W )
in M unless W is a collider on this path. But then
conditioning on W would make X and Y dependent,



contrary the assumption that not X ⊥⊥�P Y |Z ∪ [W ].
Therefore, if W is the ‘last’ node (no descendants) in
the optimal uDAG G, then if W does not destroy the
minimal independence X ⊥⊥P Y |Z then at least one
of the arcs X −→ W or W ←− Y is redundant and
will not present in G. It follows that if the subpath
X−→W←−Y is present in G, then W is necessarily a
node that makes them dependent in M given Z, and
so correctly implies X ⊥⊥�P Y |Z ∪ [W ], and therefore
also W ⇒� (X,Y,Z).

So, even though we can find the nodes that create a
dependency, it is not guaranteed to be from a single
model (as for minimal independence). But if the cor-
responding independence is known to exist, then it can
be identified from that model, either directly or indi-
rectly.

An example is shown in Figure 3, where the MAG in
(a) contains the (minimal) conditional independence
X ⊥⊥P Y | [Z], together with X ⊥⊥�P Y |Z ∪ [W ]. Both
(b) and (c) represent (potentially) optimal uDAGs to
(a): which one is chosen depends on the multiplicity
of the nodes. But where (b) shows both X ⊥⊥P Y |Z
and X ⊥⊥�P Y |ZW , (c) only allows the positive iden-
tification of X ⊥⊥�P Y |ZW , as the conditional inde-
pendence is no longer present. Still, if we learned from
the model over (X,Y, Z) that X ⊥⊥P Y |Z, then it is
possible to infer that W is the node that destroys that
independence, and so cannot be an ancestor of any.

X

W

Z

Y

Two minimal uDAGs for a node W that destroys X ][ Y | [Z]

X

Z

Y

W

X

Z

Y

W

X

Z

Y

W

(b) (c)(a)

Figure 3: (a) MAG with two bi-directed arcs, (b) optimal
uDAG with X−→W , (c) optimal uDAG with X−→Y

If we can find all required (minimal) independencies
for the skeleton, and all nodes that create a subse-
quent dependency, then we have enough to identify all
invariant arrowheads:

Corollary 14. For a MAG M over variables V that
is faithful to a distribution p(V), all conditional de-
pendencies needed to obtain all invariant arrowheads
in the skeleton of M can be found using uDAGs over
subsets of variables up to the minimum size of the
largest required conditional dependence.

Proof. From Lemma 13 we know that all nodes W that
break some independence X ⊥⊥�P Y |Z ∪ [W ] can be
inferred from a uDAG over {X,Y,W}∪Z, provided we

already know that X ⊥⊥P Y | [Z]. From Lemma 11 we
know that all such X ⊥⊥P Y | [Z] show up in a uDAG
over {X,Y }∪Z. So if there is a constant K such that
for all separable pairs of nodes , Y } there is a set Z such
that X ⊥⊥P Y | [Z], with size bounded by |{X,Y } ∪
Z| ≤ K, then we are guaranteed to find all subsequent
dependencies in one or more uDAGs up to size K + 1.
Combining these is enough to cover all instances of
cases(1) and (2) in Claassen and Heskes (2011)), which
are sufficient to find all invariant arrowheads.

The main result of this section can now be stated as:

Theorem 1. LetM be a faithful MAG over variables
V. Let K be a bound on the size of the separating
sets, such that ∀{X,Y } ∈ V, X /∈ AdjM (Y ),∃Z, |Z| ≤
K : X ⊥⊥P Y | [Z]. Then in the large sample limit
the entire skeleton and all invariant arrowheads of M
can be obtained from optimal uDAGs over subsets size
|X| ≤ K + 3.

Proof. With causal statements obtained from the cor-
responding MAGs over these subsets of nodes, the
LoCI algorithm is already known to be sound and com-
plete in the large sample limit. This theorem states
that, provided the possible loss of faithfulness is prop-
erly accounted for, uDAGs can also provide enough
information to find at least the entire skeleton and
invariant arrowheads. This follows immediately from
corollaries 12 and 14.

References

R. Bouckaert. Bayesian Belief Networks: From Con-
struction to Inference. PhD thesis, University of
Utrecht, 1995.

T. Claassen and T. Heskes. A logical characterization
of constraint-based causal discovery. In Proc. of the
27th Conference on Uncertainty in Artificial Intel-
ligence, 2011.

D. Colombo, M. Maathuis, M. Kalisch, and
T. Richardson. Learning high-dimensional dags with
latent and selection variables (uai2011). Technical
report, ArXiv, Zurich, 2011.

C. Meek. Causal inference and causal explanation
with background knowledge. In UAI, pages 403–
410. Morgan Kaufmann, 1995.

R. Neapolitan. Learning Bayesian Networks. Prentice
Hall, 1st edition, 2004.

J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufman Publishers, San Mateo, CA, 1988.

T. Richardson and P. Spirtes. Ancestral graph Markov
models. Ann. Stat., 30(4):962–1030, 2002.



P. Spirtes, C. Meek, and T. Richardson. An algorithm
for causal inference in the presence of latent vari-
ables and selection bias. In Computation, Causa-
tion, and Discovery, pages 211–252. 1999.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search. The MIT Press, Cambridge,
Massachusetts, 2nd edition, 2000.

J. Zhang. On the completeness of orientation rules
for causal discovery in the presence of latent con-
founders and selection bias. Artificial Intelligence,
172(16-17):1873 – 1896, 2008.


