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Integrating Planning And Execution For ROS Enabled Service Robots
Using Hierarchical Action Representations

R.J.M Janssen1 and E.W.P. van Meijl1 and D. Di Marco2 and M.J.G. van de Molengraft1

Abstract— The aim of the RoboEarth project is to develop a
globally accessible database, that enables service robots to share
reusable information relevant to the execution of their daily
tasks. Examples of this information are the hierarchical task
descriptions, or action recipes, that represent typical household
tasks as symbolic action sequences. By annotating these static
action representations with hierarchical planner predicates,
they can be interpreted by the Hierarchical Task Network
planner SHOP2 to compose more flexible, optimized robot
plans, based on the actual state of the environment and the
available capabilities of the robot. To subsequently execute
the composed plans in a typical household environment, the
CRAM executive toolbox is adopted, allowing a tight integration
between plan execution and run-time knowledge inference. This
paper presents the integration of these two components into
one cohesive planning and execution framework, tailored for
the safe execution of abstract tasks in a challenging household
environment. The resulting framework is implemented on the
AMIGO service robot and a basic experiment is conducted to
demonstrate the frameworks integral functionality.

I. INTRODUCTION

Nowadays robots are mainly used in industry to perform
repetitive tasks in predictable environments. Structured man-
ufacturing lines and conditioned workspaces are necessary
requirements for robots to safely and accurately perform
their instructed tasks. Since robotic systems are getting
more socially accepted in our daily lives, they are gradually
introduced into more human oriented domains as well, such
as the medical and housekeeping sectors, see Fig. 1.

Fig. 1. The AMIGO robot performing tasks in a medical environment.
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Bringing robots into human domains is however
a challenging task, since these domains are often
represented by an unpredictable and dynamically changing
environment. Furthermore, performing tasks in human-
centered environments typically requires robots to have
advanced interpretation and reasoning mechanisms, a
complete and grounded overview of the environment,
and a well-defined way to predict, or project, how their
subsequent actions change the environment in order to
safely and successfully fulfill their tasks. The reason why
humans typically outperform robots under such constraints,
is because humans are still far better in exploiting the
mechanisms of memorization and communication: most
tasks are typically well-known to a human, and if not, they
are learned from others or ‘googled’ online.

The RoboEarth project [1] aims to provide robots with
such storage and communication mechanisms, enabling the
global sharing of information between robots required to
efficiently and safely execute their instructed tasks. The
information shared through RoboEarth consists out of the
maps used for localization and navigation, the object models
used for perception and navigation, object ontologies used
for reasoning and classification, and task descriptions, or so
called action recipes, that symbolically describe task related
action sequences and constraints. Examples currently stored
in the RoboEarth database are for instance the action recipes
for serving a drink, or setting a table.

RoboEarth also provides in a common representation
for these action recipes through the RoboEarth action
language [2]. This language is a formal representation of the
action recipes stored and shared through RoboEarth. One
of the main features of this language is the semantically
annotated taxonomic structure that is used to classify action
recipes, allowing class inheritance of recipe properties and
straightforward recipe selection based on their semantic
annotations. An example could be the selection of the action
recipe subclass ServingADrinkWithTwoArms of the class
ServingADrink, that describes a more specified action recipe
on how to serve a drink with two arms.

Although the current representation of action recipes
enables robots to execute a large variety of pre-programmed
tasks, due to their static nature they lack in flexibility when
tasks have to be performed with different environmental
constraints, such as an in-between door that has to be
opened, or the explicit modeling of run-time inference of



task specific information. Another drawback of the current
recipe representation is that they do not project the state
of the environment nor the state of the robot into the
future, hence not assuring that an executed action will not
interfere with further task completion. A third drawback
of the current recipes is that the ordering constraints used
to represent the order in which actions are performed, is
based on a straightforward numbering technique, impeding
the modular enclosure of smaller recipes into larger tasks.
Finally, because the action recipes are not explicitly
annotated with action costs, it is currently not possible to
optimize plans between recipes that accomplish similar tasks.

A solution to the above mentioned drawbacks would
be to annotate the current action recipes with planner
predicates, such as pre-conditions, effects and costs, and
use a search algorithm, or planner, to compose optimal
plans based on the state of the environment and the state of
the robot, hereby using projection to assure that executed
actions do not interfere with further plan accomplishment.
Composing feasible plans by planning however requires a
complete overview of the environment at planning time, and
adequate recovery mechanisms in case an insurmountable
plan anomaly is detected during plan execution.

To demonstrate the usability of the above mentioned
adaptation, an integrated system has to be developed that
enables the use of these planning methods, but is at the same
time capable of handling environmental challenges during
plan execution. This is what the work in this paper focuses
on; a first design towards the integration of a symbolic
planner with a highly reactive execution engine, that allows
the successful accomplishment of human-like tasks through
a mobile manipulation platform. The planner has to be
capable of interpreting hierarchical action representations
as they are defined by the RoboEarth action language, and
the execution engine has to be capable of handling dynamic
environment properties and small assumption errors; a
walking person may have to be tracked, or an object is
possibly located at a slightly different position than what
was assumed at planning time. In addition, re-planning will
be incorporated as a recovery mechanism for when plan
anomalies cannot be resolved by the execution engine.

The first part of this paper will give a short summary of
the contributions of this work, followed by an overview of
related work relevant to these contributions. The succeeding
section gives a global overview of the complete system, after
which the involved components will be discussed in detail
separately. Subsequently, a real-life experiment is presented
that, although in a very basic form, describes the systems
integral functionality. Finally a discussion is raised, that
describes future work related to the improvement of the
system and the additions required for the reuse of these
tasks on a global level through the RoboEarth action recipe
database.

II. CONTRIBUTIONS

The specific contributions of this paper are the selection,
customization and integration of a hierarchical task network
planner with a highly reactive and semantically expressive
executive. Secondary, the system will be equipped with
auxiliary components that allow to infer the environment
state required for planning, and to enable real-world human-
machine-interaction. Although the intention of this work is to
eventually align with the Semantic Web [3] representation of
the RoboEarth action language as earlier described in [2], this
work focuses solely on the architecture required to interpret
an established form of hierarchical action representations
and to exploit them for planning and execution in a typical
household environment.

III. RELATED WORK
In the field of integrated planning and execution

architectures for robots operating in dynamic domains
there are two well-established systems available; the LAAS
Architecture [4] based on the BIP [5] component design
framework and CLARAty [6] developed by NASA and the
Jet Propulsion Laboratory.

The two-layered LAAS Architecture connects its lower
level functional layer, implemented in GenoM, to the high-
level BIP component layer [5]. GenoM allows to encapsulate
the robots operational functions in independent modules that
manage their execution by asynchronous service requests.
The BIP methodology describes connections with different
priorities between components that, depending on the
connection, trigger functions within the GenoM modules.
All the BIP components run in parallel and can be triggered
when needed, allowing the robot to respond fast to a sudden
change in its environment.

The second architecture, CLARAty, is also based on a
two layered structure. It uses a functional layer for lower
level control, which is controlled by a decisional layer that
integrates planning, execution and communication. Two
different structures for the decisional layer are currently
proposed: one describes the combination of a CASPER
planner with a TDL executive [7], and the other is composed
of a EUROPA planner combined with a PLEXIL executive
[8].

Where the LAAS architecture uses its reactive behaviour
to respond to changes in the environment, CLARAty
consults software modules to create assumptions that are
verified against the perceived state of the world. Both
systems therefore establish robustness against changes in the
environment. They are not however, designed to share task
descriptions amongst platforms with different capabilities
and have no explicit methods of interpreting nor storing
common task descriptions.

In the work of McGann [9] the TREX control framework
is adopted to control a Willow Garage PR2 service



robot, allowing the robot to handle doors and plugs, while
navigating using a topological map. Although the developers
briefly mention a desire for the reuse of action primitives,
there is no further discussion towards the reuse of high-level,
complex robot plans.

Enabling robots with different capabilities to share
complex task descriptions requires at first a common
representation for these descriptions. As part of the
EU funded RoboEarth and RoboHow 1 projects a first
implementation is described in [10], where the Semantic
Robot Description Language (SRDL) [11] is used to match
robot capabilities against the task related components.
Although this capability matching enables the filtration of
plans that cannot be executed by platforms missing the
required capabilities, it does not project the state of the
world into the future, therefore not ensuring that a certain
robot feature remains available throughout the execution
phase of the plan (e.g. a robot-arm might become occupied
with holding an object). It also does not determine the
most optimal plan, in case a task can be executed in
multiple ways. Although the language therefore establishes
a common and well-defined representation, it is imperative
that methods are added for projection and optimization.

IV. SYSTEM DESIGN MOTIVATION

As described in the Introduction, the system should be
capable of composing executable plans from hierarchically
structured task specifications, and able to execute these plans
in a challenging household environment. A general proposal
of such a system is represented in Fig. 2. The hierarchical
action specifications, or action recipes, are downloaded from
the Action Recipe Database. Based on these action recipes,
the planner tries to compose a sequence of primitive actions
[O1...On] that achieve the instructed task T from world state
S0, where T is received from a Human-Machine-Interface
and S0 is received from a Reasoner, capable of inferring the
current state of the environment. The composed sequence of
actions is subsequently exported to the Executive and exe-
cuted. The next sections discuss the choice and integration
details of each of the involved components on a more in-
depth level.

V. ACTION RECIPE DATABASE

The Action Recipe Database contains the action recipes,
which symbolically describe the action sequences required
to accomplish instructed tasks. The stored action recipes
either describe primitive actions, i.e. actions that can be
considered as grounded robots skills, and complex actions,
consisting of either other complex and/or primitive actions.
Maintaining these action recipes in one central place, such
as the globally accesible RoboEarth action recipe database,
allows to compare, rank and filter them, and enables reuse
across multiple systems in different scenarios. The definition

1http://www.robohow.eu

Action 
Recipe 

Database

TS0

O1 O2 O3 O4 O5 O... OnOn-1

PlannerReasoner HMI

Executive

Fig. 2. The flow through the system with the main components indicated:
Action Recipe Database, Planner, Executive, Reasoner and Human Machine
Interface.

for the action recipes follows from the RoboEarth action
language [2], where they are represented by the OWL
semantic markup language [12] and modularly arranged in
a taxonomic structure, see Fig. 3.

Action

Perceive

VisualPerception TouchPerception

ActionOnObject

ServingSomethingOpeningSomething

OpeningADoor OpeningABottle

is-ais-a

is-a is-a is-a is-a

is-a is-a

Fig. 3. Example of the RoboEarth action taxonomy as described in [2].

Although this structure allows to select an action recipe
based on its classification, it does not formally describe
under which conditions an action recipe is valid to be used,
nor does it visually represent its decomposition into other
complex/primitive actions. Without going into any planning
details yet, the work of Nau [13] describes an identical
hierarchical structure in the representation of the planning
domain D, hereby enabling the representation of an action
recipe as a well known plan decomposition tree. An example
defined by the ‘ServingSomething’ action recipe is visualized
by the plan decomposition tree in Fig. 4.

The RoboEarth action recipes as described in [2] are
originally represented in the OWL-DL [12] syntax. To allow
a fast first proof of concept of the system, the action
recipes discussed in this paper are represented in the PDDL
[14] syntax commonly used for planning. Future work will
include the downloading of action recipes from RoboEarth,
and the mapping of OWL-DL action recipes onto a planner
interpretable syntax. Methods for this mapping are described



ServingSomething
Object Person

PickUp
Object

HandOver
Object Person

NavigateTo
Person

NavigateTo
Object

Perceive
Object

OpenGripper MoveGripper
Object

CloseGripper Perceive
Person

MoveGripper
Person

OpenGripper

Fig. 4. A hierarchical plan decomposition tree of the ’ServingSomething’
action recipe. Yellow blocks indicate complex actions, and red blocks
indicate primitive actions. The left-to-right arrows indicate the order in
which the actions are executed.

in the work of Klush [15] and Sirin [16].

VI. PLANNER
The goal of the planner is to find a plan P which achieves

task T from state S0 through the planning domain D. A
planning algorithm suitable for our system has to meet the
following requirements:

1) The planning algorithm must be able to work with a
planning domain D that is hierarchically structured,
because it must be compatible with the RoboEarth
language definition of hierarchical action structures [2].

2) The planner must be fast in solving complex plans, en-
abling scalability towards the use of a global database
and allowing the system to respond quickly if re-
planning is requested by the executive.

3) The planner must be able to evaluate external functions
calls during planning, in order to base its assumptions
on the most up to date environment state information.

To meet the above requirements, the Hierarchical Task
Network planner SHOP2 [13] is adopted. First of all this
planner is able to solve the planning problem (S0,T,D)
as described above with D being hierarchically structured.
Secondly, it is fast in solving complex plans, which is
endorsed by the winning of the award for distinguished
performance in the 2002 International Planning Competition
[17]. Furthermore, SHOP2 has the ability to optimize plans
based on different cost criteria, and it allows for external
function calls in its axioms during planning, see Fig. 5.

( :− ( c l a s s− a v a i l a b l e− i n− r e a s o n e r ? o b j e c t )
( e v a l ( s u b C l a s s NIL ’? o b j e c t ) )
( e v a l ( s u b C l a s s ’? o b j e c t NIL ) ) )

Fig. 5. SHOP2 axiom: the external function (class-available-in-reasoner)
called during plan composition.

Finally, SHOP2 is capable of creating partially ordered
plans, enabling a more efficient plan structure (see the
example in the next section).

A. SHOP2 Planning Problem Example

To illustrate how the planner solves the planning problem
(S0,T,D) for partially ordered plans, a simple example
presents the transporting of two objects, in this case a soda
and crackers, from different locations to the same location.
Let the planning problem be described by:

T = ( t r a n s p o r t 2 c r a c k e r s c o u c h t a b l e soda c o u c h t a b l e )

S0 = ( a v a i l −arm r i g h t )
( loc−r o b o t e n t r a n c e −door )
( l o c c r a c k e r s d i n n e r t a b l e )
( l o c soda k i t c h e n t a b l e )

D = ( ! loc−r o b o t ? l o c a t i o n )
( ! o b j e c t −in−hand ? s i d e ? o b j e c t )
( ! o b j e c t −on− l o c a t i o n ? s i d e ? o b j e c t ? l o c a t i o n )
( p l a c e ? o b j e c t ? l o c a t i o n )
( g r a s p ? l o c a t i o n ? o b j e c t )
( n a v i g a t e ? from ? t o )
( p i ck up ? o b j e c t )
( d r o p o f f ? o b j e c t ? l o c a t i o n )
( t r a n s p o r t ? o b j e c t ? t o )
( t r a n s p o r t 2 ? o b j e c t 1 ? t o 1 ? o b j e c t 2 ? t o 2 )

where ‘transport2’ consists of two times the ‘transport’
method. The domain D represents the operators (the top
three of the list, starting with an exclamation mark) and
the methods (the remainder of the list). Fig. 6 presents the
hierarchical decomposition tree of the method ‘transport2’
for the case where only one arm is available.

transport2
soda couch_table

crackers couch_table

transport
soda couch_table

transport
crackers couch_table

pickup
soda kitchen_table

dropoff
soda couch_table

pickup
crackers kitchen_table

dropoff
crackers couch_table

!object-
in-hand

soda

!loc-robot
kitchen_table

!loc-robot
couch_table

!object-on-
location

soda

!loc-robot
dinner_table

!object-
in-hand
crackers

!loc-Robot
couch_table

!object-on-
location
crackers

Fig. 6. The non-interleaved decomposition tree of the method ‘transport2’
when only one arm is available.

Now suppose the robot has two arms available, the right
and the left arm. For this example the availability of the left
arm will be added as (avail-arm left) to S0. The resulting
plan is given Fig 7.

transport2
soda couch_table

crackers couch_table

!object-
in-hand

soda

!loc-robot
kitchen_table

!object-on-
location

soda

!loc-robot
dinner_table

!object-
in-hand
crackers

!loc-Robot
couch_table

!object-on-
location
crackers

Fig. 7. This figure presents the operators of the interleaved decomposition
tree of the method ‘transport2’ for the case where two arms are available.

The robot will now pickup both objects before returning to
the drop off location, demonstrating the benefit of partially
ordered task planning. The planner optimizes the number
of operators by reducing the costs, where in this example
a unit cost was assigned to each action. In addition, the
planner can easily be extended by relating the costs to
measurable properties of actions, e.g., duration, availability,
force, distance, by evaluating external functions calls during
planning.



VII. EXECUTIVE

The output of the SHOP2 planner is a symbolic sequence
of primitive actions. To execute these actions the CRAM [18]
toolbox based on Common Lisp is adopted. The reasons for
using this toolbox are:

1) It provides tools for the execution of symbolic plans:
the domain specific plan language CPL (CRAM Plan
Language) and symbolic identities (designators) for
actions, objects and locations.

2) It is based on a reactive planning approach [19],
[20], which explicitly tries to cope with unpredictable
and dynamically changing environments. To do this it
uses fluents, which are system-wide variables that are
continuously updated and monitored. Fluents are used
in the architecture to trigger for instance re-planning
and to start/stop threads when needed.

3) It is based on Common Lisp, by which it can use
the standard debugging tools and REPL (Read-Eval-
Print-Loop) that Common Lisp provides. Because the
SHOP2 planner is also implemented in Common Lisp,
the domain, state and task definitions can easily be
validated through the REPL, resulting in an easy
integration of planner and executive.

A complete overview of the system is depicted in Fig. 8.
The symbolic plans constructed by the SHOP2 planner are
mapped onto the domain specific language CPL and executed
by the CRAM executive. The CRAM process modules con-
vert the symbolic plans to parameterized commands that are
executable by the robot. The planner Supervisor manages the
start of the planning process upon command receival, collects
the information that is required for the planning process,
invokes the planning algorithm and instantiates re-planning
when this is requested by the executive.

 CRAM Executive

SHOP2

HMI

Action Recipe 
Database

CRAM Process Modules

ROS ActionLib interface

Designators

 CPL plan

Goal State

Hierarchical Action 
Structures

 System

 Environment 
Information

Planner

Reasoner

navigation perception ....

Trigger fluent for 
(re-)planning

Supervisor

Thread
Start/Stop

Thread
Start/Stop

 Environment 
Information

Environment 

Query Based

CRAM Threads

Knowledge 
Base

Push Based

Bilateral

External Modules

Robot Platform

manipulation

Worldmodel 
evidence

Sensor data

World Model

Fig. 8. A more detailed overview of the integrated architecture. Designators
are symbolic representations of objects, locations and actions.

The different components and data structures will be
described in more detail in the following paragraphs.

A. CPL

The CPL language uses semantic control structures to
reason about actions through a first-order representation. One
of these control structures is the achieve function, for which
the outcome holds if the process succeeds. Other available
control structures are in-parallel-do to run different processes
in parallel (returns true if all processes succeed), and try-in-
parallel, which returns true if only one action succeeds.

Fig. 9 shows the converted high-level plan for the example
task ‘transport2’, used in subsection VI-A.

( t o p− l e v e l−p l a n t r a n s p o r t 2 ( )
( w i t h−d e s i g n a t o r s (

( c r a c k e r s . . . )
( soda . . . )
( c o u c h t a b l e . . . )
( d i n n e r t a b l e . . . )
( k i t c h e n t a b l e . . . ) ) )

( a c h i e v e ‘ ( ! l o c− r o b o t k i t c h e n t a b l e ) )
( a c h i e v e ‘ ( ! ob jec t− in−hand r i g h t soda ) )
( a c h i e v e ‘ ( ! l o c− r o b o t d i n n e r t a b l e ) )
( a c h i e v e ‘ ( ! ob jec t− in−hand l e f t c r a c k e r s ) )
( a c h i e v e ‘ ( ! l o c− r o b o t c o u c h t a b l e ) )
( a c h i e v e ‘ ( ! o b j e c t−o n− l o c a t i o n r i g h t c r a c k e r s c o u c h t a b l e ) )
( a c h i e v e ‘ ( ! o b j e c t−o n− l o c a t i o n l e f t soda c o u c h t a b l e ) ) )

Fig. 9. The SHOP2 ‘transport2’ plan converted to a CPL top-level plan. The
designators are constructed with the with-designators command whereas the
achieve function executes the individual actions.

B. Designators

Designators are symbolic identities that are bound to
real-world concepts. Three different designators are avail-
able in CRAM: object designators to store information
about an object, e.g., type and properties; location desig-
nators to store the location of an object, which can di-
rectly be coupled to the object itself by using for exam-
ple (bottle-loc(location(bottle1))), and ac-
tion designators which contain information about a task,
with the arguments mostly represented by other object and
location designators.

C. Fluents

CPL uses so-called fluents to react on changes in the
environment. A fluent is a system-wide variable that contains
information about sensor data or program events. CPL uses
pre-defined functions (e.g.,(whenever fluent body),
(wait-for fluent)) to trigger the agents reaction on
a change of a fluent. In our system, fluents are used for re-
planning and to stop/start CRAM threads.

D. Process modules

Process modules are low level components that convert
symbolic designators to parameterized commands that can
be sent to the robots control layer. Properties of action des-
ignators (e.g., to grasp, to open, etc.) and the object/location
designators, e.g. location coordinates, weight etc. are directed
to control messages sent to the robots control layer. In our
system the robot control layer is implemented by the ROS
Actionlib interface [21]. Our demonstrator robot AMIGO



currently has 5 different process modules; Manipulation,
Navigation, Point-Head, Speech and Perception. The process
modules are structured in such a way that similar robots
can use similar modules. For example, the manipulation
and navigation process modules of AMIGO and the PR2
are almost identical, only the names of the communication
channels to the robot control layer are different. For this
reason, the process modules can be regarded as the robots
driver layer, identical to a driver layer of for instance a
SmartPhone or Desktop PC.

VIII. AUXILIARY COMPONENTS

This section describes two auxiliary components, the Rea-
soner and the Human Machine Interface, that are required to
respectively infer the state of the environment and to deduce
a desired task from an abstract user instruction.

A. Reasoner

The Reasoner provides the system with symbolic
information about the state of the environment; it provides
the planner with an environment state overview at planning
time and it provides the executive with updated information
about objects and locations during plan execution. The
Reasoner provides a generic json prolog [22] interface to
two different sources of information, the Knowledge Base
and the World Model.

The Knowledge Base is a SWI-PL [22] static collection
of facts and rules, that are structured in a class ontology
describing all common-sense knowledge about the environ-
ment. Fig 10 gives a small example of this ontology in which
one classification and two class properties are depicted.

s u b C l a s s ( coke , d r i n k s ) .
h a s P r o p e r t y ( c a b i n e t , o b j e c t h o l d e r ) .
c l a s s A t L o c a t i o n ( d r i n k s , k i t c h e n ) .

Fig. 10. Three small Knowledge Base excerpts: an object of class ‘coke’
belongs to the superclass ‘drinks’, ‘cabinets’ can be used as ‘object holders’,
and anything belonging to the class ‘drinks’, can typically be found in the
‘kitchen’.

The World Model [23] contains a sophisticated tracking
and data association algorithm that quantifies streams of se-
quential measurements, called evidence, into unique objects.
At its core, the World Model is a multiple-hypotheses filter,
able to combine different forms of evidence into a common,
dynamically updated world representation. Evidence for the
world model can contain spatial information about an object,
as well as color, weight, structure, velocity and so on. These
attribute/value pairs are associated in the hypotheses tree,
and enable object classification based on the class attribute
information stored in the Knowledge Base.

B. Human Machine Interface

The Human Machine Interface consists of a standalone
version of the Stanford Natural Language parser, which maps
spoken commands onto a parameterized PDDL goal task.
More details about the parser can be found at [24].

IX. BASIC EXPERIMENT

The General Purpose Service Robot challenge of the
Robocup@Home League [25] is chosen as an experimental
use-case to demonstrate the basic functionality of our
system. The challenge focuses on the following aspects: (1)
there is no predefined order of actions to carry out; and
(2) environmental reasoning is required to deduce unknown
facts. In our example the unknown information consists of
the specific locations of objects and locations, such as the
‘Living room’, ‘Side table’ etc.

Fig. 12 shows the household environment in which the
robot has to execute its task. In our example, we will limit
ourselves to the task of ”Bringing a coke to Erik”. In the
experiment the coke will be located on the ‘Side-table’,
but the class position prior stored in the Knowledge Base
indicates the coke class to typically reside at the ‘Cabinet’
(classAtLocation(coke,Cabinet)). During planning the Rea-
soner is queried for information (availability and location) of
the ‘coke’ and ‘Erik’. Their expected locations are returned
by the Reasoner and the robot will start executing the
following plan:

( t o p− l e v e l−p l a n t r a n s p o r t 2 ( )
( w i t h−d e s i g n a t o r s (

( coke . . . )
( couch . . . )
( c a b i n e t . . . ) )

( a c h i e v e ‘ ( ! l o c− r o b o t c a b i n e t ) )
( a c h i e v e ‘ ( ! ob jec t− in−hand l e f t coke ) )
( a c h i e v e ‘ ( ! l o c− r o b o t E r i k ) )
( a c h i e v e ‘ ( ! o b j e c t−o n− l o c a t i o n l e f t coke E r i k ) )

Fig. 11. The top-level CPL plan composed for the task of ”Bringing a
coke to Erik”.

When the robot arrives at the cabinet, it tries to perceive
the coke for grasping, which is an integrated part of the
object-in-hand operator. If the object is perceived, it will
appear in the World Model and the robot can start grasping.
If it will not be perceived at the expected location, the action
will result in a failure which cannot be handled by the
executive. At this stage re-planning is activated by triggering
the ‘*planning-needed*’ fluent. A new plan will be composed
by SHOP2, based on an updated state of the world. The main
difference in this state will be the updated ‘coke’ prior, for
which the expected location has shifted to the ‘Side-table’,
based on the false percept at the ‘Cabinet’ (see [26] for more
details on falsification). A full movie of the experiment can
be found at http://youtu.be/iFF62gwBaqk.

X. DISCUSSION AND FUTURE WORK

This paper proposes an integrated planning and execution
framework for domestic service robots, that allows to ex-
tract planning domain knowledge from a common pool of
task descriptions. It exploits different techniques to increase
robustness, such as re-planning and the real-time referencing
of symbolic object and location entities. The first thing
that needs to be noted is the limited display of features in
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(object-in-hand left coke)
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Fig. 12. Execution of the ’Serving A Drink’ task, where the actions in
green are achieved and the actions in red have failed.

the presented experiment; the described use-case does not
show the handling of dynamic environment properties, and
it also lacks a changing action sequence after re-planning was
invoked by the executive. Furthermore, the cost evaluations
made by SHOP2 in this example are based on a unit cost
for each action. Future work will integrate function calls
that provide in better cost estimates, either by learning [27]
or physics simulations [28]. Currently also the knowledge
processing framework KnowRob [29] is being integrated, to
enable more extensive reasoning capabilities. On a short term
we want to replace the pool of PDDL operators and methods
by the globally accesible RoboEarth Action Recipe database,
allowing to share and reuse actions with other systems
through the common OWL-DL action representation. On a
longer term, we want to provide this database with feedback
on the outcome of actions, allowing the filtering and ranking
of successful actions.
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