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ABSTRACT

This paper presents a single, unified and efficient algorithm
for animating the motions of the coupler of all four-bar mecha-
nisms formed with revolute (R) and prismatic (P) joints. This is
achieved without having to formulate and solve the loop closure
equation associated with each type of four-bar linkages sepa-
rately. In our previous paper on four-bar linkage synthesis, we
map the planar displacements from Cartesian to image space us-
ing planar quaternion. Given a set of image points that represent
planar displacements, the problem of synthesizing a planar four-
bar linkage is reduced to finding a pencil of Generalized- or G-
manifolds that best fit the image points in the least squares sense.
The three planar dyads associated with Generalized G-manifolds
are RR, PR and RP which could construct six types of four-bar
mechanisms. In this paper, we show that the same unified for-
mulation for linkage synthesis leads to a unified algorithm for
linkage analysis and simulation as well. Both the unified synthe-
sis and analysis algorithms have been implemented on Apple’s
i0S platform.

1 Introduction

This paper revisits the well-studied problem of kinematic
analysis of planar four-bar linkages formed with revolute (R)
and prismatic (P) joints. The solutions to this problem are well
known and are available in undergraduate textbooks on mecha-
nism design and analysis. Typically, the problem is solved using
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the so-called vector loop closure equation which is formulated
for a specific type of planar four-bar linkages such as planar
RRRR or RRRP (slider-crank) mechanism. Recently, we have
developed a unified algorithm for simultaneous type and dimen-
sional synthesis of planar four-bar linkages [1]. With the uni-
fied algorithm, we are able to determine the type of joints, ei-
ther R or P, as well as the dimensions, simultaneously for finite
position synthesis. In this paper, we seek to develop a unified
algorithm for analysis and simulation of the resulting four-bar
linkage, without having to know the mechanism type and then
formulate the loop closure equation specifically for that particu-
lar type of mechanism. This has the potential to greatly improve
efficiency of the software development and maintenance.

There have been significant academic and commercial re-
search efforts in the development of software systems for the
synthesis and animation of planar four-bar mechanisms such as
SyMech [2], WATT [3], SAM [4] and Adams [5]. They provide
facilities to synthesize and animate the planar 4R linkage whose
four joints are all revolute joints. In order to animate the cou-
pler motion of planar 4R linkage, loop-closure equation method
(see Norton [6]) is used to find the coupler angle when the in-
put link rotates. In our previous paper [1], we presented a task
driven approach to simultaneous type and dimensional synthesis
of planar four-bar linkages using algebraic fitting of a pencil of
G-manifolds. In general, there are at most six possible types of
four-bar mechanisms that can be constructed, which are RRRR,
RRRP, RRPR, PRPR, PRRP and RPPR. The advantage of our
approach is that given a prescribed task motion, it can determine
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all the possible four-bar types together with their dimensions for
motion generation. We have recently implemented our unified
synthesis algorithm on iOS platform. Fig. 1 shows the screen
shot of the graphical user interface (GUI) of the design program
on iPad. In terms of the animation part, we have only imple-
mented planar RRRR linkage which uses the traditional method
of loop-closure equation. We plan to include the animation codes
for other four-bar linkage types as well. However, if the method
of loop-closure equation continues to be used, we have to write
six different versions of animation code for each four-bar type,
leading to code redundancy and maintenance problem. Thus, it
makes sense to have a unified algorithm for animating all six
types of four-bar mechanisms.

We use a planar quaternion formulation to transform the
task positions into points in the image space (see Bottema and
Roth [7], McCarthy [8], Ravani and Roth [9]). In this way, ge-
ometric constraints associated with planar dyads, such as circle
or line constraints, are transformed into special quadric surfaces
called constraint manifolds. In the process, we discovered a uni-
fied equation for the constraint manifolds for all planar dyads,
namely, RR, PR, RP and PP. For RR-, PR- and RP-dyad, the
quadrics are hyperboloid of one sheet, hyperbolic paraboloid I
(HP I) and hyperbolic paraboloid II (HP II), respectively. HP I
and II are just regular hyperbolic paraboloids only with the dif-
ference of being opening up along negative or positive X-axis.
The unified equation defines the generalized manifold, called G-
manifold, for all planar dyads. In this way, a planar four-bar mo-
tion, when mapped into the image space, becomes the curve of
intersection of two G-manifolds. If one can develop a general
algorithm for computing the intersection of two G-manifolds,
without having to know specifically the type of quadrics before
hand, then this algorithm could be used to unify the analysis and
simulation of all types of planar four-bar linkages. This, in turn,
has the advantage of reducing the cost of software maintenance.

Computing the intersection of two general quadrics is a clas-
sical problem in analytic geometry of three dimensions. This
problem has been solved from the computer graphics perspec-
tive by Levin [10], [11]. It is based on an analysis of the pencil
generated by the two quadrics, i.e., the set of linear combina-
tions of the two quadrics. Building on Levin’s work, Dupont
et al. [12] presented the first practical and efficient algorithm
for computing an exact parametric representation of the inter-
section of two quadric surfaces in three-dimensional space given
by implicit equations with rational coefficients. Building on the
works by Levin and Dupont et al., we provide a compact and effi-
cient algorithm to find the parametric form for the intersection of
two quadrics which are G-manifolds of planar dyads that unifies
the representation for hyperboloid of one sheet and hyperbolic
paraboloid.

The organization of the paper is as follows. Section 2 re-
views the conventional method for analyzing the coupler motion
of a planar four-bar linkage. Section 3 presents the advocated

FIGURE 1. The screen shot of graphical user interface on iPad

algorithm for unifying the computation of the coupler motions
generated by various four-bar linkages. Finally, we present six
examples for each type of four-bar mechanism to demonstrate
the efficacy of our approach.

2 Four-Bar Motion Analysis Based on the Loop-
closure Equation
In this section, we review the conventional approach to four-
bar motion analysis using loop-closure equation. For simplicity,
we use the RRRR-type as an example to outline the procedure.
Consider a planar 4R linkage shown in Fig. 2 with XOY be-
ing the fixed coordinate frame. The fixed pivot A is located at
point (xg,yo) with AgBy being the ground link and ApA the input
link. Let /; denote the length of the ith link and 0; the angle mea-
sured from the X axis of the fixed frame. Let ¢, A and y be the
angles of link AgA, AB, ByB as measured from the ground link
ApBy, respectively. A moving frame is attached to coupler link
AB at P with B measured from AB to to its x-axis. Polar coor-
dinates (r, &) represent the position of P with respect to coupler
AB. All the quantities except A and y are known values after
synthesis. When animating the 4R linkage, we rotate the input
link ApA with ¢ being known at a given moment. In order to
calculate the position and orientation of moving frame relative to
XOY at each value of ¢, the key is to find the coupler angle 7.
Using loop-closure equation (Norton [6] and Wu et al. [13]),
the relationship between coupler angle A and input link angle ¢
is given by

ot —B(9)+\/A1(9)A(0) )
2A(9)
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FIGURE 2. A planar 4R mechanism

where

A(9) = i (e — 1) )
B(¢) = 1+ 13, + 13 — 13 — 2L cos ¢ 3)
AL(9) = 1+ 13, — (I31 +101)* — 2L cos ¢ (4)
Mo(9) = 1+15y — (131 —la1)* — 2Dy cos ¢ 5)

b1 =bh/li, bi=51/l, la =1/l (6)

and the sign £ correspond to the two configurations of the four-
bar linkage for the same input angle.

With A being known, the position of moving frame, i.e., the
position vector P of its origin P can be obtained by the following
vector addition

OP =0Ap+ApA+ AP @)

where
OAg = [x0, 0] 3
ApA = [12 COS(¢ + 91), b sin(q) + 91)] )

AP = [rcos(a+ A+ 0)),rsin(a+ A + 6;)] (10)
The orientation of moving frame is calculated as
orientation = 0y + A + an

Moreover, the position of moving pivot A and B can be easily

FIGURE 3. RR Dyad

obtained as follows

OA = OA(+AjA (12)
OB = OA(+ApA +AB (13)

where
AB = [l3c08(A + 6y),35in(A + 6;)] (14)

With the computed position and orientation of moving frame
and coordinates of moving pivots , we are now able to draw the
planar 4R mechanism with its coupler motion at each frame of
animation. However, this loop-closure equation is only valid for
planar RRRR linkage. A different type of planar four-bar link-
ages calls for a different loop closure equation. This means that
one has to write six separate codes for all six types of planar
four-bar linkages. In next section, our approach will be presented
which has the benefit of unifying the kinematic analysis codes.

3 A Unifed Algorithm for General Four-Bar Motion

Analysis

In [1] we presented a unified equation for the constraint
manifolds of all types of planar dyads formed with R and P joints.
This transforms the problem of general four-bar motion analysis
into that of computing the intersection of two G-manifolds in im-
age space. The latter problem can be readily solved by applying
methods developed in the context of computer graphics.

3.1 Dyads and G-manifolds
Consider three types of dyads, RR, PR and RP. Their kine-
matic diagram are shown in Figure 3, 4 and 5.
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FIGURE 5. RP Dyad

The design parameters of a RR dyad are fixed pivot coor-
dinates (X.,Y.) relative to the fixed frame F, moving pivot co-
ordinates (u,v) relative to the moving frame M and the length r
of the first link. The design parameters of PR dyad are sliding
axis coordinates (L, Ly, L3) of P joint relative to F and the mov-
ing pivot coordinates (u,v) relative to M. The design parameters
of RP dyad are fixed pivot coordinates (X.,Y.) relative to F and
sliding axis coordinates (I1,l5,13) of P joint relative to M.

Let (d;,d,) denote the coordinates of the origin of M with
respect to F, and o denote the rotation angle of M relative to F.
Planar quaternion introduces the following mapping from Carte-
sian space parameters (dj,d», ) to image space coordinates
7 =(Z1,7,,75,7Z4) (see [7]):

Zy = (d1/2)sin(et/2) — (d»/2) cos(at/2)

Zy = (d1/2)cos(0/2) + (d2/2) sin(ct/2)

73 = sin(a/2) (15)
Z4 = cos(a/2)

where (Z,Z,,73,Z4) are homogeneous coordinates of the image
space, which is a projective three-space P3(R). The inverse re-
lationship from an image point to coordinates in the Cartesian
space is

di = 22123+ 2 74) /(23 + Z5)

dy = 2ZoZs — 21 Z4) /(23 + Z3)
cosa = (Z; - 73) /(Z3 + Z3) (16)
sina = 22374/ (23 + Z3)

The two DOF motions of RR-, PR- and RP-dyads, are rep-
resented by surfaces called G-manifolds in image space. Based
on [1], the homogeneous algebraic equation of G-manifold is
given by

Q1 (Z3 4+ 23) + q2(Z1 23 — 20Z4) + q3(ZaZ3 + Z1 Zs)
+q4(Z123 + 2pZ4) + q5(2223 — 21 Z4) + q6 2324
+q7(23 - 23) +qs(Z3 +23) =0 (17)

with the coefficients g; satisfying the following two relations:

q196 + 9295 —q394 = 0
29197 — 9294 — q395 = 0. (18)

Eq.(17) represents in general a hyperboloid of one sheet for a RR
dyad. It represents a hyperbolic paraboloid I for a PR dyad when
q1 = ¢2 = q3 = 0 and a hyperbolic paraboloid II for a RP dyad
when g1 = q4 = g5 =0.

Eq.(17) can be rewritten in matrix form as Qg = Z' [G]Z =
0} where

2+q4  43—945
2 2

Btqs  94—q2

0
Gl = 2 2 . (19)
[ ] qz-;q4 ‘13‘5QS Q7+6]8 (176
1132115 q4;q2 475 45 — q7

q1 0

Once a linkage has been synthesized, one can obtain the values
of ¢; from the original design parameters of its associated dyad
(see [1]). With the intersection algorithm to be presented later
on, the parameterization Z(¢) for the intersection curve can be
determined, and then the position and orientation of M can be
obtained through Eq. (16). With the M being calculated at each
time instant, those dyad design parameters relative to M, i.e.,
moving joints or moving lines, can be determined relative to F.
Upon working out all the instantaneous information about M and
moving joint or lines, the four-bar motion can then be animated.
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3.2 The Intersection Algorithm
Given two G-manifolds Qg, and Qg,, the outline of inter-
section algorithm is as follows (Dupont et al. [12]):

1. Construct the orthonormal transformation matrix [P]
which converts G; into diagonal matrix G; by com-
puting the eigenvalues and the normalized eigenvectors
of Gi. The same matrix [P] sends Qg, into canoni-
cal form Qg . Determine the parameterization Z(u,v) =
[Z1(u,v),Z>(u,v),Z3(u,v),Zs(u,v)] of the canonical quadric
0¢,-

2. Compute the matrix [G»]= [P]T[G,][P] for the quadric Qg,
which transforms Qg, into Q. Substitute Z(u,v) into the
algebraic equation of 0¢, ie., 27 [G2]Z = 0, to obtain the
following equation

Z(u,v)T[Go)Z(u,v) = a(v)u +b(v)u+c(v) =0. (20)

Then solve Eq. (20) for u in terms of v and use A(v) =
b*(v) —4a(v)c(v) > 0 to determine the domain of v such that
real solutions exist for u and we denote the real solutions as
u(v). Substitute u(v) into Z(u,v) to get the parameterization
Z(v) for the intersection of Q¢ and Qg, .

3. Finally, [P]Z(v) is the parameterization for the intersection
of Qg, and Qg,.

During Step 1, the canonical form Qg stays the same as
aZ} +bZ3 —cZ3 —dZ; =0 (21)

regardless whether Qg, is a hyperboloid of one sheet or hyper-
bolic paraboloid I or hyperbolic paraboloid II. The parameteriza-
tion Z(u,v) is given as (Dupont et al. [12]):

Z(u v)_[u—l—av uw—b u—av uv+>b
9 - a ) b 9 \/%7 /ibd

] (22)

In Step 3, a(v), b(v) and ¢(v) are polynomials of degree at most
two in v due to the bilinearity of Z(u,v). Therefore, A(v) is a
polynomial of degree up to four.

Over the course of the algorithm, there is no need to dis-
tinguish among the three types of G-manifolds associated with
planar RR, PR and RP dyads, and thereby unifies the coupler
motion generation code.

4 Examples and Discussions

Now, we present six examples for the planar RRRR, RRRP,
RRPR, PRPR, PRRP and RPPR linkages. For each example,
the inputs are two G-manifolds corresponding to two dyads that

FIGURE 6. Two G-manifolds (hyperboloids of one sheet) and their
intersection curve.

make up a specific four-bar linkage. The two G-manifolds are
represented by their algebraic equations Eq. (17). The out-
puts are intersection curves of the two G-manifolds. Since
the G-manifolds are represented using homogeneous equation
(Z1,2,,73,7Z4), for visualization purpose, we project the G-
manifold onto the the hyperplane Z, = 1.

4.1 Example: Planar RRRR Linkage
Consider a planar RRRR linkage whose G-manifolds asso-
ciated with two RR dyads are given by

RR1: —2(Z} +23) +9.18(Z1Z3 — ZyZ4) +2.68(Z2Z3 + Z1Zs4)
+2.3(Z1Z5 + ZoZ4) 4 0.76(ZyZ3 — Z1 Z4) + 0.4064Z3 Z4
—5.7877(Z2 —73) — 1.252(Z2 +Z3) =0 (23)

RR2: —2(Z2+72)+2.48(Z1Zs — ZoZ4) +0.2(Z2Z3 + Z1Z4)

—4.4(Z\Zs +Z274) —0.2(ZpZ3 — Z1Z4) +0.192Z3Z4
+2.738(Z2 — 73) — 2.43265(Z3 +73) =0 (24)

The two G-manifolds and their intersection are shown in Fig. 6.
In this case, both G-manifolds happen to be hyperboloids of one
sheet and their curve of intersection has two branches. Each
branch corresponds to one configuration of the planar four-bar
mechanism.
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FIGURE 7. The G-manifolds of a crank-slider mechanism.

4.2 Example: RRRP

Consider an example for RRRP (Crank-Slider) mechanism.
The two algebraic equations of constraint manifolds correspond-
ing to RR and PR are

RR: —2(Z} +73) — 42123 — ZoZs) — 6(Z0Z3 + 71 Zs)

+0(Z1Z3 + Zo74) + 2(Z0Z3 — Z1Z4) — AZ3 74
+3(Z2—-73)—6.5(23+72) =0 (25)

PR: O(Z}+23)+0(Z123 — ZoZ4) + 0(ZaZ5 + 71 Z4)

22123+ 2y Z4) + 42223 — Z1Z4) + 10232,
+5(Z3-Z3) + 1(Z3+273) =0 (26)

The G-manifolds and their intersection curve are shown in Fig. 7.
One G-manifold is hyperboloid of one sheet and the other one
hyperbolic paraboloid I. In this case, the curve of intersection
has also two branches and each corresponds to one configuration
of Crank-Slider mechanism.

4.3 Example: RRPR

Consider an example for RRPR (Swing-Block) mechanism.
The two algebraic equations of constraint manifolds correspond-
ing to RR and RP are

RR: —2(Z} +73) — 4(Z1Z3 — Zo7Z4) — 5.98(22Z3 + Z1 Z3)
+0(le3 —l—ZzZ4) + 2(ZzZ3 — Z]Z4) — 47574
4+2.99(25 —73) —4.9711(Z3 +73) =0 27

FIGURE 8. The G-manifolds of a swing-block mechanism.

RP: 0(Z} +23) + 0(Z123 — ZoZs) + 2(Z2Z3 + Z1 Z4)
+0(Z1Z3 + 2224) +0(2p 23 — Z1Z4) — 42374
—3(Z3 -2} +3(Z3+23) =0 (28)

The intersection curves are shown in Fig. 8. One G-manifold is
hyperboloid of one sheet and the other one hyperbolic paraboloid
IL. There are two branches of the intersection curve and each cor-
responds to one configuration of Swing-Block mechanism.

4.4 Example: PRPR

Consider an example for PRPR (Slider-Swinging Block)
mechanism. The two algebraic equations of constraint manifolds
corresponding to PR and RP are

PR: 0(Z +23) 4+ 0(Z123 — ZoZs) +0(Z2Z3 + Z1 Z4)
+2(Z1Z3 + Z2Z4) + 2(Z2Z3 — Z1Z4) — 167374
+4.0034(Z3 — 73) +2.0017(Z3 +73) =0 (29)
RP: 0(Z +23) + 0(Z123 — ZoZs) + 2(Z2Z3 + Z1Z4)
+0(Z1Z5 + ZpZ4) + 0(Z2Z3 — Z1Z4) — 5.999473 7,
+2(Z3-73) - 2(Z3+73) =0 (30)

The intersection curves are shown in Fig. 9. One G-manifold is
hyperbolic paraboloid I and the other one hyperbolic paraboloid
II. There are two branches for the intersection curve and each cor-
responds to one configuration of Slider-Swinging Block mecha-
nism.
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FIGURE 9. The G-manifolds of a slider-swinging block mechanism.

4.5 Example: PRRP

Consider an example for PRRP (Double-Slider) mechanism.
The two algebraic equations of constraint manifolds correspond-
ing to the two PR dyads are

PR1:  O(Z}4+23) +0(Z123 — ZyZ4) + O(ZaZs + 21 Zs)

+1.8632(Z1Z3 + Z2Z4) — 0.727(ZyZ3 — Z1 Z4) — 5.84237374
+3.0797(23 — Z3) +0.5684(Z3 +73) = 0 (31)

PR2: 0(Z2 4+ 23) 4+ 0(Z1Zs — Z2Z4) + 0(Z2Z3 + 21 Z4)

+1.8566(Z1Z3 + Z2Z4) +0.7438(ZyZ3 — Z1 Z4) — 10.9583Z3Z4
+3.4351(Z3 —73) +1.2995(Z3 +73) =0 (32)

The intersection curve is shown in Fig. 10. Both G-manifolds are
hyperbolic paraboloid I. There is only one intersection curve cor-
responding to the single configuration of Double-Slider mecha-
nism.

4.6 Example: RPPR ~
Consider an example for RPPR (Double-Swinging Block)

mechanism. The two algebraic equations of constraint manifolds
corresponding to the two RP dyads are FIGURE 11. The G-manifolds of a double-swinging block mecha-

nism.
RP1: O(Z}+7Z3)+0.4712(Z1Z3 — ZyZ4) + 1.9438(Z2Z3 + 21 Z4)
+0(Z1Z5 + ZpZ4) +0(Z2Z3 — Z1Z4) +0.4973Z3Z4
—0.0243(Z3 — 73) +4.0818(Z3 +73) =0 (33) The . < hown in Fie. 11 Both Gmanifold
) 2 B B e intersection curve is shown in Fig. 11. Both G-manifolds
RP2: O(Z{ +23) + 1.8574(2123 = ZrZ4) = 0.7418(2225 + 21 Z4) are hyperbolic paraboloid II. The intersection curve has only one

+06(Z1Z3 + Z2Z4) +0(Z2Z3 — 21 Z4) +3.4594Z3Z4  pranch which corresponds to the single configuration of Double-
—3.7661(Z3 — 73) +4.2042(Z3+73) =0 (34) Swinging Block mechanism.
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5 Conclusions

In this paper, we presented a unified algorithm to the analy-
sis and simulation of all types of planar four-bar motions. Instead
of taking the approach of loop-closure equation towards simula-
tions of different four-bar types, we employ planar quaternion to
map a four-bar mechanism into a pair of G-manifold in image
space and therefore the four-bar coupler motion ends up being
the intersection curves. The animation problem is then reduced
to the problem of determining the parameterization for the in-
tersection curves. Since our G-manifolds are in the category of
quadrics, and limited to hyperboloid of one sheet and hyperbolic
paraboloid, there exists a simple and efficient algorithm to find
the parameterization. The six examples provided fully demon-
strate the effectiveness of this algorithm.
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