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ABSTRACT 

A new method to calculate the elastic deformation of a 
sphere on a flat surface is presented. The model considers the 
influence of short-range as well as long-range attractive forces 
both inside and outside the actual contact area. In contrast to 
earlier models, this theory describes the nature of these 
deformations in the intermediate regime between the so-called 
JKR and DMT limits by simple analytic expressions. Equations 
for the calculation of the contact radius, the deformation, and 
the pressure distribution are given. In all equations, the critical 
force that might vary between the limiting values found in the 
DMT and the JKR model acts as transition parameter. 

 
1. INTRODUCTION 
The problem of the elastic deformation of a contact between a 
sphere and a flat surface (or two spheres, respectively) has been 
evolved in many regards as the “classical” contact mechanical 
problem ever since it was first addressed by Hertz in 1881 [1]. 
Hertz’s approach, however, does not include adhesion, which 
might significantly influence the contact’s behavior, especially 
if the contact’s dimensions shrink to the nanometer scale. It 
took almost a century before Johnson, Kendall, and Roberts 
(JKR) presented in 1971 a theory that included the effect of 
adhesion [2]. Unfortunately, the approximations used in the 
derivation restrict its range of validity to large, soft contacts 
(the so-called JKR limit). In contrast, a model developed by 
Derjaguin, Muller, and Toporov (DMT) in 1975 [3], which was 
later simplified by Maugis [4] (referred to as the “DMT-M” [5] 
or “Hertz-plus-offset” model), applies only to the limit of small, 
hard contacts (DMT limit). For both models, simple analytic 
descriptions exist, while the general theoretical description of 
the mechanical behavior of models covering the intermediate 
regime between the JKR and the DMT limit so far required 
numerical approaches [4-6].  

In this paper, we will present a new theory [7] that covers 
the full parameter range for the adhesive sphere-plane contact, 
but nevertheless results in simple equations describing the 
contact area, the vertical deformation, and the pressure 
distribution as a function of the externally applied load. The 
 

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
theory is based on a model interaction force that includes both 
short-range and long-range components. In all equations, the 
critical force that might vary between the limiting values found 
in the DMT and the JKR model acts as transition parameter. 

 
2. DEVELOPMENT OF THE NEW MODEL 

The theories currently used most for the description of the 
adhesive sphere-on-plane contact are all based on the same set 
of assumptions: 
1. Deformations are supposed to be purely elastical. 
2. The contacting materials are elastically isotropic. 
3. Neither Young's modulus E nor Poisson's ratio ν change 

under load. 
4. The atomic structure is not taken into account. 
5. The contact radius a is small compared to the radius R of 

the sphere. 
6. The curvature of the sphere in the contact area is described 

by a paraboloid. 
Differences between the various models occur, however, in 

the nature of the forces that are supposed to act between sphere 
and flat. Figure 1 illustrates the issue, where the interaction 
forces (thick grey lines) used in the various models (b-f) are 
plotted in comparison to a realistic interaction [(a) and black 
lines in (b-f)]. Attractive forces are not included in the Hertz 
model (b) [1], whereas they are considered by a delta function 
in the JKR model (c) [2], by a long-range force in the DMT 
model (d) [3], and by a step function (Dugdale force) in the 
Maugis-Dugdale (MD) model (e) [4]. The MD model is the 
most popular theory so far approximating the full behavior of a 
sphere-plane contact even in the JKR-DMT transition regime, 
since it features a set two coupled analytical equations, which 
are comparatively easy to solve numerically. All model 
interactions feature hard-wall repulsion if intimate contact is 
established at z = z0. 

It is essential to recognize that all valid model forces that 
include adhesion have to possess an area between the force 
curve and the distance axis that is equivalent to the work of 
adhesion γ if plotted in units of force per unit area (shaded areas 
in a). Therefore, the total areas within the delta function in c) as  
1 Copyright © 2005 by ASME 
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Figure 1. The interaction forces used in the various 
models (see text for details). 

 
well as within the long-range potential in d) and the step 
function potential in d) have to be adjusted accordingly. As a 
consequence, the JKR model tends to overestimate short-range 
forces, while the DMT model overstates long-range forces. 

To derive the new model introduced here, we formally split 
the area representing γ in the realistic interaction into two parts: 
Part 1, denoted as w1, reflects the work of adhesion due to 
short-range forces, while the second part w2 includes the work 
of adhesion due to long-range interactions. w1 and w2 are 
chosen such that w1 + w2 = γ. This allows us to create a model 
force for the new theory that consists out of a combination 
between a delta function as in the JKR model and a long-range 
interaction similar to the one in the DMT model (see Fig. 1f). If 
the two curves are adjusted such as the area within the delta 
peak is equivalent to w2 and the area of the long-range potential 
equivalent to w2, we obtain a valid model force since w1 + w2 = 
γ. By combining mathematical procedures developed for the 
derivation of the JKR and the DMT models, the contact 
mechanical problem can be solved, resulting in the following 
equations for the contact radius a, the deformation δ, and the 
pressure distribution p as a function of the distance r from the 
center of the contact circle: 
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Here, Fl denotes the externally applied load and K the effective 
elastic modulus, which combines the elastic properties of 
sphere and plane., Fc represents the critical force that has to be 
applied to separate sphere and plane, which found to be Fc =     
-1.5Rw1 - 2Rw2. A detailed description of the derivation of the 
above equations including an in-depth discussion of the 
theoretical background can be found in Ref. 7. In the same 
work, it has also been shown that the equation for the contact 
radius a fits very well to results computed using the MD model, 
demonstrating the validity of the new approach. 

From the way we constructed the new model force, we are 
free to choose the relative fraction with which w1 and w2 
contribute to the total work of adhesion γ. For w1/γ = 1, e.g., we 
obtain the JKR model, while w1/γ = 0 leads to the DMT 
solution. If, however, the ratio w1/γ is somewhere between 0 
and 1, we are in the transition region from JKR to DMT. With 
other words, the relative strength of long-range compared to 
short-range forces can be continuously adjusted by changing 
the ratio w1/γ between 0 and 1, thereby covering the JKR-DMT 
transition. This is introduced indirectly in the above equations 
via the critical force Fc, which changes from Fc = -1.5Rγ for 
w1/γ = 1 to Fc = -2Rγ for w1/γ = 0. Thus, the critical force Fc 
effectively acts as transition parameter, which determines how 
“JKR-like” or “DMT-like” the contact appears to be. 

In conclusion, we presented a new model that describes the 
elastic behavior of an adhesive contact between a sphere and a 
plane in the full parameter range between the JKR and DMT 
limits, but still results in simple analytical equations. 
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