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Abstract

The tight span, or injective envelope, is an elegant and useful construction that
takes a metric space and returns the smallest hyperconvex space into which it
can be embedded. The concept has stimulated a large body of theory and has
applications to metric classification and data visualisation. Here we introduce a
generalisation of metrics, called diversities, and demonstrate that the rich theory
associated to metric tight spans and hyperconvexity extends to a seemingly
richer theory of diversity tight spans and hyperconvexity.

Keywords: Tight span; Injective hull; Hyperconvex; Diversity; Metric
geometry;

1. Introduction

Hyperconvex metric spaces were defined by Aronszajn and Panitchpakdi in
[1] as part of a program to generalise the Hahn-Banach theorem to more general
metric spaces (reviewed in [2], and below). Isbell [3] and Dress [4] showed that
every metric space could be embedded into a minimum hyperconvex space,
called the tight span or injective envelope.

Our aim is to show that the notion of hyperconvexity, the tight span, and
much of the related theory can be extended beyond metrics to a class of multi-
way metrics which we call diversities. Specifically, a diversity is a pair (X, δ)
where X is a set and δ is a function from the finite subsets of X to < ∪ {∞}
satisfying

(D1) δ(A) ≥ 0, and δ(A) = 0 if and only if |A| ≤ 1.
(D2) If B 6= ∅ then δ(A ∪ C) ≤ δ(A ∪B) + δ(B ∪ C).

We prove below that these axioms imply monotonicity:

(D3) If A ⊆ B then δ(A) ≤ δ(B).
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We will show that tight span theory adapts elegantly from metric spaces to
diversities. The tight span of a metric (X, d) is formed from the set of point-
wise minimal functions f : X → < ∪ {∞} such that f(a1) + f(a2) ≥ d(a1, a2)
for all a1, a2 ∈ X. Letting Pf(X) denote the finite subsets of X, the tight
span of a diversity (X, δ) is formed from the set of point-wise minimal functions
f : Pf(X)→ <∪ {∞} such that

f(A1) + f(A2) + · · ·+ f(Ak) ≥ δ(A1 ∪A2 ∪ · · · ∪Ak)

for all finite collections {A1, A2, . . . , Ak} ⊆ Pf(X). We can embed a metric
space in its tight span (with the appropriate metric on the tight span); we can
embed a diversity in its tight span (with the appropriate diversity on the tight
span). Both constructions have characterisations in terms of injective hulls, and
both possess a rich mathematical structure.

The motivation for exploring tight spans of diversities was the success of the
metric tight span as a tool for classifying and visualising finite metrics, follow-
ing the influential paper of Dress [4]. The construction provided the theoretical
framework for split decomposition [5] and Neighbor-Net [6], both implemented
in the SplitsTree package [7] and widely used for visualising phylogenetic data.
By looking at diversities, rather than metrics or distances, our hope is to incor-
porate more information into the analysis and thereby improve inference [8].

Dress et al. [9] coined the term T-theory for the field of discrete mathemat-
ics devoted to the combinatorics of the tight span and related constructions.
Sturmfels [10] highlighted T-theory as one area where problems from biology
have led to substantial new ideas in mathematics. Contributions to T-theory
include: profound results on optimal graph realisations of metrics [4, 11, 12];
intriguing connections between the Buneman graph, the tight span and related
constructions [9, 12–16]; links with tropical geometry and hyperdeterminants
[17, 18]; classification of finite metrics [4, 19]; and properties of the tight span
for special classes of metrics [20, 21]. Hirai [22] describes an elegant geometric
formulation of the tight span. We believe that there will be diversity analogues
for many of these metric space results.

Our use of the term diversity comes from the appearance of a special case of
our definition in work on phylogenetic and ecological diversity [23–25]. However
diversities crop up in a broad range of contexts, for example:

1. Diameter Diversity. Let (X, d) be a metric space. For all A ∈ Pf(X) let

δ(A) = max
a,b∈A

d(a, b) = diam(A).

2. L1 diversity For all finite A ⊆ <n define

δ(A) =
∑
i

max
a,b
{ai − bi : a, b ∈ A}.

3. Phylogenetic Diversity. Let T be a phylogenetic tree with taxon set X.
For each finite A ⊆ X, the phylogenetic diversity of A is the length δ(A)
of the smallest subtree of T connecting taxa in A.
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4. Length of the Steiner Tree. Let (X, d) be a metric space. For each finite
A ⊆ X let δ(A) denote the minimum length of a Steiner tree connecting
elements in A.

The generalisation of metrics to more than two arguments has a long history.
There is an extensive literature on 2-metrics (metrics taking three points as
arguments) see, for example, [26]. Generalised metrics defined on n-tuples for
arbitrary n go back at least to Menger [27], who took the volume of an n-
simplex in Euclidean space as the prototype. Recently various researchers have
continued the study of such generalised metrics defined on n-tuples, see [28–30]
for examples. However, as of yet, a satisfactory theory of tight spans has not
yet been developed for these generalisations. Our definition of diversities also
differs from this earlier work in that a diversity function is defined on arbitrary
finite subsets of a space, rather that tuples of a fixed length.

The structure of this paper is as follows: In Section 2 we develop the basic
theory of tight spans on diversities, defining the appropriate diversity for a
tight span and showing that every diversity embeds into its tight span. In
Section 3 we characterise diversities that are isomorphic to their tight spans.
These are the hyperconvex diversities, where the concept of hyperconvexity is a
direct extension of metric hyperconvexity. We prove that diversity tight spans,
like metric tight spans, are injective, and are formally the injective envelope in
the category of diversities. In Section 4 we explore in more detail the direct
links between diversity tight spans and metric tight spans. We show when the
diversity equals the diameter diversity (as defined above) the metric tight span
and the resulting diversity tight span are isomorphic. In Section 5 we study the
tight span of a phylogenetic diversity, and prove that taking the tight span of a
phylogenetic diversity recovers the underlying tree, in the same way that taking
the tight span of an additive metric recovers its underlying tree. This theory
is developed for real trees. Finally, in Section 6 we examine applications of the
theory to the classical Steiner Tree problem, extending results of [31] about the
embedding of ‘abstract’ Steiner trees in tight spans.

2. The tight span of a diversity

We begin by establishing some basic properties of diversities. Recall that
Pf(X) denotes all the finite subsets of the set X, and that a diversity is a
function δ : Pf(X)→ <∪ {∞} satisfying axioms (D1) and (D2).

Proposition 2.1. Let (X, δ) be a diversity.

1. If d : X ×X → <∪ {∞} is defined as d(x, y) = δ({x, y}) then (X, d) is a
metric space. We say that (X, d) is the induced metric of (X, δ).

2. (D3) holds, that is, for A,B ∈ Pf(X), if A ⊆ B then δ(A) ≤ δ(B).
3. For A,B ∈ Pf(X) if A ∩B 6= ∅ then δ(A ∪B) ≤ δ(A) + δ(B).

Proof.
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1. That d(x, y) = 0 if and only if x = y follows from (D1). Symmetry is
clear. To obtain the triangle inequality, for any x, y, z ∈ X,

d(x, z) = δ({x, z}) ≤ δ({x, y}) + δ({y, z}) = d(x, y) + d(y, z),

using (D2).
2. First note for any a ∈ A and b ∈ X that by (D2) with C empty

δ(A) ≤ δ(A ∪ {b}) + δ({b}) = δ(A ∪ {b}).

The more general result follows by induction.
3. Using (D2)

δ(A ∪B) ≤ δ(A ∪ (A ∩B)) + δ(B ∪ (A ∩B)) = δ(A) + δ(B).

�

We now state the diversity analogue for the metric tight span.

Definition 2.2. Let (X, δ) be a diversity. Let PX denote the set of all functions
f : Pf(X)→ <∪ {∞} satisfying f(∅) = 0 and∑

A∈A

f(A) ≥ δ
( ⋃
A∈A

A
)

(2.1)

for all finite A ⊆ Pf(X). Write f � g if f(A) ≤ g(A) for all finite A ⊆ X. The
tight span of (X, δ) is the set TX of functions in PX that are minimal under �.

Example. Any diversity δ on X = {1, 2, 3} is determined by the four values

d12 = δ({1, 2}), d23 = δ({2, 3}), d13 = δ({1, 3}), d123 = δ({1, 2, 3}).

We write fi = f({i}), fij = f({i, j}) and f123 = f({1, 2, 3}) for i, j ∈ X.
Condition (2.1) then translates to the following set of inequalities:

fi ≥ 0
fij ≥ dij

fi + fj ≥ dij (2.2)
f123 ≥ d123

fi + fjk ≥ d123

f1 + f2 + f3 ≥ d123

for distinct i, j, k ∈ X. Note we have omitted inequalities like fij + fjk ≥ d123

since these are implied by (2.2) and the triangle inequality (D2). The elements
of TX are the minimal f in PX . Equivalently, TX are the set of f that satisfy
(2.2) and such that for each nonempty A ⊆ X, fA appears in an inequality in
(2.2) that is tight.
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A straightforward but tedious analysis of the inequalities (which we omit)
gives the following characterisation of TX . Define the three ‘external’ vertices

v(1) = (0, d12, d13)
v(2) = (d12, 0, d23)
v(3) = (d13, d23, 0)

and the four ‘internal’ vertices

u(0) = (d123 − d23, d123 − d13, d123 − d12).
u(1) = u(0) − (β, 0, 0)
u(2) = u(0) − (0, β, 0)
u(3) = u(0) − (0, 0, β),

where β = max(2d123 − d12 − d23 − d13, 0). Let C be the cell complex formed
from the line segments [u(1), v(1)], [u(2), v(2)], [u(3), v(3)] and the tetrahedron
with vertices u(1), . . . , u(4). A case-by-case analysis gives that f ∈ TX if and
only if (f1, f2, f3) ∈ C, f23 = max(d23, d123 − f1), f13 = max(d13, d123 − f2),
f23 = max(d12, d123 − f3), f123 = d123. If β ≤ 0 then u(0) to u(3) coincide, and
the tight span resembles the metric tight span for the induced metric, albeit
sitting in a higher dimensional space (Figure 1a). When β > 0 the tight span
resembles a tetrahedron with three spindles branching off, as in Figure 1b. �

Figure 1: Two examples of the tight span on three points, with different values for d({1, 2, 3}).
On the left an example where 2d123 ≤ d12 + d23 + d13, and the diversity tight span resembles
the tight span of the induced metric. On the right a case with 2d123 > d12 + d23 + d13.

We now prove a characterisation of the diversity tight span which will be
used extensively throughout the remainder of the paper (Theorem 2.3). Note
that the diversity function can take value∞, so expressions like δ(A∪B)−f(B)
in the statement of Theorem 2.3 can be indeterminate. We follow the convention
that suprema and infina are only taken over the elements of a set that are not
indeterminate.

Theorem 2.3. Let f : Pf(X)→ <∪ {∞} and suppose f(∅) = 0. Then f ∈ TX
if and only if for all finite A ⊆ X,

f(A) = sup
B⊆Pf (X)

{
δ
(
A ∪

⋃
B∈B

B
)
−
∑
B∈B

f(B) : |B| <∞

}
. (2.3)
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Proof.
Suppose that f ∈ TX . As f(∅) = 0, the supremum in (2.3) is well defined. For
all finite A ⊆ X and all finite B ⊆ Pf(X) we have

f(A) ≥ δ(A ∪
⋃
B∈B

B)−
∑
B∈B

f(B)

whenever the right hand side is not indeterminate, giving the required lower
bound on f(A). Now suppose that for some finite A0

f(A0) > sup
B⊆Pf (X)

{
δ
(
A0 ∪

⋃
B∈B

B
)
−
∑
B∈B

f(B) : |B| <∞

}
. (2.4)

Define a function g : Pf(X)→ <≥0 by

g(A) =

{
f(A) if A 6= A0

supB⊆Pf (X)

{
δ
(
A0 ∪

⋃
B∈B B

)
−
∑
B∈B f(B) : |B| <∞

}
if A = A0.

Clearly g 6= f and g � f . We show that g is in PX . Let A be a finite subset of
Pf(X). If A0 6∈ A then∑

A∈A

g(A) =
∑
A∈A

f(A) ≥ δ
( ⋃
A∈A

A
)
.

If A0 ∈ A then∑
A∈A

g(A) = sup
B⊆Pf (X)

{
δ
(
A0 ∪

⋃
B∈B

B
)
−
∑
B∈B

f(B) : |B| <∞

}
+

∑
B∈A \{A0}

f(B)

≥ δ
(
A0 ∪

⋃
B∈A \{A0}

B
)

= δ(
⋃
A∈A

A),

by letting B = A \ {A0}. So g ∈ PX , g 6= f and g � f , contradicting f ∈ TX .
Hence there is no A0 satisfying (2.4) and that if f ∈ TX then (2.3) holds for all
finite A ⊆ X.

For the converse, suppose that (2.3) holds for all finite A ⊆ X. Then f ∈ PX .
Suppose that g ∈ PX , that g � f and A ∈ Pf(X). Then for all finite B ⊆ Pf(X)
such that

δ
(
A ∪

⋃
B∈B

B
)
−
∑
B∈B

f(B)

is not indeterminate, we have

δ
(
A ∪

⋃
B∈B

B
)
−
∑
B∈B

f(B) ≤ δ
(
A ∪

⋃
B∈B

B
)
−
∑
B∈B

g(B) ≤ g(A)

so that f(A) ≤ g(A). Hence f is minimal in PX . �

The following basic properties of members of TX will be used subsequently.
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Proposition 2.4. Suppose that f ∈ TX .

1. f(A) ≥ δ(A) for all finite A ⊆ X.
2. If A ⊆ B ⊆ X and B is finite then f(A) ≤ f(B); that is, f is monotone.
3. f(X) = δ(X).
4. f(A ∪ C) ≤ δ(A ∪B) + f(B ∪ C) for all A,B,C ∈ Pf(X) with B 6= ∅.
5. f(A ∪B) ≤ f(A) + f(B) for all A,B ∈ Pf(X); that is, f is sub-additive.
6. f(A) = supB {δ(A ∪B)− f(B) : B ∈ Pf(X)} for all finite A.

Proof.
1. Use A = {A} in the definition of PX .
2. Follows from (2.3) and the monotonicity of δ.
3. From (2.3), f(X) ≤ δ(X) and from part 1, δ(X) ≤ f(X).
4. Let A,B,C ∈ Pf(X) with B 6= ∅. We have

f(A ∪ C) = sup
D⊆Pf (X)

{
δ(A ∪ C ∪

⋃
D∈D

D)−
∑
D∈D

f(D) : |D | <∞

}
,(2.5)

f(B ∪ C) = sup
D⊆Pf (X)

{
δ(B ∪ C ∪

⋃
D∈D

D)−
∑
D∈D

f(D) : |D | <∞

}
,(2.6)

Subtracting (2.6) from (2.5) gives

f(A ∪ C)− f(B ∪ C) ≤ sup
D⊆Pf (X)

{
δ
(
A ∪ C ∪

⋃
D∈D

D
)
− δ
(
B ∪ C ∪

⋃
D∈D

D
)

: |D | <∞

}
≤ δ(A ∪B),

by taking D = ∅ and using the triangle inequality.
5. Given any A,B ∈ Pf(X) and any finite collection C ⊆ Pf(X) we have

f(A) + f(B) +
∑
C∈C

f(C) ≥ δ
(
A ∪B ∪

⋃
C∈C

C
)

so that

f(A) + f(B) ≥ sup
C⊆Pf (X)

{
δ
(
A ∪B ∪

⋃
C∈C

C
)
−
∑
C∈C

f(C) : |C | <∞

}
= f(A ∪B)

by Theorem 2.3.
6. For any finite B ⊆ Pf ,

∑
B∈B f(A) ≥ f(∪B∈BB). So

sup
B∈Pf (X)

{
δ(A ∪

⋃
B∈B

B)−
∑
B∈B

f(B) : |B| <∞

}
= sup
C∈Pf (X)

{δ(A ∪ C)− f(C)} .

�
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The distance between any two functions f, g in the metric tight span is given
by the l∞ norm,

dT (f, g) = sup
x∈X
|f(x)− g(x)|, (2.7)

which Dress [4] shows is equivalent on this set to

dT (f, g) = sup
x,y∈X

{d(x, y)− f(x)− g(y)}. (2.8)

Dress also showed that a metric can be embedded into its tight span using the
Kuratowski mapping κ, which takes an element x ∈ X to the function hx for
which hx(y) = d(x, y) for all y.

Here we establish the analogous results for the diversity tight span. We
define the appropriate function κ from a diversity to its tight span, define the
diversity δT on the tight span itself, and prove that κ is an embedding. We will
show that, up to isomorphism, it is the unique way to define a diversity so that
(TX , δT ) is the injective hull of (X, δ).

Definition 2.5. 1. Let (Y1, δ1) and (Y2, δ2) be two diversities. A map π : Y1 →
Y2 is an embedding if it is one-to-one (injective) and for all finite A ⊆ Y1

we have δ1(A) = δ2(π(A)). In this case, we say that π embeds (Y1, δ1) in
(Y2, δ2).

2. Let (X, δ) be a diversity. For each x ∈ X define the function hx : Pf(X)→
<∪ {∞} by

hx(A) = δ(A ∪ {x})

for all finite A ⊆ X. Let κ be the map taking each x ∈ X to the corre-
sponding function hx.

3. Let (X, δ) be a diversity. Let δT : Pf(TX) → < ∪ {∞} be the function
defined by δT (∅) = 0 and

δT (F ) = sup
A⊆Pf (X)

{
δ

( ⋃
A∈A

A

)
−
∑
A∈A

inf
f∈F

f(A) : |A | <∞

}
(2.9)

for all finite non-empty F ⊆ TX .

Further manipulations give a form for δT analogous to (2.8):

δT (F ) = sup
{Af}f∈F

δ
⋃
f∈F

Af

−∑
f∈F

f(Af ) : Af ∈ Pf(X) for all f ∈ F

 ,

for all finite F ⊆ Pf(TX). We can also re-express (2.9) in a form closer to (2.7):

Lemma 2.6. If f ∈ F then

δ(F ) = sup
A⊆Pf (X)

{
f

( ⋃
A∈A

A

)
−
∑
A∈A

inf
g∈F\{f}

g(A) : |A | <∞

}
.
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Proof.

δ(F ) = sup
A ,B⊆Pf (X)

{
δ

( ⋃
A∈A

A ∪
⋃
B∈B

B

)
−
∑
A∈A

inf
g∈F\{f}

g(A)−
∑
B∈B

f(B) : |A |, |B| <∞

}

= sup
A⊆Pf (X)

{
f

( ⋃
A∈A

A

)
−
∑
A∈A

inf
g∈F\{f}

g(A) : |A | <∞

}
,

by Theorem 2.3. �

Theorem 2.7. (TX , δT ) is a diversity.

Proof.
First note that for all F ⊆ TX , when A = {∅},

δ

( ⋃
A∈A

A

)
−
∑
A∈A

inf
f∈F

f(A) = 0

so that δT is non-negative.
If ∅ 6= F ⊆ G then for all A ⊆ Pf(X) with |A | <∞ we have∑

A∈A

inf
f∈F

f(A) ≥
∑
A∈A

inf
f∈G

f(A).

Hence δT (F ) ≤ δT (G), showing that δT is monotone.
Now suppose F = {f}. Then δT (F ) ≤ sup {δ (A)− f(A) : A ∈ Pf(X)} = 0

by the subadditivity of f and by part 1 of Proposition 2.4. Conversely, suppose
|F | > 1. Let f1, f2 ∈ F , f1 6= f2. By monotonicity and Lemma 2.6 we have

δT (F ) ≥ δT ({f1, f2})

= sup
A⊆Pf (X)

{
f1

( ⋃
A∈A

A

)
− f2

( ⋃
A∈A

A

)
: |A | <∞

}
= sup

A∈Pf (X)

{f1(A)− f2(A)}

> 0,

proving that δT satisfies diversity property (D1).
For the triangle inequality, suppose F and G are disjoint finite subsets of TX

and that h ∈ TX \ (F ∪G). Then by Lemma 2.6

δT (F ∪ {h}) = sup
A⊆Pf (X)

{
h

( ⋃
A∈A

A

)
−
∑
A∈A

inf
f∈F

f(A) : |A | <∞

}
(2.10)

and

δT (G ∪ {h}) = sup
B⊆Pf (X)

{
h

( ⋃
B∈B

B

)
−
∑
B∈B

inf
g∈G

g(B) : |B| <∞

}
.(2.11)
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By part 5 of Proposition 2.4 the function h is sub-additive, so

h

( ⋃
A∈A

A

)
+ h

( ⋃
B∈B

B

)
≥ h

( ⋃
C∈A∪B

C

)
. (2.12)

Combining (2.10)–(2.12) and again applying Lemma 2.6 we have

δT (F ∪ {h}) + δT (G ∪ {h}) ≥ sup
C⊆Pf (X)

{
h

( ⋃
C∈C

C

)
−
∑
C∈C

inf
f∈F∪G

f(C) : |C| <∞

}
= δT (F ∪G ∪ {h}).

The triangle inequality (D2) now follows by monotonicity.
�

Theorem 2.7 establishes that δT is a diversity, but leaves open the question of
why this particular diversity. Here we characterise δT in terms of a minimality
condition and prove that κ is indeed an embedding. In the proof of Theorem 3.7,
this result is used to show that δT is the unique diversity satisfying the conditions
of an injective hull.

Theorem 2.8. 1. The map κ is an embedding from (X, δ) into (TX , δT ).
2. For all finite Y ⊆ X and f ∈ TX ,

δT (κ(Y ) ∪ {f}) = f(Y ).

3. If δ̂ is any diversity on TX such that δ̂(κ(Y ) ∪ {f}) = f(Y ) for all finite
Y ⊆ X and f ∈ TX then

δ̂(F ) ≥ δT (F )

for all finite F ⊆ TX .

Proof.
1. Fix x ∈ X. Consider finite A ⊆ Pf(X). The triangle inequality for diversi-
ties, (D2), gives

∑
A∈A

hx(A) =
∑
A∈A

δ(A ∪ {x}) ≥ δ

( ⋃
A∈A

A

)

so that hx ∈ PX . There is g ∈ TX such that g � hx. Since hx({x}) = δ({x}) = 0
we have for all finite A ⊆ X that

hx(A) = δ(A∪ {x}) ≤ g(A)+g({x}) ≤ g(A)+hx({x}) = g(A) ≤ hx(A).

Hence hx = g ∈ TX .
To see that κ is one-to-one observe that for x 6= y, hx({x}) = 0 but hy({x}) =

δ({x, y}) > 0. So hx 6= hy for distinct x, y ∈ X.
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Finally, let Y ⊆ X, Y = {y1, . . . , yk}. Taking A = {{y1}, . . . , {yk}} in (2.9)
gives δT (κ(Y )) ≥ δ(Y ). By repeatedly using the triangle inequality we have for
any finite A = {A1, A2, . . . , Aj} ⊆ Pf(X) and z1, . . . , zj ∈ Y that

δ(Y ) ≥ δ(Y ∪A1)− δ({z1} ∪A1)
≥ δ(Y ∪A1 ∪A2)− δ({z1} ∪A1)− δ({z2} ∪A2)

≥ δ

(
Y ∪

j⋃
i=1

Ai

)
−

j∑
i=1

δ({zi} ∪Ai)

≥ δ

(
j⋃
i=1

Ai

)
−

j∑
i=1

hzi
(Ai)

≥ δ

(
j⋃
i=1

Ai

)
−

j∑
i=1

inf
h∈κ(Y )

h(Ai).

Taking the supremum over all such A gives δT (κ(Y )) ≤ δ(Y ). So δT (κ(Y )) =
δ(Y ) and κ is an embedding.

2. Let Y ⊆ X, Y finite, and f ∈ TX . If f = hy for y ∈ Y then, using part 1

δT (κ(Y ) ∪ {f}) = δT (κ(Y )) = δ(Y ) = δ(Y ∪ {y}) = f(Y )

as required. Otherwise, suppose f 6∈ κ(Y ). Let Y = {y1, . . . , yk}.

δT (κ(Y ) ∪ {f}) = sup
Ai,i=1,...,k,Af

{
δ

(⋃
i

Ai ∪Af

)
−
∑
i

δ({yi} ∪Ai)− f(Af )

}
Letting Ai = {yi} for all i shows

δT (κ(Y ) ∪ {f}) ≥ sup
Af

{δ(Y ∪Af )− f(Af )} = f(Y ),

by Proposition 2.4 part 6. On the other hand, following the same reasoning as
in part 1 of this proof shows

δT (κ(Y ) ∪ {f}) ≤ sup
Af

δ(Y ∪Af )− f(Af ) = f(Y ).

Therefore δT (κ(Y ) ∪ {f}) = f(Y ).
3. Suppose that F = κ(Y ) ∪ G, where Y ∈ Pf(X) and G ⊆ TX \ κ(X).

For all collections A ⊆ Pf(X) with |A | < ∞ and all collections {fA}A∈A of
elements in F , we have from 1. and 2. that

δ

(
Y ∪

⋃
A∈A

A

)
−
∑
A∈A

fA(A) = δ̂

(
κ(Y ) ∪

⋃
A∈A

κ(A)

)
−
∑
A∈A

δ̂(κ(A) ∪ {fA})

≤ δ̂ (κ(Y ) ∪ {fA : A ∈ A })
≤ δ̂ (κ(Y ) ∪ F ) .

�
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3. Hyperconvex diversities and the injective envelope

Aronszajn and Panitchpakdi [1] introduced hyperconvex metric spaces and
showed that they are exactly the injective metric spaces.

Definition 3.1. 1. A metric space (X, d) is said to be hyperconvex if for all
r : X → < ∪ {∞} with r(x) + r(y) ≥ d(x, y) for all x, y ∈ X there is a
point z ∈ X such that d(z, x) ≤ r(x) for all x ∈ X.

2. A metric space (X, d) is injective if it satisfies the following property: given
any pair of metric spaces (Y1, d1), (Y2, d2), an embedding π : Y1 → Y2, and
a non-expansive map φ : Y1 → X there is a non-expansive map ψ : Y2 → X
such that φ = ψ ◦ π.

See [2] for a proof for the equivalence of these two concepts, as well as a
review of the rich metric structure of hyperconvex spaces. Here we establish
diversity analogues for these concepts and show that the equivalence holds in
this new setting. We begin by defining diversity analogues of injective and
hyperconvex metric spaces.

Definition 3.2. 1. A map φ : Y1 → Y2 is non-expansive if for all A ⊆ Y1

we have δ1(A) ≥ δ2(φ(A)) and it is an embedding if it is one-to-one and
for all A ⊆ Y1 we have δ1(A) = δ2(π(A)).

2. A diversity (X, δ) is injective if it satisfies the following property: given
any pair of diversities (Y1, δ1), (Y2, δ2), an embedding π : Y1 → Y2, and a
non-expansive map φ : Y1 → X there is a non-expansive map ψ : Y2 → X
such that φ = ψ ◦ π.

3. A diversity (X, δ) is said to be hyperconvex if for all r : Pf(X)→ <∪{∞}
such that

δ

( ⋃
A∈A

A

)
≤
∑
A∈A

r(A) (3.1)

for all finite A ⊆ Pf(X) there is z ∈ X such that δ({z} ∪ Y ) ≤ r(Y ) for
all finite Y ⊆ X.

The following theorem establishes the diversity equivalent of Aronszajn and
Panitchpakdi’s result.

Theorem 3.3. A diversity (X, δ) is injective if and only if it is hyperconvex.

Proof.
First suppose that (X, δ) is injective. Consider r : Pf(X)→ <∪ {∞} satisfying
(3.1) for all finite A ⊆ Pf(X). Without loss of generality we can assume r(∅) = 0
and hence r ∈ PX . Choose f ∈ TX with f � r.

Let x∗ be a point not in X, let X∗ = X ∪ {x∗} and let δ∗ : Pf(X ∪ {x∗})→
<∪ {∞} be the function where for all finite A ⊆ X,

δ∗(A) = δ(A)
δ∗(A ∪ {x∗}) = f(A).

12



From Proposition 2.4 part 2 we have that δ∗ is monotonic, and from part 4 and
5 we have that

δ∗(A ∪ C ∪ {x∗}) ≤ δ∗(A ∪ {x∗}) + δ∗(C ∪ {x∗}) (3.2)
δ∗(A ∪B ∪ C ∪ {x∗}) ≤ δ∗(A ∪B ∪ {x∗}) + δ∗(B ∪ C). (3.3)

for all finite A,B,C ⊆ X such that B 6= ∅. These, together monotonicity and
the fact that δ∗ coincides with δ on Pf(X) imply the triangle inequality (D2)
for (X∗, δ∗).

We now apply the fact that (X, δ) is injective. Let (Y1, δ1) be (X, δ); let
(Y2, δ2) be (X∗, δ∗), let π be the identity embedding from (X, δ) into (X∗, δ∗)
and let φ be the identity map from (X, δ) to itself. Then there is a non-expansive
map φ : X∗ → X such that φ(x) = x for all x ∈ X.

Let ω = φ(x∗). For all finite A ⊆ X we have

δ(A ∪ {ω}) ≤ δ∗(A ∪ {x∗})
= f(A)
≤ r(A).

This proves that (X, δ) is hyperconvex.
For the converse, suppose now that (X, δ) is hyperconvex. Let (Y1, δ1) and

(Y2, δ2) be two diversities, let π : Y1 → Y2 be an embedding and let φ be a
non-expansive map from Y1 to X. We will show that there is non-expansive
ψ : Y2 → X such that φ = ψ ◦ π.

Let Y denote the collection of pairs (Y, ψY ) such that π(Y1) ⊆ Y ⊆ Y2 and
ψY is a non-expansive map from Y to X such that φ = ψY ◦ π. We want to
show that Y2 ∈ Y . Suppose this is not the case. We write (Y, ψY ) E (Z,ψZ)
if Y ⊆ Z and ψZ restricted to Y equals ψY . The partially ordered set (Y ,E)
satisfies the conditions of Zorn’s lemma, so it contains maximal elements.

Let (Y, ψY ) be one such maximal element. Choose y ∈ Y2 \ Y . For each
finite A ⊆ Y let r(A) = δ2(A ∪ {y}). For any finite collection A ⊆ Pf(Y ) we
have

δ

( ⋃
A∈A

ψY (A)

)
= δ

(
ψY

( ⋃
A∈A

A

))

≤ δ2

( ⋃
A∈A

A

)
≤

∑
A∈A

δ2(A ∪ {y})

=
∑
A∈A

r(A).

Since (X, δ) is hyperconvex, there is x ∈ X such that

δ(ψY (A) ∪ {x}) ≤ r(A) = δ2(A ∪ {y})
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for all finite A ⊆ Y . Hence we can extend ψY to Y ∪ {y} by setting ψY (y) = x,
giving a non-expansive map from Y ∪{y} toX, and contradicting the maximality
of Y .

It follows that Y2 ∈ Y , proving that (X, δ) is injective. �

Definition 3.4. Let (X, δ) be a diversity. For F ⊆ TX and finite Y ⊆ X let

ΦF (Y ) = inf
A⊆Pf (X)

{∑
A∈A

inf
f∈F

f(A) : |A | <∞,
⋃
A∈A

A = Y

}
.

Clearly,
δT (F ) = sup

Y⊆X
{δ(Y )− ΦF (Y ) : |Y | <∞}. (3.4)

We show that ΦF also satisfies a sub-additivity type identity.

Lemma 3.5. For F,G ⊆ TX and Y, Z ⊆ Pf(X) we have

ΦF∪G(Y ∪ Z) ≤ ΦF (Y ) + ΦG(Z).

Proof.
Given ε > 0 there is finite A ⊆ Pf(X) and a collection {fA}A∈A of elements in
TX such that

ΦF (Y ) ≤
∑
A∈A

fA(A) < ΦF (Y ) + ε/2.

Similarly, there is finite B ⊆ Pf(X) and a collection {gB}B∈B of elements in
TX such that

ΦG(Z) ≤
∑
B∈B

gB(B) < ΦG(Z) + ε/2.

Define C = A ∪B and the collection {hC}C∈C by

hC =

{
fC if C ∈ A ;
gC otherwise.

Then

ΦF (Y ) + ΦG(Z) + ε >
∑
A∈A

fA(A) +
∑
B∈B

gB(B)

≥
∑
C∈C

hC(C)

≥ ΦF∪G(Y ∪ Z).

�

Theorem 3.6. For any diversity (X, δ), (TX , δT ) is hyperconvex.
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Proof.
Let r : Pf(TX)→ <∪ {∞} be given such that for all finite F ⊆ Pf(TX)

∑
F∈F

r(F ) ≥ δT

( ⋃
F∈F

F

)
.

Without loss of generality we can assume r(∅) = 0. We need to find g ∈ TX so
that δT (G ∪ {g}) ≤ r(G) for all G ⊆ TX .

Define ω on Pf(X) by

ω(A) = inf
F⊆TX

{r(F ) + ΦF (A) : |F | <∞}.

We have ω(∅) = 0. Suppose that A ⊆ Pf(X), |A | <∞ and let {FA : A ∈ A } be
a collection of finite subsets of TX indexed by elements of A . From Lemma 3.5
we have

δ

( ⋃
A∈A

A

)
≤ δT

( ⋃
A∈A

FA

)
+ Φ(S

A∈A FA)

( ⋃
A∈A

A

)
≤

∑
A∈A

(r(FA) + ΦFA
(A))

so that

δ

( ⋃
A∈A

A

)
≤
∑
A∈A

ω(A)

and ω ∈ PX .
There is g ∈ TX such that g � ω. Consider finite F ⊆ TX . Applying

Lemma 2.6,

δT (F ∪ {g}) = sup
A∈Pf (X)

{g(A)− ΦF (A)}

≤ sup
A∈Pf (X)

{(r(F ) + ΦF (A))− ΦF (A)}

= r(F ),

as required. �

Isbell [3] and Dress [4] not only proved that the tight span of a metric space
is hyperconvex (injective), they showed that the tight span is essentially the
minimal hyperconvex metric space into which the metric can be embedded. We
prove that the same holds for diversities.

Theorem 3.7. If there is an embedding from (X, δ) into (Y, δY ) and (Y, δY ) is
injective (hyperconvex) then there is an embedding from (TX , δT ) into (Y, δY ).

Proof.
Let π be the embedding of (X, δ) into (Y, δY ). Then π is a non-expansive map.
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Since (Y, δY ) is injective, and κ is an embedding of (X, δ) into (TX , δT ), there
is a non-expansive map φ : TX → Y such that π = φ ◦ κ. Using Theorem 2.8
part 3 we will show that δT (F ) ≤ δY (φ(F )) so that φ is an embedding.

Consider f ∈ TX . Define g on Pf(X) by g(A) = δY (π(A) ∪ φ({f})) for all
finite A. Then for any finite A ⊆ X we have

g(A) = δY (π(A) ∪ φ({f})) = δY (φ(κ(A) ∪ {f})) ≤ δT (κ(A) ∪ {f}) = f(A)

for all A. For all finite collections A ⊆ Pf(X) we have∑
A∈A

g(A) =
∑
A∈A

δY (π(A) ∪ φ({f}))

≥ δY

( ⋃
A∈A

π(A)

)
= δ

( ⋃
A∈A

A

)
so that g ∈ PX and g � f . Hence g(A) = f(A) for all finite A ⊆ X. It follows
that

δY (π(A) ∪ φ({f})) = δT (κ(A) ∪ {f})
for all f ∈ TX and finite A ⊆ X.

Define δ̂ on TX by δ̂(F ) = δY (φ(F )). Then δ̂ is a diversity and δ̂(κ(Y ) ∪
{f}) = f(Y ) for all finite Y ⊆ X. By Theorem 2.8, δ̂(F ) ≥ δT (F ) for all finite
F .

Hence δT (F ) = δY (φ(F )) for all finite F and φ is an embedding. �

Corollary 3.8. Let (X, δ) be a diversity. The following are equivalent:
1. (X, δ) is hyperconvex;
2. (X, δ) is injective;
3. There is an isomorphism between (X, δ) and its tight span, (TX , δT ).

Note that the class of all diversities with all non-expansive maps as mor-
phisms forms a category, which we will denote Dvy. The definitions of embed-
dings and injective objects then correspond to the category theory concepts, as
reviewed in [32]. Theorem 3.7 establishes that (TX , δT ) is the injective envelope
of (X, δ) in the category Dvy.

4. Tight span of the diameter diversity

In this section we prove that tight span theory for metrics is embedded within
the tight span theory for diversities. The link between the two is provided by
the diameter diversity as introduced above.

Definition 4.1. Given a metric space (X, d) we define the diversity δ = diamd

by
δ(A) = diamd(A) = max{d(a, a′) : a, a′ ∈ A}

for finite A ⊆ X, with diamd(∅) = 0. We call diamd the diameter diversity
for d. Note that if we restrict diamd to pairs of elements we recover d as the
induced metric.
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In this section we will establish close links between tight spans of metrics
and tight spans of their diameter diversities.

(X, d) tight span−−−−−→ (T dX , dT )

δ=diamd

y yδT =diamdT

(X, δ) tight span−−−−−→ (T δX , δT )

Lemma 4.2. 1. Let (Y, δ) be a diversity with induced metric (Y, dδ). Let
(X, d) be a metric space and let (X,diamd) be the associated diameter
diversity. Then φ is a non-expansive map from (Y, δ) to (X,diamd) if and
only if it is a non-expansive map from (Y, dδ) to (X, d).

2. A metric space (X, d) is injective (hyperconvex) if and only if the diameter
diversity (X,diamd) is injective (hyperconvex).

3. The tight span (T δX , δT ) of a diameter diversity is itself a diameter diver-
sity.

Proof.
1. Suppose that φ is a non-expansive map from (Y, δ) to (X,diamd). For all
y1, y2 ∈ Y we have

dδ(y1, y2) = δ({y1, y2}) ≥ diamd({φ(y1), φ(y2)}) = d(φ(y1), φ(y2)),

so φ is non-expansive from (Y, dδ) to (X, d). Conversely, suppose φ is a non-
expansive map from (Y, dδ) to (X, d). Then for any finite A ⊆ Y we have

δ(A) ≥ sup{dδ(a1, a2) : a1, a2 ∈ A}
≥ sup{d(φ(a1), φ(a2)) : a1, a2 ∈ A}
= diamd(φ(A)).

2. Suppose that (X, d) is injective. Let (Y1, δ1), (Y2, δ2) be two diversities with
induced metrics d1, d2. Let π be an embedding from (Y1, δ1) into (Y2, δ2) and let
φ be a non-expansive map from (Y1, δ1) to (X,diamd). Then π embeds (Y1, d1)
into (Y2, d2), and by part 1., φ is a non-expansive map from (Y1, d1) to (X, d).
Hence there is a non-expansive map ψ from (Y2, d2) to (X, d) such that φ = ψ◦π,
which by part. 1 is a non-expansive map from (Y2,diamd2) to (X,diamd). Since
δ2(A) ≥ diamd2(A) for all A, ψ is non-expansive from (Y2, δ2) to (X,diamd).
Hence (X,diamd) is injective.

Conversely, suppose (X,diamd) is an injective diversity. Let (Y1, d1), (Y2, d2)
be two metric spaces, let π be an embedding of (Y1, d1) into (Y2, d2), and let
φ be a non-expansive map from (Y1, d1) to (X, d). Then φ is a non-expansive
map from (Y1,diamd1) to (X,diamd) and since (X,diamd) is injective, there is
a non-expansive map ψ from (Y2,diamd2) to (X,diamd) such that φ = ψ ◦ π.
Applying part 1. again, we have that ψ is the required non-expansive map from
(Y2, d2) to (X, d). Hence (X, d) is injective.
3. Since δ is a diameter diversity, for any collection {Af} ⊆ Pf(X), f ∈ F with
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F finite

δ

⋃
f∈F

Af

 = δ(Af1 ∪Af2)

for some f1, f2 ∈ F . Hence for finite F ⊆ T δX

δT (F ) = sup
Af

δ
⋃
f∈F

Af

−∑
f∈F

f(Af )


= max

f1,f2∈F
sup

A1,A2∈Pf (X)

{δ(A1 ∪A2)− f1(A1)− f2(A2)}

= max
f1,f2∈F

δT ({f1, f2}).

�

Theorem 4.3. Let (X, d) be a metric space with metric tight span (Xd
T , dT ).

Let (X, δ) be the associated diameter diversity where δ = diamd, and let (TX , δT )
be its diversity tight span. Then

1. The metric space obtained by restricting δT to pairs in TX is isomorphic
to the metric space (T dX , dT ).

2. The diversity obtained by taking the diameter on the metric space (T dX , dT )
is isomorphic to the diversity (TX , δT ).

Proof.
Let dδ be the induced metric for δT . The map κ defined on (X, d) embeds
(X, d) in (κ(X), dδ). By Lemma 4.2 parts 2 and 3, (T δX , dδ) is injective. The
metric tight span is the injective hull, so there is an embedding from (T dX , dT )
to (T δX , dδ).

For the other direction, since (T dX , dT ) is injective, so is its associated di-
versity metric (T dX ,diamdT

). The map κ defined in (X, δ) embeds (X, δ) into
(T dX ,diamdT

) and since (T δX , δT ) is the injective hull of (X, δ) there is an embed-
ding from (T δX , δT ) into (T dX ,diamdT

). Restricting this embedding to pairs gives
an embedding from (T δX , dδ) into (T dX , dT ). This proves 1. and the isomorphism
in part 2. follows directly. �

5. Phylogenetic Diversity

A metric space (X, d) is additive or tree-like if there is a tree with nodes
partially labelled by X so that for each x, y the length of the path (including
branch-lengths) connecting x and y equals d(x, y). Dress [4] showed that if
(X, d) is additive then its tight span corresponds exactly to the smallest tree
it can be embedded in. The elements of the tight span correspond not only to
the nodes of the original tree, but also the points along the edges. Hence, when
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X is finite, the continuous structure arises automatically out of a finite metric.
Here we will prove analogous results about phylogenetic diversity.

Following [4] we will work with real trees (also called metric-trees or <-trees),
rather than graph-theoretic trees.

Definition 5.1. See [33, 34]

1. Let (X , d) be a metric space and let x, y be two points at distance d(x, y) =
r. A geodesic joining x, y is a map c : [0, r] → X such that c(0) = x,
c(r) = y and d(c(s), c(t)) = |t − s| for all s, t ∈ [0, r]. The image of c is
called a geodesic segment.

2. A complete metric space (X , d) is a real tree or <-tree if
(a) there is a unique geodesic segment [x, y] joining each pair of points

x, y ∈ X .
(b) if [y, x] ∩ [x, z] = {x} then [y, x] ∪ [x, z] = [y, z].

Hence if x, y, z are three points in a real tree then

[x, y] ⊆ [x, z] ∪ [y, z], (5.1)

see [34, Ch. 2, Corr. 1.3].

Phylogenetic diversity, as introduced by [23] and investigated extensively
by [24, 25] and others, can be viewed as a generalisation of additive metrics.
The phylogenetic diversity of a set of nodes or points in a tree is the length of
the smallest subtree connecting them, so that the restriction of a phylogenetic
diversity to pairs of points gives an additive metric. A formal definition of
phylogenetic diversity on real trees requires a bit more machinery.

For a complete real tree (X , d), let µ be the one-dimensional Hausdorff mea-
sure on it [35]. The important features of µ for our purposes is that it is defined
on all Borel sets, it is monotone, and it is additive on disjoint sets. Furthermore,
for any points a, b ∈ X , µ([a, b]) = d(a, b), and naturally µ({a}) = 0. See [36]
for a related measure on real trees.

Definition 5.2. 1. The convex hull of a set A ⊆ X is

conv(A) =
⋃
a,b∈A

[a, b]

and we say that A is convex if A = conv(A).
2. Let (X , d) be a complete real tree. The tree-diversity (X , δt) for (X , d) is

defined by
δt(A) := µ(conv(A))

for all finite A ⊆ X .

Note that since A is finite, conv(A) is closed and hence µ(conv(A)) is defined.
First we prove that this phylogenetic diversity satisfies the diversity axioms

(D1) and (D2).
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Theorem 5.3. Let (X , d) be a complete real tree. Then (X , δt) is a diversity.

Proof.
Since µ is a measure, δt is non-negative and also monotonic. If |A| ≤ 1 then
conv(A) = A and so δt(A) = µ(A) = 0. If |A| > 1 then select distinct a, b ∈ A.
Since conv([a, b]) = [a, b] and µ([a, b]) = d(a, b) we have δt(A) ≥ δt({a, b}) =
d(a, b) > 0. This proves (D1).

Let A,B,C ∈ Pf(X ) and suppose that B 6= ∅. From (5.1) we have

[a, c] ⊆ [a, b] ∪ [b, c] (5.2)

for all a ∈ A, b ∈ B and c ∈ C. Hence

conv(A ∪ C) ⊆ conv(A ∪B) ∪ conv(B ∪ C)

and

δt(A ∪ C) = µ(conv(A ∪ C))
≤ µ(conv(A ∪B)) + µ(conv(B ∪ C))
= δt(A ∪B) + δt(B ∪ C),

giving us the triangle equality (D2).
�

The remainder of this section characterises the tight span of a phylogenetic
diversity in terms of real trees.

Definition 5.4. 1. A diversity (X, δ) is a phylogenetic diversity or tree-like
if it can be embedded in the tree diversity (X , δt) for some complete real
tree (X , d).

2. The convex closure of A is the topological closure of the convex hull of A,
denoted cl(A).

Consider a phylogenetic diversity (X, δ) with induced metric (X, d). Let
(T δX , δT ) denote the tight span of (X, δ) and let (T dX , dT ) denote the metric
tight span of (X, d), which is itself a complete real tree. We denote by (X̄, δ̄)
the tree diversity on (T dX , dT ). Our main result in this section, Theorem 5.8,
shows that (T δX , δT ) is isomorphic to (X̄, δ̄).

Our first lemma shows that (X, δ) can be embedded in (X̄, δ̄).

Lemma 5.5. Any phylogenetic diversity (X, δ) with induced metric (X, d) can
be embedded in (X̄, δ̄), the tree diversity of the metric tight span of (X, d). More-
over, X̄ is the convex closure of the image of X under the embedding.

Proof.
First note that if a real tree (X , dX) is embedded into a real tree (Y, dY ), then
the corresponding tree diversity (X , δX) is embedded into the corresponding
tree diversity (Y, δY ). This fact follows from the definition of tree diversities
and the properties of µ, the Hausdorff outer measure.
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Suppose (X, δ) is embedded in the tree diversity (X , δt), where the under-
lying real tree (X , dt) is complete and hence hyperconvex. Then (X, d) is em-
bedded in (X , dt). By Theorem 3.7, (T dX , dT ) can be embedded in (X , dt). By
the comments above, (X̄, δ̄) is embeddable in (X , δt). This is sufficient to imply
that (X, δ) is embedded in (X̄, δ̄).

The last statement follows from the convex closure of the image of X being
the minimal complete real tree containing the image of X, and (X̄, d̄) being
isomorphic to (T dX , dT ). �

In what follows, for a phylogenetic diversity (X, δ), we call a tree diversity
(X , δt) a minimal embedding if X ⊆ X , cl(X) = X , and δ(A) = δt(A) for all
A ⊆ X. The previous theorem shows that a minimal embedding exists for
all phylogenetic trees, and all minimal embeddings of (X, δ) are isomorphic to
(X̄, δ̄), the tree diversity of (T dX , dT ).

Lemma 5.6. Let (X, δ) be a phylogenetic diversity with tight span (TX , δT ).
Let (X , δt) be a minimal embedding of (X, δ). For all f ∈ TX there is v ∈ X
such that f(A) = δt(A ∪ {v}) for all finite A ⊆ X.

Proof.
First note that for any finite but non-empty A ⊆ X the function

φ : X → < : x 7→ δt(A ∪ {x})

is continuous. Hence if r ≥ δt(A) the ball

B(A, r) := φ−1(A) = {x ∈ X : δt(A ∪ {x}) ≤ r}

is closed. Furthermore, for x1, x2 ∈ B(A, r) and a ∈ A then [a, x1] ⊆ cl(A ∪
{x1}) ⊆ B(A, r) and [a, x2] ⊆ cl(A ∪ {x2}) ⊆ B(A, r). Again by (5.1) we have

[x1, x2] ⊆ [a, x1] ∪ [a, x2] ⊆ B(A, r)

so that B(A, r) is both closed and convex.
Let Γ be the collection

Γ = {B(A, f(A)) : A ∈ Pf(X), A 6= ∅, f(A) <∞}.

We will show that Γ has non-empty intersection.
Firstly consider a pair Ai, Aj ∈ Γ. We show that there is v such that

δt(Ai ∪ {v}) ≤ f(Ai) and δt(Aj ∪ {v}) ≤ f(Aj). This clearly holds if there
is v ∈ cl(Ai) ∩ cl(Aj). Suppose then that cl(Ai) and cl(Aj) are disjoint. By
[34, Ch. 2, Lemma 1.9] there exists ai ∈ cl(Ai) and aj ∈ cl(Aj) such that
[ai, aj ]∩ cl(Ai) = {ai} and [ai, aj ]∩ cl(Aj) = {aj} and for all x ∈ Ai and y ∈ Aj
we have [ai, aj ] ⊆ [x, y]. Then

f(Ai) + f(Aj) ≥ δt(Ai ∪Aj)
≥ µ(cl(Ai)) + µ([ai, aj ]) + µ(cl(Aj))
= δ(Ai) + d(ai, aj) + δ(Aj).
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Hence there is v ∈ [ai, aj ] such that d(ai, v) ≤ f(Ai) − δ(Ai) and d(aj , v) ≤
f(Aj)− δ(Aj), so that

δt(Ai ∪ {v}) = δt(Ai ∪ {ai}) + δt({ai, v})
= δ(Ai) + d(ai, v)
≤ f(Ai),

and likewise δt(Aj ∪ {v}) ≤ f(Aj).
We have established that Γ satisfies the pairwise intersection property. The

closed, convex sets of a real tree satisfy the Helly property [33], so every finite
subcollection of Γ has non-empty intersection. Let Γ∗ be the collection of all
intersections of finite subcollections of Γ. Then Γ∗ is closed under pairwise
intersections and so for all A,B ∈ Γ∗ there is a C ∈ Γ∗ such that C ⊆ A ∩ B.
Hence Γ∗ satisfies the properties of Proposition 3.1 in [33] and has non-empty
intersection.

Let v be contained in the intersection of Γ and let fv(A) = δt(A ∪ {v}) for
all finite A ⊆ X. Then fv � f . For any finite collection A ⊆ Pf(X) we have

∑
A∈A

fv(A) =
∑
A∈A

δt(A ∪ {v}) ≥ δ

(∑
A∈A

A

)

so fv ∈ PX and by the minimality of f , fv = f . �

Lemma 5.7. Let (X, δ) be a phylogenetic diversity with tight span (TX , δT ).
Let (X , δt) be a minimal embedding of (X, δ). For all v ∈ X if we define f(A) =
δt(A ∪ {v}) for all finite A ⊆ X, then f ∈ TX .

Proof.
For all finite A ⊆ Pf(X)∑

A∈A

f(A) =
∑
A∈A

δ({v} ∪A) ≥
⋃
A∈A

δ(A),

and so f ∈ PX . Choose g ∈ TX with g � f . By Lemma 5.6, there is a w ∈ X
such that g(A) = δ({w} ∪A) for all finite A ⊆ X. Now

δ({v, w}) = g({v}) ≤ f({v}) = δ({v}) = 0,

so v = w. �

Theorem 5.8. Let (X, δ) be a phylogenetic diversity with induced metric (X, d).
Let (T δX , δT ) be the tight span of (X, δ) and let (T dX , dT ) be the metric tight span
of (X, d). Then (T δX , δT ) is isomorphic to the tree diversity of (T dX , dT ).

Proof.
Let (X , δt) be a minimal embedding of (X, δ). We will show that (T δX , δT ) is
isomorphic to (X , δt).
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Let γ be the map taking v ∈ X to the function fv, where fv(A) = δt(A∪{v})
for all finite A ⊆ X. Lemma 5.6 shows that γ maps X to TX . Lemma 5.7 shows
that γ is surjective—all of TX is in the image of γ. It remains to show γ preserves
the diversity. This will then imply that γ is a one-to-one correspondence.

We need to show that for finite V ⊆ X , δT (γ(V )) = δt(V ). We have

δT (γ(V )) = sup
Av∈Pf (X),v∈V

{
δ

(⋃
v∈V

Av

)
−
∑
v∈V

fv(Av)

}

= sup
Av∈Pf (X),v∈V

{
δt

(⋃
v∈V

Av

)
−
∑
v∈V

δt(Av ∪ {v})

}
≤ δt(V ).

Note that equality can be attained by letting Av = {v} for all v, and thus δT
and δt are identical. �

6. Tight span and the Steiner tree problem

Let X be a finite set of points in a metric space (M,d). The (Metric) Steiner
Tree Problem is to find the shortest network that connects them. Clearly this
network will always be a tree. More formally

Metric Steiner Problem.
Input: Subset X of a metric space (M,d).
Problem: Find a (graph theoretic) tree T for which X ⊆ V (T ) ⊆M and∑

{u,v}∈E(T )

d(u, v)

is minimised.

We let Ld(X) denote the length of a Steiner tree for X.
Dress and Krüger [31] examined an ‘abstract’ metric Steiner problem where

one effectively drops the constraint that V (T ) ⊆M . This abstract Steiner tree
was actually one of the first distance based criteria proposed for the inference
of phylogenetic trees [37, 38], though it is now not widely used. Suppose that T
is a tree with edge weights w : E(T )→ <≥0. Given u, v ∈ V (T ) we let dw(u, v)
denote the sum of edge weights along the path from u to v.

Abstract Steiner Problem.
Input: Finite metric space (X, d).
Problem: Find a (graph theoretic) tree T and edge weighting w : E(T ) → <
such that X ⊆ V (T ), dw(x, y) ≥ d(x, y) for all x, y ∈ X and∑

e∈E(T )

w(e)

23



is minimised.

Suppose that T is a solution to the Metric Steiner Problem for X ⊆ M .
Define the weight function w : E(T ) → < by w({u, v}) = d(u, v). Then, by
the triangle inequality, dw(x, y) ≥ d(x, y) for all x, y ∈ X. It follows then that
the length of the minimum abstract Steiner tree for (X, d|X) is a lower bound
for the metric Steiner problem. Dress and Krüger showed that the lower bound
becomes tight when (M,d) equals the tight span of X.

Theorem 6.1. [31] Let (X, d) be a finite metric space. For every solution (T,w)
to the abstract Steiner tree problem there is a map φ : V (T ) → TX such that
φ(x) = κ(x) for all x ∈ X and w({u, v}) = dT (φ(u), φ(v)) for all {u, v} ∈ E(T ).

Hence the length of the minimal Steiner tree for κ(X) in (TX , dT ) equals the
length of the minimal abstract Steiner tree for (X, d) and the minimal abstract
Steiner trees can be embedded within the tight span. A direct corollary is that
if d is tree-like then the abstract Steiner tree equals the tree corresponding to
d.

Here we show that, using diversities, we can obtain a tighter bound on the
metric Steiner problem than that given by the abstract Steiner problem. Given
a tree T with edge weights w and A ⊆ V (T ) we let δw(A) be the sum of edge
weights in the smallest subtree of T connecting A. Hence (X, δw|X) is a phylo-
genetic diversity.

Diversity Steiner Problem.
Input: Finite diversity (X, δ).
Problem: Find a (graph theoretic) tree T and edge weighting w : E(T ) → <
such that X ⊆ V (T ), δw(Y ) ≥ δ(Y ) for all Y ⊆ X, and∑

e∈E(T )

w(e)

is minimised.

Proposition 6.2. Given k ≥ 2 define the diversity δ(k) by

δ(k)(A) = max{Ld(B) : |B| ≤ k, B ⊆ A}.

If T is a solution to the Diversity Steiner problem for δ(k) then the length of T
is a lower bound for the metric Steiner problem.

Proof.
Let T ′ be a solution to the metric Steiner problem and let δw be the associated
phylogenetic diversity. Then for all B such that |B| ≤ k we have that δw(B), the
length of T ′ restricted to B, is bounded below by Ld(B) = δ(k)(B). It follows
that δ(k)(A) ≤ δw(A) for all A ⊆ X, so that T ′ is a potential solution for the
diversity Steiner problem. �
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As k increases, the bounds returned by the diversity Steiner tree applied to
δ(k) will tighten, until eventually the diversity Steiner tree will coincide with the
metric Steiner tree. Furthermore, we have a direct extension of Theorem 6.1,
stating that these diversity Steiner trees will all be contained in the diversity
state span.

Theorem 6.3. Let (X, δ) be a finite diversity with induced metric space (X, d).
For every solution (T,w) to the diversity Steiner tree problem for (X, δ) there
is a map φ : V (T ) → TX such that φ(x) = κ(x) for all x ∈ X and w({u, v}) =
δT ({φ(u), φ(v)}) for all {u, v} ∈ E(T ).

Proof.
Let δw be the diversity on V (T ) given by (T,w), as defined above. Since (T,w)
solves the diversity Steiner problem, δw(A) ≥ δ(A) for all A ⊆ X. Let κ denote
the canonical embedding from X to TX . Then κ is a non-expansive map from
(X, δw|X) to (TX , δT ).

The tight span (TX , δT ) is injective. Hence there is a non-expansive map φ
from (V (T ), δw) to (TX , δT ) such that φ(x) = κ(x) for all x ∈ X. For each u, v
let w′({u, v}) = δT ({φ(u), φ(v)}). Then

w({u, v}) = δw({u, v}) ≥ δT ({φ(u), φ(v)}) = w′({u, v})

for all u, v ∈ V .
Consider A ⊆ X, and let EA be the set of edges in the smallest subtree of

T containing A. By the triangle inequality,

δw′(A) =
∑
e∈EA

w′(e) ≥ δ(X).

Hence (T,w′) is a candidate for the diversity Steiner problem, but since (T,w) is
already minimum,

∑
e∈E(T ) w(e) ≤

∑
e∈E(T ) w

′(e). It follows that w(e) = w′(e)
for all e ∈ E(T ). �
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