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Abstract

As dialog systems evolve to handle unconstrained input and
for use in open environments, addressee detection (detecting
speech to the system versus to other people) becomes an in-
creasingly important challenge. We study a corpus in which
speakers talk both to a system and to each other, and model two
dimensions of speaking style that talkers modify when chang-
ing addressee: speech rhythm and vocal effort. For each di-
mension we design features that do not require speech recog-
nition output, session normalization, speaker normalization, or
dialog context. Detection experiments show that rhythm and
effort features are complementary, outperform lexical models
based on recognized words, and reduce error rates even if word
recognition is error-free. Simulated online processing experi-
ments show that all features need only the first couple seconds
of speech. Finally, we find that temporal and spectral stylis-
tic models can be trained on outside corpora, such as ATIS
and ICSI meetings, with reasonable generalization to the target
task, thus showing promise for domain-independent computer-
versus-human addressee detectors.
Index Terms: addressee detection, dialog system, speaking
style, prosody, language model, spectral tilt, vocal effort, on-
line processing, out-of-domain data.

1. Introduction
As natural language understanding technology advances,
speech input to dialog systems is allowed to be more free-form
and conversational in nature. Speech interfaces are also in-
creasingly used in open environments in which other people are
present. Both factors conspire to make it necessary and chal-
lenging for systems to distinguish speech meant for the com-
puter, from speech addressed to a human listener. We call this
the addressee detection (AD) problem. It applies to both H-C
dialog and to newer, H-H-C applications in which multiple peo-
ple interact both with a system and with each other.

Past research on AD has focused on human-human (H-H)
settings (such as meetings), sometimes with multimodal cues
[1, 2]. Relatively little work has looked at the H-H-C scenario
[3]. Early systems relied primarily on rejection of H-H utter-
ances either because they could not be interpreted [4] or yielded
low speech recognition confidence [5]. Some systems combine
gaze with lexical and syntactic cues to detect H-H speech [6].
Others use relatively simple prosodic features based on pitch
and energy in addition to those derived from automatic speech
recognition (ASR) [7, 2].

In recent work on H-H-C data [8] we departed from past
efforts and developed acoustic-prosodic features that do not re-
quire ASR, speech detection, or speaker and session-level nor-
malization. Independence from ASRmeans that such features

are more robust (since performance will not vary as a func-
tion of ASR errors) and can be deployed early in the pro-
cessing pipeline.Independence from speaker and session-level
statisticsmakes methods more robust to noisy environments
and speaker variability, or movement of the speaker relative to
the microphone. Assuming these constraints, we found that a
signal-based measure of one dimension of speaking style, rhyth-
micity, is highly effective for the AD task. Follow-on work
focusing on AD with word-based information [9] showed that
lexical models can be trained onout-of-domaindata, facilitating
the development of systems in new domains.

This paper explores three new questions using a much
larger data set than in [8]. First,How can we capture a second
dimension of speaking style in our data—raised vocal effort—
using only the current utterance, without speaker or session
information (Section 2.3)? We explore voice quality features
as well as local energy changes at voicing transitions, and
investigate their effectiveness both alone and in combination
with other features. Second,How early do different acoustic-
prosodic classifiers distinguish the addressee(Section 3.2)?
Here we analyze performance foronline addressee detection
for both acoustic-prosodic and lexical models in simulation ex-
periments, to understand how they behave individually and in
combination when given only the early portions of an utterance.
Finally, How well do acoustic-prosodic features generalize to
completely different corpora that contain only one class (H-C or
H-H) (Section 3.3)? We train features on outside data selected
for its addressee type, but otherwise substantially mismatched
to our H-H-C data, and test how they generalize.

2. Method
2.1. Data

Data come from interactions between two acquaintances and a
“Conversational Browser” (CB) dialog system using only spo-
ken input. Subjects were brought into a room and seated about 5
feet away from a large TV screen and roughly 3 feet away from
each other. They were told about the basic capabilities of the
CB system and the domains it could handle, and were given a
small set of short commands, such as to start a new interaction,
pause, stop listening, or “wake up” the system. Other than that,
subjects were told to use unrestricted natural language. The sys-
tem detects starts and ends of utterances automatically. In this
collection users did not use other modalities to indicate speech
activity. More information about the dialog system itself and its
spoken language understanding approach can be found in [10].

The resulting corpus comprises 6.3 hours of recordings over
38 sessions with 2 speakers each from a set of 36 unique speak-
ers. Session durations ranged from 5 to 40 minutes, as deter-
mined by users. Speech was captured by a Kinect microphone
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Table 1: Sizes, distribution, and examples of in-domain utterance
types: H = human-directed, C = computer-directed, M = mixed.

Train Test
Utterances 2577 2889
Recognized words 7026 7874
H utterances 40.8% 31.0%
C-noncommand utterances 31.9% 32.8%
C-command utterances 24.5% 32.0%
M utterances 3.7% 4.2%

Type Example
H Do you want to watch a movie?
C-noncommand How is the weather today?
C-command Scroll down, Go back.
M Show me sandwich shops. oh, are you vegan?

array; endpointing and recognition used an off-the-shelf recog-
nizer. Although the full interaction was recorded, we used only
the speech segments detected and recognized by the system; we
simply call these “utterances.”

A total of 6920 segments from 38 sessions were hand-
transcribed at the word level, and annotated for addressee by
an experienced experimenter who had run subjects in the data
collection. The experimenter had access to the audio and video
recordings and reported that annotation was generally straight-
forward. After eliminating utterances containing no intelligi-
ble foreground speech the dataset consisted of 5488 utterances,
totaling 5.33 hours. Computer-addressed segments were also
labeled by the annotator as either command or noncommand.
Segments containing both human- and computer-addressed
speech (in any sequence) were marked as mixed; since these
were also processed by the system they were grouped with the
computer-addressed class for detection purposes. The 38 avail-
able sessions varied greatly in length; the 22 shortest sessions
were placed in the test set to maximize speaker and session vari-
ation. Table 1 gives the distribution of utterance types, and ex-
amples for each type.

For our experiments with out-of-domain training data in
Section 3.3 we used a variety of corpora containing either
human-human or human-computer speech. H-C corpora used
included ATIS [11] and Communicator [12]; H-H corpora used
were Fisher [13] and the ICSI Meeting corpus [14]. From each
source, we sampled approximately 4 hours of speech data. For
another contrast experiment, we used CB sessions collected
with a single user, comprising about 2.8 hours of speech.

2.2. Lexical features

We used unigrams, bigrams, and trigrams of automatically
recognized words (“asr-ng”), including start/end-of-utterance
tags. The speech recognition system used had a word error
rate of about 20%. For experiments to assess the best-case sce-
nario for N-gram performance, we also extracted N-grams from
human-produced reference transcripts (“ref-ng”).

2.3. Acoustic-prosodic features

Energy contour DCT (“encon”) features. To model rhythmic-
ity we used a signal-based feature first proposed in [8], without
any parameter tuning to the new corpus. The feature models the
contour of 10-ms c0 and c1 output from an MFCC front end;
each cepstral stream is mean-normalized over the utterance. A
discrete cosine transform is then taken over a 200-ms sliding
window with a 100-ms shift. Vector components comprise the
first 5 and 2 bases from the DCT over each window of c0 and c1,
respectively. Prior work modeled features with Gaussian mix-

tures (GMMs); here we also use a boosting model (see below).
Voice quality and spectral tilt (“tilt”) features . H-C speech
in our corpus tends to be produced with higher vocal effort than
H-H speech. This likely reflects two factors: speech to a “less
intelligent” (computer) listener, and speech to a distant micro-
phone. As noted earlier, unlike previous work in AD, our chal-
lenge is to detect changes in vocal effort without using energy
directly, since we have no way to normalize given our constraint
of using only the current utterance. We thus looked at spectral-
based measures [15, 16, 17, 18, 19, 20]. Features were extracted
only for voiced regions. Voicing was determined using a binary
decision for each 25-ms frame with 10-ms steps. A logistic
regression classifier was trained with four features per frame:
number of zero crossings, log energy, number of peaks in the
autocorrelation of the window signal, and standard deviation
of the inter-peak distance, using the Keele [21] and FDA [22]
databases. The voicing threshold was always set to 0.5.

Under “tilt” features we include 5 measures. Three mea-
sures, H2-H1, F1-H1, F2-H1, use lower-order harmonics and
formants. While [20] suggests higher-order formants are useful,
they were not robustly identifiable in our far-field data. Simi-
larly [16] and [23] suggest removing formant effects to correct
for increased energy in harmonics; since we only extract lower
harmonics, we did not pursue a correction. The last two mea-
sures are the spectral slope per frame (computed as the slope
of a linear least squares fit to the log spectrum), and, follow-
ing [19], the difference between the maximum of the log power
spectrum and the maximum in the 2kHz-3kHz range.
Delta energy at voicing onsets/offsets (“devo”). We also ex-
plored whether raised vocal effort could be detected from the
steepness of the energy slope at voicing onsets and offsets.
Presently we use a crude estimation: the difference in log en-
ergy between frames centered around the onset/offset. We used
collars of 1 through 5, 7 and 10 frames for both onsets and
offsets, creating a 14-component feature vector for each utter-
ance, modeled by boosting. Preliminary experiments showed
that both onset and offset features are useful, so both types were
retained.
Comparison features. Additional features were computed for
comparison. With the exception of speaking rate measures, they
are not expected to generalize well, but have been used in prior
AD studies. Waveform length was included since a large per-
centage of H-C utterances are 1- or 2-word commands. Log
energy was computed in voiced regions only; this was included
to test how well raw energy performs compared to the tilt and
devo measures. Voicing-related features include total voiced
frames, the span of frames excluding initial and final pauses, the
ratio of voiced to unvoiced frames, and statistics (mean, min,
max, standard deviation) of durations of contiguously voiced
regions. These were computed as a comparison to the energy
contour feature, since they capture information about rate and
rhythmicity. We also included a signal-based measure of speak-
ing rate, “enrate” [24], as a comparison to the encon feature.

2.4. Classifiers and evaluation

We compute a log likelihood ratio of the two addressee classes
from lexical N-grams by modeling each class with amaximum
entropy language model(LM) [25]. Compared to earlier work
on this corpus [8, 9], we found maxent estimation of N-gram
probabilities to give consistent gains over traditional backoff
language models. The detection score for an utterancew is
computed as1

|w|
log P (w|C)

P (w|H)
where|w| is the number of words

in the test utterance, andP (w|.) is computed by trigram LMs.



Table 2:System performance in %EER (g = GMM, b = boosting)
System EER System EER

Individual features
asr-ng 27.0 devo-b 26.2
ref-ng 10.4
encon-g 16.8 tilt-g 33.8
encon-b 17.8 tilt-b 24.5
encon-(b+g) 15.4 tilt-(b+g) 21.7

System combinations
encon-g + tilt-b 14.0
encon-g + devo-b 15.9
all-prosody =

encon-(g+b) + tilt-(b+g) + devo-b 12.5
all-prosody + comparison features 12.6-12.8
all-prosody + asr-ng 10.9
all-prosody + ref-ng 7.5

The energy contour and tilt features employGaussian mix-
ture models(GMM) to compute a log likelihood ratio. Training
feature vectors for each class are pooled and a GMM with full
covariances is trained. The score of a test utterance with feature
vectorsX then becomes1

|X|
log p(X|C)

p(X|H)
where|X| is the num-

ber of vectors, andp(X|.) is the aggregate GMM likelihood,
assuming independence among the vectors.

Utterance-level features (both real-valued and binary) are
modeled by theadaptive boostingalgorithm [26] as imple-
mented by [27]. Boosting induces a strong learner as a weighted
combination of weak learners, each of which examines only
a single feature of the input. The weighted combined classi-
fier score then serves as a detection score in our experiments.
For features that generate multiple vectors per utterance we first
compute statistics (max, min, mean, standard deviation), both
for the entire utterance, and over regions of contiguous feature
vectors. Region-level statistics are then aggregated, yielding
additional utterance level input features for boosting.

Linear logistic regression(LLR) was shown to be an ef-
fective combiner method for detection systems [28]. We use it
to calibrate and combine one or more detection scores (obtained
by any of the methods described above), yielding a single de-
tection score per utterance.

Evaluation. To ensure calibrated comparisons, all systems,
even those consisting of only a single model, were evaluated by
performing LLR on their outputs. This was carried out by per-
forming jack-knifing over all sessions in the test data, training
the LLR parameters on all but one session, and cycling through
all sessions. Scores are then pooled over the entire test set and
evaluated using equal error rate (EER). The EER is obtained
by choosing a decision threshold that equates false alarm and
miss error probabilities. EER is thus independent of class pri-
ors. The behavior of AD systems is more fully characterized by
a detection error tradeoff (DET) curve, showing how a moving
decision threshold changes the two error type rates.

3. Results and Discussion
3.1. Acoustic-prosodic models

Table 2 shows EER performance of individual and combined
systems, with the corresponding DET plot in Figure 1. The
results for individual features (top part of Table 2) include com-
binations of GMM and boosting versions (b+g) for encon and
tilt features (not included in the DET plot for space reasons).

Looking first at individual feature results, the noncheating
word N-gram (ng-asr) performs worst overall. The cheating N-
gram (ref-ng) is included for comparison purposes and gives
best individual performance; this is largely because it gets 100%
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Figure 1:Detection error tradeoff

of commands (but not of longer queries) correct—a trivial task
when commands are unique N-grams.

The best single prosodic system is the energy contour mod-
eled by a GMM (encon-g). Interestingly the boosting version
(encon-b) is close behind; this version uses only utterance-
averaged statistics of the feature vectors. These two models
using the same input features also combine well; we hypoth-
esize that the boosting version is useful for shorter utterances
while the GMM is more robust when enough window outputs
are available. The encon features yield roughly half the error
rate of the noncheating word N-gram.

We expected the vocal effort features to be less useful alone
(because of the constraints on normalization and robustness of
extraction issues discussed in Section 2.3), but to provide com-
plementary information to the energy contour. This is indeed
the case. As per Figure 1, tilt and devo features show differ-
ent slopes; they combine well with each other even though both
aim to capture raised voice. The first two results under “System
combinations” also show that combining a boosting version of
each of these features with encon gives gains over encon alone.

Voice quality features are best modeled via boosting (tilt-
b). As we saw for the case of encon, there is some gain from
combining GMM and boosting versions of the same features
(tilt-b+g). Features measuring delta energy at voicing onsets
and offsets (devo-b) perform only a little better than the asr-ng
on their own. These features, however, are the only ones of
many additional features we tried (including all of those listed
as “comparison features”) that improve performance once en-
con and tilt features are used. We combined the three prosody
features (encon, tilt, and devo) into a single “all-prosody” sys-
tem, which gives the low EER of 12.5%.

We asked whether the “comparison” features described in
Section 2.3, modeled via boosting either all together or indi-
vidually, could improve this result. These included utterance
length, voicing pattern statistics, log energy in voiced regions,
and the speaking rate measure “enrate”. While each of these
features performs well alone, none reduced the error rate of the
3-feature prosody system when added to or replacing one of the
three features in the combination.

Adding the word N-gram to the 3-feature “all-prosody” sys-
tem gives a further improvement. At an EER of 12.5% on its
own, the prosody system is nearly as good as the cheating N-
gram that has no errors on commands, as noted above. Interest-
ingly, the prosody system provides a significant error reduction
when added to the cheating N-gram; inspection shows that it re-



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Amount of speech from voicing onset (seconds)

E
E

R

 

 

asr−ng
tilt−b
encon−g
all−prosody
all−prosody+asr−ng

Figure 2:Simulated online AD performance

duces confusions between H-H speech and longer H-C queries.

3.2. Online processing

Figure 2 plots the performance of various detectors as a func-
tion of how much time from the beginning of an utterance is
available to them. We thus simulate incremental online detec-
tion with increasing latency. Since many utterances have an
initial pause, it makes sense to count time starting at the onset
of speech. Since we did not want to rely on ASR, we chose the
onset of the first voicing region as the origin of the time line.
Separate analysis shows a good match between this estimated
measure and the start of the first word (based on forced align-
ment). Note that encon features use only the available portion
of the utterance for mean normalization.

All systems improve greatly over the first 2 seconds and
then start to level off, in part because an increasing portion of all
utterances are completed within the time window. The tilt sys-
tem starts on par with the encon GMM; it is less good alone, but
needs less initial data. The “all-prosody” system also includes
tilt-g and encon-b systems (which are not shown individually).
After 0.5 seconds, a combination of multiple prosodic systems
improves over the best single system (encon-g) by a roughly
constant amount at all time points. The same is true for the
overall combination with asr-ng, except very early on in the ut-
terance, where the lexical features provide little information.

3.3. Out-of-domain training

Finally, we are interested in whether acoustic-prosodic speaking
style features generalize across different speech corpora. Since
H-H-C data is currently scarce, we ask about generalization to
corpora containing only one style (H-C) or (H-H). This makes
the question interesting for both practical and theoretical rea-
sons. We tested generalization using the best-performing of our
stylistic models, the energy-contour GMM. Table 3 shows EER
performance for a variety of training data sources described in
Section 2.1. Systems were tested on the same in-domain data set
as used earlier. “CBsingle” refers to training data from single-
user sessions using the same system.

All out-of-domain sources give better than chance perfor-
mance. ATIS and ICSI meetings were the best sources of H-C
and H-H speech, respectively, out of our small sample of cor-
pora. Jointly they give EERs that are only 31% relative higher
than with in-domain training. Also, this combination of outside
training sources beats any combination involving the single-
user CB data, which is domain-matched to the H-C utterances.

Table 4 shows that the encon feature is the single best sys-

Table 3:The encon-g performance for in- and out-of-domain training
H-C training H-H training %EER

CB (in-domain) CB (in-domain) 17.3
CBsingle CB 27.2

Communicator CB 26.6
ATIS CB 26.3
CB Fisher 32.2
CB ICSI 30.5

CBsingle ICSI 27.8
ATIS ICSI 22.8

Table 4: Various out-of-domain-trained systems and their combina-
tions. All systems except asr-ng are trained on ATIS H-C and ICSI H-H
data. The asr-ng system is trained on CBsingle H-C and Fisherplus
ICSI H-H transcripts as in [9].

System %EER System %EER
encon-g 22.8 tilt-b 40.6
encon-b 30.9 asr-ng 26.4
encon-g + tilt-b 20.3
encon-(g+b) + tilt-b 20.0
encon-(g+b) + tilt-b + asr-ng 15.9

tem trained on outside data—even better than the ASR-word-
based model developed in [9] that is trained on all of CBsin-
gle, Fisher, and ICSI meeting transcripts. As with in-domain
data, we find that (a) tilt modeling, while less effective than en-
con, gives additional information, (b) combining multiple mod-
els based on the same features (GMM and boosting) helps in
combination, and (c) prosodic and lexical models combine ef-
fectively, yielding an overall result that is only a few percentage
points worse than the combined models trained on in-domain
data. That tilt features provide any information is surprising,
given that the ICSI meeting data is somewhat mismatched to
our H-H data, and was collected in a large room and should
therefore contain some raised vocal effort. Not shown in the
table is that all “comparison features” performed poorly under
mismatched training, lending support to our requirement that
features not rely on information outside the current utterance.

4. Conclusions
We conclude that AD is enhanced by modeling both rhythmic-
ity and vocal effort, using only signal-based features of the
current utterance. These features outperform lexical addressee
models and combine effectively with them; they also improve
in combination with lexical models even if perfect word tran-
scripts are available. Simulating online AD, we find that these
features combine well with each other, and approach best per-
formance given less than two seconds. Such early addressee
detection could be used to reduce system latency and eliminat-
ing unnecessary processing. Finally, certain acoustic-prosodic
features generalize far better than do word-based methods to
out-of-domain data containing only H-C or H-H interaction—
indicating consistency in speaking styles across domains and
contexts. For practical purposes, results suggest that when lim-
ited H-H-C data is available for a particular application, one
could use prosodic and lexical features to train effective AD
classifiers entirely from out-of-domain, single-style data.
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