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Further Developments in the 
Aerodynamic Analysis of Unsteady 
Supersonic Cascades 
Part 1: The Unsteady Pressure Field 
This paper presents, in two parts, a theoretical investigation of the aerodynamic response 
produced by an oscillating cascade placed in a supersonic stream with subsonic axial ve
locity component. Predictions are based on the successive solution of two linear boundary 
value problems which treat the velocity potential and the pressure, respectively, as basic 
dependent variables. A solution for the potential has been reported earlier and is used 
here to provide upper surface blade pressure distributions. This information serves as a 
boundary condition for the second problem. The solution for the unsteady pressure field, 
described in Part 1, is obtained by a construction procedure which parallels that used ear
lier to determine the potential. With the present procedure, blade pressure difference dis
tributions and aerodynamic coefficients are accurately and efficiently determined for 
both subresonant and superresonant blade motions. Supersonic resonance phenomena 
and selected numerical results are discussed in Part 2 of the paper. 

Introduction 

Supersonic flutter in fan rotors is one of the most serious problems 
encountered in the development of advanced turbomachinery engines 
[l].1 Since this type of flutter can occur at the design operating con
dition, it imposes a limit on high-speed operation of the machine. 
Hence it is important to have an efficient and accurate mathematical 
analysis for predicting the onset of supersonic flutter and determining 
the relative influence of the complex array of parameters which 
control blade response. Such capability is also required if the unsteady 
aerodynamic analysis is applied to the prediction of resonant blade 
stresses arising from the passage of a periodic distortion in the up
stream flow through the blade row. To meet these needs the theo
retical prediction of the aerodynamic characteristics of an oscillating 
cascade in a supersonic stream with subsonic axial velocity component 
(Fig. 1) has received considerable attention in recent years. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Gas Turbine Division and presented at the Gas Turbine 

Conference, Philadelphia, Pa., March 27-31,1977, of THE AMERICAN SO
CIETY OF MECHANICAL ENGINEERS. Manuscript received at ASME 
Headquarters December 17,1976. Paper No. 77-GT-44. 

Existing analyses are based on a linear potential flow model for the 
flow past a two-dimensional oscillating cascade of flat plate airfoils. 
The blades are aligned parallel to a supersonic stream which has a 
subsonic velocity component normal to the cascade leading edge locus 
(axial direction), and they are assumed to perform identical harmonic 
motions of small amplitude with constant phase angle between the 
motion of adjacent blades. Since the free-stream velocity component 
in the axial direction is subsonic, unsteady disturbances exist infinitely 
far upstream of each blade passage and the flow adjacent to the lower 
surface of each blade is influenced by the blades and wakes below. 
These features have provided the major obstacles to obtaining a 
mathematical resolution of the unsteady flow field. The first analysis 
to provide useful design information applied finite difference solutions 
to flows past cascades consisting of a finite number of blades [2, 3]. 
More recently, analytic solutions to the infinite cascade problem have 
been determined and these are still undergoing further development. 
The authors of such solutions follow two distinct lines of approach. 
The first [4, 5] is to extend the Laplace transform results obtained by 
Miles [6, 7] and Lane [8] for simpler unsteady supersonic flow con
figurations, and the second [9, 10] is to determine a solution in terms 
of pressure dipoles distributed along the blades. The latter method 
had previously been successfully applied in the treatment of unsteady 
subsonic cascades [11-13]. 

Predictions of blade pressure distributions and aerodynamic forces 
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Fig. 1 Supersonic cascade in subsonic axial flow 

and moments based on the foregoing supersonic analyses appear to 
be in very good agreement [2, 3,5, 9,14]. In addition, such predictions 
have been shown to be remarkably successful at predicting the ob
served flutter behavior of supersonic test fans [15, 16]. However, 
to date, meaningful analytical results have been reported only for 
subresonant blade motions. The distinction between subresonant and 
superresonant oscillations will be discussed in some detail in Part 2. 
At this point it is sufficient to note that superresonant motions occur 
over a range of negative interblade phase angles, i.e., the condition 
in which the motion of a given blade leads the motion of the blade 
above. In this case the elastic deflection wave of the cascade (or fan 
rotor) travels in the direction opposite to the direction of rotation and 
is thus classified as a backward-traveling wave. To have a complete 
flutter or resonant stress prediction system the capability of analyzing 
both forward- and backward-traveling deflection waves must be re
alized. 

The determination of aerodynamic response parameters requires 

the solution of a boundary-value problem for a dependent fluid 
variable from which blade pressure distributions can be easily eval
uated. Verdon and McCune [5] have formulated and solved a linear 
boundary-value problem which treats the velocity potential as the 
basic dependent flow variable. This solution permits the convenient 
calculation of the pressure distribution on the entire upper surface 
of a given blade and on the lower surface from the leading edge to the 
point of impingement of the trailing edge Mach wave from the adja
cent blade below. Downstream of this point, disturbances produced 
by the infinite array of lower blades and wakes contribute to the 
pressures acting on the lower surface of the given blade. This contri
bution has proven to be difficult to evaluate using the velocity po
tential solution of [5], particularly for the case of superresonant os
cillations. Therefore, in the present effort a second boundary-value 
problem which treats pressure as the basic dependent variable has 
been considered. The previous velocity potential solution provides 
the boundary information of a known pressure distribution on the 
upper surface of a given blade, and the solution for the pressure field 
is determined by a construction procedure similar to that used earlier 
to obtain the velocity potential. The procedure of solving two 
boundary-value problems successively has previously been applied 
to obtain an explicit expression for the wake upwash and a convenient 
means of computing the unsteady pressure field downstream of an 
isolated airfoil oscillating in a supersonic stream [17, 18]. For the 
cascade problem this approach facilitates the evaluation of the 
pressure distribution acting on the lower surface of a given blade. As 
a result, unsteady aerodynamic coefficients may be conveniently 
determined for both subresonant and superresonant blade mo
tions. 

Formulation 
Since the present work is closely related to that of reference [5], 

symbol definitions used in this earlier study are retained herein. All 
parameters introduced in the following are dimensionless. Lengths 
have been scaled with respect to blade chord, time with respect to the 
blade chord divided by the undisturbed free-stream speed, and 
pressure with respect to the free-stream density multiplied by one-half 
the square of the free-stream speed. 

Irrotational and isentropic flow, with negligible body forces, of an 
inviscid, nonconducting, perfect gas past a two-dimensional oscillating 
cascade is considered. The free-stream flow is supersonic with sub
sonic velocity component normal to the locus of blade leading edges 
(Pig. 1). The isentropic assumption implies that the entropy produced 
by shock waves is negligible. In addition, the shocks are assumed to 
be weak. They appear as lines in the flow field (Mach waves) across 

- N o m e n c l a t u r e -

All physical parameters are dimensionless. 
Lengths have been scaled with respect to 
blade chord, time with respect to the blade 
chord divided by the undisturbed free-stream 
speed, and pressure with respect to the free-
stream density multiplied by one-half of the 
square of the free-stream speed. 
A(x) = reference blade and wake velocity 

disturbance function 
An (x) = rath blade and wake velocity distur

bance function 
B = xA - AOM 

B{x) = reference blade and wake pressure 
disturbance function 

Bn(x) = nth blade and wake pressure dis
turbance function 

C = 1 - 2 « M 

D = XA + M3M 

ff[B(x), x] ~ blade-disturbance functional, 
defined by equation (28) 

S[B(x), x] = wake-disturbance functional, 
defined by equation (29) 

Im,n±(x, y) = velocity potential influence 
function, defined by equation (16) 

Jo(x) = Bessel function of the first kind of 
order zero 

J\(x) = Bessel function of the first kind of 
order one 

K(x) = kernel function, defined by equation 
(12) 

k = compressible reduced frequency, 
uMpr2 

P(x, y) = modified relative pressure, defined 
by equation (2) 

Pi(x, y) = ith component of the modified 
relative pressure (cf. equations (17)-
(21)) 

p(x, y, t) = pressure 
p „ = free-stream pressure 
Qm,n±(x, y) = pressure influence function, 

defined by equation (16) 
t = time 
U(x) = Heaviside or unit step function 
V(x, 0) = modified normal velocity on ref

erence blade and wake 

x, y = spatial coordinates 
XA = stagger distance 
yA = normal gap distance 
t\P(x) = modified pressure difference across 

the reference blade, defined by equation 
(26) 

5{x) = Dirac or unit impulse function 
M = (M2 - l ) 1 ' 2 

a = interblade phase angle 

fix, y) = modified velocity potential defined 
by equation (6) 

fl = a + kMxj\ 

o) = reduced frequency based on blade 
chord 
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which the flow variables are discontinuous. The blades are thin, 
slightly cambered lifting surfaces with small mean angle of attack 
relative to the incoming stream. They are performing identical har
monic motions of small amplitude with constant phase angle between 
the motion of adjacent blades. 

The foregoing restrictions permit a linear analysis of the disturbed 
flow in which the effects of thickness, camber, mean angle of attack, 
and the unsteady displacement of the blades may be determined 
separately and the results added to obtain their combined effect. Only 
the unsteady disturbances are of interest here, and consequently the 
blades are assumed to be flat plates aligned parallel to the stream with 
mean positions at HXA < x < UXA + 1, y ~ ny&, n = 0, ± 1 , ± 2 , . . . , 
where XA and yA are the blade stagger and normal gap distances, re
spectively (Fig. 1). The unsteady wakes are thin vortex sheets which 
emanate from the trailing edges of the blades and extend infinitely 
far downstream. Their mean positions lie on the lines 1 + XIXA < x < 
°>, y = nyA, n = 0, ± 1 , ±2, . . . . The linear approximation permits 
boundary conditions at the blade and wake surfaces to be satisfied 
at the mean positions of these surfaces. In addition, the cascade ge
ometry and the prescribed type of blade motion require that the un
steady flow exhibit blade-to-blade periodicity. Hence it is sufficient 
to determine the flow in a single extended blade passage region of the 
cascade (say the zeroth or reference passage defined by \x | < <=, 0 < 
y <yA) a n d to determine the pressure distribution acting on a single 
blade, i.e., the zeroth or reference blade. 

Unsteady pressure fluctuations are governed by the differential 
equation 

where 

d2P d2P 
IS--f —:-n

2k2P = 0 
dy2 dx2 

P(x, y) = \p(x, y, t) — p„] exp [i(kMx — cot)} 

(1) 

(2) 

The dependent variable transformation, equation (2), has been in
troduced to remove time dependence from the basic equations and 
also to simplify the various mathematical relations describing the 
unsteady flow. The unsteady pressure in the extended reference blade 
passage will be determined as a solution of equation (1) subject to a 
given pressure distribution on the upper surface of the reference blade, 
i.e., 

P{x, 0+) known for 0 < x < 1 (3) 

and the following conditions. The modified pressure and its normal 
or y -derivative are continuous in y along the upstream extensions of 
the blade chord lines and along the unsteady wakes. Further, dP/dy 
is continuous across blade surfaces. It therefore follows from the 
blade-to-blade periodicity of the unsteady flow that 

P(x, 0+) = P{x, 0-) = P(x + xA, yA~)e-m 

and 

dP, . , dP, n N dP, 
— (x, 0+) = — (x, 0 - ) = — (x + xA, yA~)e~ 
dy dy dy 

x < 0 and x > 1 

(4) 

\x\ < » 

(5) 

where Q = a + kMxA • In addition to the foregoing conditions at the 
upper and lower boundaries of the extended reference blade passage 
region, there can be no upstream propagation of disturbances in su
personic flow, pressure disturbances must be bounded at an infinite 
distance from their source, and disturbance waves impinging on blade 
surfaces must be reflected, while those impinging on wake surfaces 
must be transmitted through the wake. 

The boundary value problem for the unsteady pressure field is 
similar to that previously formulated for the modified velocity po
tential, i.e., 

<P(x, y) - <t>(x, y, t) exp [i(kMx — at)] (6) 

ner. The only significant difference is that the pressure field will be 
determined in terms of a known pressure distribution on the upper 
surface of the reference blade, while the potential field was determined 
using the condition of flow tangency at the reference blade surface, 

dy 
(x, 0+) = V(x, 0) 0 <x < 1 (7) 

where the modified normal velocity, V{x, 0), is specified by the pre
scribed blade motion. The upper surface pressure distribution cannot 
be prescribed a priori, but must be evaluated from the pressure-po
tential relation 

P(x, y) = - 2 ( ioin'2) 4>(x, y) 
\dx I 

and the solution for the potential. 

(8) 

P r e v i o u s R e l a t e d R e s u l t s 
The solution for the modified potential [5] was determined by 

generalizing Miles' solution [6] for an isolated airfoil oscillating in a 
supersonic stream and Lane's result [8] for a supersonic cascade in 
supersonic axial flow. An explicit representation for the potential in 
the reference passage was obtained in terms of "velocity disturbance 
functions," An(x), n = 0, ± 1 , ±2, . . . , distributed along the mean 
positions of the blades and wake surfaces. The nth velocity distur
bance function describes the contribution to the unsteady upwash 
or normal velocity produced by the motion of the nth blade and its 
wake. The explicit result satisfies the governing differential equation, 
the far-field conditions, and the requirements of reflection of dis
turbance waves impinging on blade surfaces and transmission of 
disturbance waves impinging on wake surfaces. Blade-to-blade pe
riodicity and the continuity conditions on tp and dip/dy are satisfied 
if the n th disturbance function is related to the reference blade and 
wake disturbance function as follows: 

An(x + nxA)e~ina = A0(x) = A(x) n = 0, ±1 , ± 2 , . ..(9) 

The foregoing relation permits the potential to be expressed func
tionally in terms of A(x) and the spatial coordinates x and y, i.e., 

i(x,y) = ty[A(x),x,y] (10) 

Finally, the conditions of flow tangency at the reference blade surface 
and continuity of pressure across the reference wake provide two in
tegral relations which can be solved numerically to determine the 
disturbance function on the reference blade and its wake, respec
tively. 

Two results from the velocity potential solution are required for 
the present pressure formulation. The first is the integral relation used 
to determine the velocity disturbance function distribution on the 
reference blade which follows from the explicit solution for the po
tential and the flow tangency condition, i.e., 

A(x) = V(x, 0) - f A($K(x - £)d£, 0<x<l (11) 

where 

K{x) = hiyA £ | I E . . . „ < / I I * [ ( * - " * » ) 2 - ( W A ) 2 ] 1 / 2 ) ( 1 2 ) 

n=-~ [(x - nxA)2 - {nnyA)2]U2 

The second is the expression for the pressure distribution on the upper 
surface of the reference blade which follows from the explicit solution 
and the pressure-potential relation, i.e., 

lxP(x, 0+)/2.= - CB A(f) Y, e '» f l t f n , „ (*-f )df 
Jo n=— 

- C A(OK0,0(x~m^-2 f A(0K0,-2(x - £)dS 
Jo JB 

+ 2 r A(£)e''QKi,-i(x - Wl 0 < x < 1 (13) 

where 4>(x, y, t) is the velocity potential as defined in the usual man- where 
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Km,n(x) - ( ~ " i"^2) I,n,,-(X, 0) = [k(X - rax A) 
l . l D - x A + ^ y A > l 

Ji\k[(x - mxAY- - (myA)2]mVl(x - mxA)2 - (myA)2Y12 

+ iwn-'2J0\k[(x - mxA)2 - (iinyA)'']U2\]U(x - mxA + iinyA) 

- Ja\k[(x - mxA)~ - (imyA)2]l,2\S(x - mxA + iinyA) (14) 

The integral term in equation (11) represents the influence of the 
normal velocity disturbances generated at the leading edge segments, 
nxA < x < nxA + B, n = — 1, —2, . . . , of the semi-infinite array of 
lower blades on the disturbances generated by the motion of the ref
erence blade. For 0 < x < B, equation (11) is a Fredholm integral 
equation with unknown function A(x). Once A(x) is determined in 
the interval 0 < x < B, its value over the remainder of the blade is 
determined by straightforward integration. The pressure distribution 
on the upper surface of the reference blade is then obtained by per
forming the integrations indicated by equation (13). If D = xA + nyA 

> 1, the last two integral terms in equation (13) do not apply. 

Some insight into the behavior of the velocity-disturbance function 
along blade wakes can be gained by considering supersonic flow past 
an isolated airfoil. For an oscillating flat plate airfoil with mean po
sition a t y = 0, 0 < x < 1, the velocity-disturbance function is equal 
to the upwash or normal velocity on the airfoil and its wake. An ex
plicit expression for the wake upwash has been derived previously [17] 
and has the form 

A(x) = V(x, 0) = - u j i - V d , 0+) exp [iu!i--(x - 1)] 

-nk C H^0+)(x-i)~^AHx-O}di x>\ (15) 
Jo 

The harmonic term on the right-hand side of equation (15) results 
from the counter-vorticity shed from the trailing edge of the airfoil. 
Note that the wake disturbance function distribution depends on the 
airfoil loading. For the supersonic cascade in subsonic axial flow the 
blade loading is, in turn, dependent on the wake-disturbance function 
distribution. In this case the wake integral equation derived from the 
velocity-potential formulation contains an infinite series, each term 
of which involves the integral of the unknown function, A (x), over a 
segment of the reference wake. The oscillatory behavior of the ve
locity-disturbance function along blade wakes has rendered it difficult 
to achieve a numerical resolution of this integral relation, and hence 
to determine lower surface blade pressures. 

To overcome this problem an alternative representation for the 
cascade pressure field in terms of a "pressure-disturbance function" 
distribution has been determined. It will be seen that the pressure and 
the velocity-potential solutions are similar in form. The pressure-
disturbance function, B{x), measures the contribution to the unsteady 
pressure field due to the motion of the reference blade and wake of 
the cascade. For the isolated airfoil B(x) equals the unsteady pressure 
P(x, 0+), acting at a point on the upper surface of the airfoil or its 
wake, and hence B(x) is identically zero on the wake. For the cascade 
the pressure disturbance function rapidly attenuates along blade 
wakes. This behavior permits a simple truncation procedure to be 
applied to the wake infinite series and leads to a viable numerical 
algorithm for solving the wake integral relation derived from the 
pressure formulation. As a result the contribution to lower surface 
reference blade pressures due to disturbances produced by the lower 
blades and wakes may be conveniently evaluated. 

Explicit Solution for the Unsteady Pressure Field 
An explicit solution for the unsteady pressure field in the reference 

blade passage region (0 < y < yA, \x\ < °°) will be constructed in 
terms of pressure disturbance functions, Bn (x), defined on the mean 
positions of the blade and wake surfaces. Two flow configurations 
which depend on the free-stream Mach number and the cascade ge
ometry are of current practical interest (Fig. 2). In the first, D = xA 

+ f-yA > 1 and the lower leading edge Mach wave from any blade 
passes behind the blades below. In the second case, D < 1 < xA + Spy A 
and the leading edge Mach waves are reflected once by the adjacent 
blades below. The points labeled 1, 2, and 3 in Fig. 2 denote the loca
tions at which Mach waves impinge on and are reflected by the zeroth 

b.l D= XA + ( J V A < ' < » A t 3 » ' y A 

AT POINT 1 

AT POINT 2: 

AT POINT 3: 

Fig. 2 Two supersonic cascade flow geometries 

blade. Discontinuities in the zeroth or reference blade pressure dis
tributions occur at these points. In the former case there is only one 
pressure discontinuity, which occurs on the lower surface of the ref
erence blade atx = l—B = l — xA + MA, while in the latter case 
pressure discontinuities occur at x = D on the upper surface and at 
x = 1 — C = 2/ry<4 and x = 1 - B on the lower surface. The solution 
procedure is better illustrated by a development leading to an ex
pression for the modified pressure for the second case. The result for 
the simpler flow geometry can then be obtained by simply neglecting 
the terms corresponding to the additional reflections. More compli
cated flow geometries can be treated by a straightforward extension 
of the concepts presented subsequently; however, such cases do not 
appear to be of interest for present applications. 

The unsteady flow in the reference passage results from distur
bances produced by the zeroth and first blades of the cascade and their 
wakes and, in addition, disturbances produced by their neighboring 
blades and wakes which propagate into the reference passage. The 
latter include upward propagating disturbances coming from below 
the line y = 0 and either upstream of the characteristic x = fiy or 
downstream of the characteristic x = 1 + \iy, and downward propa
gating disturbances coming from above the line y = yA and down
stream of the characteristic x = 1 — \iy + D (Fig. 3). In the following 
analysis component pressure terms, P,(x, y), which account for dis
turbances originating from different sources, are first determined. 
The complete solution for the unsteady pressure in the reference 
passage is then obtained by superposing the various component 
functions. The construction in terms of component pressures serves 
to clarify the illustration of the solution procedure. Each component 
is a solution of the governing differential equation and satisfies the 
far-field conditions and the reflection and transmission conditions 
at blade and wake surfaces, respectively. Influence functions which 
appear in the pressure solution have the form 

Qm,nHx,y) = n-
,aim 

dy 
- (x, y) • 

dy 
mx A)2 

- M2(y - nyA)2]m}U[(x - mxA) ± n(y • 

±S[x - mxA ± ii(y - nyA)]JoM(x - mxA)2 -

+ kn(y - nyA)Ji[k[(x - mxA)2 ~ n2(y -

-nyA)]\ 

M2(y - nyA) 

nyA)2V/2\ 

X U[x - mxA ± ii(y - nyA)]l{(x - mxA)2 - M2(y - nyA)2Y 

l '/2! 

(16) 
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where /,„,„ ±(^: — £, y) are influence functions for the velocity potential 
solution [5]. • 

The unsteady flow in the reference passage upstream of the char
acteristic x — iiy = 0 is caused by disturbances originating at the 
leading edge segments, UXA < x < HXA + B,y = nyA + , of the blades 
below, i.e., n < 0. The pressure due to these disturbances is obtained 
by generalizing the solution for the pressure field due to an oscillating 
isolated airfoil [18] and is given by 

Pi(x,y) = - E Bn(i)Qo,rr(x-Ly)d^ 

0<y<yA (17) 

The negative superscript on the upper limit of each integral in 
equation (17) indicates that the range of integration does not include 
the point £ = HXA + B, This is important to note because of the 
presence of the impulse function in each integrand. In contrast to the 
isolated airfoil result, the disturbance function and upper surface 
blade pressure distributions are not equal to each other since the 
unsteady disturbances produced by the motion of the lower blades 
contribute to the reference blade pressure distribution. Disturbances 
originating at the nth blade surface (n < 0) at and downstream of the 
point x = nxA + B do not propagate directly into the reference pas
sage, but are reflected by the adjacent upper blade. 

Disturbances produced by the zeroth blade and its wake are ac
counted for in a similar manner; however, those originating on the 
interval B < x < 1 + B, y = 0+ impinge on the first (n = 1) blade 
giving rise to a reflected disturbance which also contributes to the 
unsteady flow in the reference passage. If D < 1 there will be further 
downstream reflections. The pressure due to this disturbance wave 
system has the form 

Pi(x, y) = - f " B0(OQ0fi-(x - f, y)di; 
Jo 

J. I+/f nC 

B0(i;)Q0,2
+(x - I y)d£ - B0(OQo,-2-(x - i, y)dt 

R JB 
+ f Bo(£)Qo,4+(x - £, y)d£ 0 < y < y / , (18) 

JR 
The first integral term in equation (18) accounts for disturbances 
originating at the zeroth blade and wake. The second term is due to 
the reflection of this disturbance wave system by the first blade. The 
third and fourth terms account for the subsequent reflections of the 
original disturbance wave by the zeroth and first blade, respectively. 
Note that incident and reflected waves produce equal contributions 
to the pressure acting on a blade surface, but their contributions to 
the normal derivative of the pressure, dP/dy, at a blade surface cancel. 
The upper limit on the integrals representing reflected disturbances 
are finite because the reflecting blade surfaces have finite length and 
the wakes are assumed to transmit impinging disturbance waves. 

Similarly, the pressure due to disturbances originating at the first 
blade aud its wake and their reflections off the zeroth and first blade 
is given by 

PAx, y) = - f " Bi(£)Qo,i+U - f, y)dk 

+ C >'iABi(OQo,-r(x~ly)d^ 
*JXA 

- C '°AB1(OQo,:i+(x-^y)di 0<y<yA (19) 
UxA 

The minus sign preceding the first integral term in equation (19) 
signifies that self-induced upper and lower surface blade pressures 
are equal in magnitude but opposite in sign. 

The pressure component P^(x, y) accounts for disturbances pro
duced by the blades and wakes below the zeroth blade which propa
gate upward and the reflections of these disturbances from the lower 
surface of the reference blade. This disturbance system propagates 
into the reference passage downstream of the zeroth blade trailing 
edge Mach wave, x — iiy = 1, y > 0. The effect of unsteady distur-
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bances originating in the nth passage (n < 0) on the flow in the ref
erence passage is accounted for by the disturbance function distri
bution on the (n + l)th wake downstream of the characteristic x — 
ny = 1. Thus the influence of the disturbances from the adjacent lower 
passage, n = —1, has already been included in equation (18) and it 
follows that 

P*b,y) = - T. f" Bn(Z)Q0in-(x-i,y)dS 

— 1 s+l+B+pny'A 
+ Z I Bn(i)Qo,i-n + (x-H,y)di 

0<y<yA (20) 

The first term of the right-hand side of equation (20) accounts for the 
disturbances generated at the lower blades and wakes, while the 
second term represents the reflections of these disturbances by the 
first blade. 

Finally, the pressure component Ps(x, y) is due to disturbances 
originating at the blade and wakes above the first blade which prop
agate downward and are not reflected upward by lower blades and, 
in addition, the reflections of upward propagating disturbances by 
the blades above the first blade, which are not intercepted by the 
blades below. For the example flow geometry, the expression for Pr,(x, 
y) has the form 

Pr,(x, y) = - I ] f " Bn(Z)Qo,n + (x-ly)di 

- E I Bn($Q0.n+2+(x-$,y)dl; 
n = 2 JnxA 

fl+nxA+B 
+ E B„(£)Qo,„+2+(*-£,y)d£ 

„=1 JnxA+C 

+ E CXA+CBn(OQo,n+.t+(x-£,y)dS; 
n = l •JnxA+B 

+ E E ( BM)Q0,->N-„+(x-i;,y)dti 
N=2n = -<° • /1 + W-DB+cn.V/l 

0 < y < y „ (21) 

This pressure component accounts for disturbances which have no 
influence on the zeroth and first blade pressure distributions. The first 
summation termiiniequation: (21),represents disturbances>originating 
at the upper blades and their wakes and the remaining terms account 
for the reflections by the upper blades of disturbance waves which 
impinge on them from below. 

The complete solution for the unsteady, modified relative pressure 
in the reference passage region is obtained by a summation of the 
foregoing component terms, i.e., 

ON CHARACTERtSTJC I : x =fty 

ON CHARACTERISTIC?: x - 1 + j i y 

ON CHARACTERISTIC 3: x = I + * A - / i (v -VA> 

Fig. 3 Schematic representation of disturbance propagation toward the 
reference passage 
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P(x,y) = Y. P;(x,y) 0<y<yA (22) 

This result satisfies the governing differential equation (1), the 
downstream propagation and far-field requirements, and the reflec
tion and transmission conditions at blade and wake surfaces. The 
blade-to-blade periodicity and continuity conditions on the pressure 
upstream of the blade row, equation (4) for x < 0, and on the normal 
pressure gradient, dP/dy, for the entire reference passage, equation 
(5), are met if the pressure disturbance functions are required to 
satisfy the relation 

n = 0, ± 1 , ±2, (23) 

Thus, for the example flow geometry, D < 1 < XA + 3/j.yA, it follows 
after some algebra that 

P(x,y) = - C B($ £ ei"aQn,n-(x-i,y)di 
Jo „=_„ 

- j"° B(H)Q0,0~(x - H, y)d!; 

- £ f~ B(£)e'»aQn,n-(x-S,y)dZ 

- f C B(£)Qo . -2 - (* -{ , : y )d£+ C B(t-)Q0,2
+(x - ly)d£ 

JB JB 

+ f f i U ) £ eM'Qn,n+2 + (x-£,y)d£ 
Jc „ = i 

+ CB& £ e'"«Q„,„+4 + (x-£,y)d£ 
JB „=O 

Jo 

I 

=0 

'B(OeiaQi,i+(x-£,y)d£ 

B(8 £ e''^Qn,n
 + (x-ly)d£ 

l - B n=2 

» / v - 1 /-» 

+ £ £ 
7V=ln = - ~ Jl 

f ' ° B U ) £ e<"nQ„,„+2 + (*-£ , :y)d£ 
•^o „=i 

+ J1~DeiaB(0Qi,-r(x-£,y)d£ 

KN-n)B 
B(Z)e"'"Q„,2N^n

 + (x-l;,y)d£ 
+ lN-n~l)B 

0<y<yA (24) 

The pressure solution, equation (24), has the same form as the pre
vious velocity potential solution. In fact, the velocity potential result 
is recovered if P(x, y),B(x), and Qm,„ ±(x, y) are replaced by tiip(x, y), 
A(x), and ±/m,„ ±(x, y), respectively. For flows in which the trailing 
edge Mach waves pass behind the blades below (D > 1), the explicit 
solution for the modified relative pressure is obtained by eliminating 
the fourth, seventh, tenth, and eleventh integral terms from the 
right-hand side of equation (24) and setting the lower limits on the 
sixth and ninth integrals equal to B and 0, respectively. 

P r e s s u r e D i s t u r b a n c e F u n c t i o n R e l a t i o n s 
It remains to evaluate the pressure disturbance function, B(x), 

based on a known pressure distribution on the upper surface of the 
reference blade, and the condition of pressure continuity across the 
reference wake. A relation for the pressure on the upper surface of the 
reference blade in terms of the pressure disturbance function, B(x), 
is obtained by setting y = 0 in equation (24) and noting from equation 
(16) that Q,„,„ + (x, 0) = -Qm.n-(x, 0). It follows that 

P(x, 0+) = J"B(it)K(x - t)dt + B{x) 

+ 2 J * B(£)Qo,-2-(x - f, 0)d£ 

+ 2 J' 
Jo 

B({)e ' 'BQi,- i - (*-£,0)d£ 0 < x < 1 (25) 

For 0 < x < B the disturbance function, J5(x), is determined as the 
solution of a Fredholm integral equation which has the same kernel 
function as the flow tangency integral equation (11). Further, for B 
< x < 1, the pressure disturbance function is determined from 
equation (25) by straightforward integrations in analogy with the 
previous result for the velocity disturbance function. Values of the 
disturbance function, B(x), on the reference blade provide sufficient 
information for determining the pressure in the reference passage up 
to the trailing-edge Mach wave of the zeroth blade, x = 1 + ixy, and 
hence the pressure on the lower surface of a given blade from its 
leading edge to the point of impingement of the trailing edge Mach 
wave from the adjacent blade below. To complete the solution for the 
blade pressure distribution, the reference wake disturbance function 
distribution must be determined from the condition of pressure 
continuity across blade wakes, i.e., equation (4) for x > 1. 

The modified pressure difference across the reference blade and 
wake is given by 

x > 0 (26) 

x > 0 (27) 

AP(x) = P(x, 0-)-P(x, 0+) 

= P(x + xA, yA~)e~ia - P(x, 0+) 

and it follows from equations (24) and (16) that 

AP(x) = -2B(x) + 3[B(x), x] + S[B(x), x] 

where 

?[B(x), x] = - 2 C B(S)e~iaQ-i,-r(x - f, 0)d£ 
JB 

- 2 J * B(J)[e-« !Q_1,_3-(x - £, 0) - Q0,-2-(x - £, 0)]df 

- 2 J ' B(Z)[eiaQi,-r(x - £, 0) - Q0,-2-{x - £, 0)}d£ (28) 

and 

• l - n f l 
S[B(x),x} = -2 E e" ,si f 1 "' B ( S ) Q n , n - ( x - £ , 0 ) d f (29) 

The first term on the right-hand side of equation (27) represents the 
self-induced reference blade loading. The functional 7[B(x), x] rep
resents the loading on the reference blade due to disturbances origi
nating at and reflected from the adjacent blades above and below (n 
= ±1). This term depends on the reference blade disturbance function 
distribution (i.e., B(x) for 0 < x < 1). Finally, the functional 3[B(x), 
x] defines the reference blade loading due to the lower blades (n < 
—2) and wakes (n £ - 1 ) . This functional depends on the reference 
wake disturbance function distribution (i.e., B(x) for x > 1). 

Since the pressure must be continuous across blade wakes, it follows 
from equation (27) that 

2B(x) - S[B(x), x] = 3[B(x), x] (30) 

This relation indicates that nonzero values of the pressure distur
bance function on the reference wake are entirely due to disturbances 
produced by the neighboring blades and wakes of the cascade. Thus, 
the wake distribution due to upstream self-induced disturbances is 
zero in agreement with the isolated airfoil result [18]. Equation (30) 
is an integral equation for B(x) in which the adjacent blade interaction 
term, 7[B(x), x], can be regarded as a known function. The wake 
functional, S[B(x),x], introduces the complication that the value of 
the disturbance function at a given wake location, say xo, depends on 
its values downstream of this location, x > XQ. TO determine a solution 
to equation (30) the infinite series wake functional must be truncated, 
i.e., it is assumed that 

S[B(x),x}~SN[B(x),x] 

- 2 E e" l ! i f 1 "B B(0Qn,n-(x-0d£ 
n = -N » / l - (n+l)B 

(31) 

where N must be chosen large enough so that an accurate estimate 
of [B(x), x] is obtained. This truncation is also applied in equation 
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(27) to evaluate the reference blade pressure difference distribution. 
Numerical results based on the truncation procedure confirm that 
|B(x)| approaches zero with increasing distance along the wake. 

Equations (11), (13), (25), and (30) are the disturbance-function 
relations required by the present solution procedure for the prediction 
of reference blade pressure difference distributions and aerodynamic 
coefficients. These equations have been presented for a flow config
uration in which the trailing edge Mach wave from a given blade im
pinges once on the adjacent blade below, D < 1 < XA + 3uyA. Ex
pressions for the simpler flow configuration, in which trailing edge 
Mach waves pass behind the lower blades, D > 1, are obtained by 
dropping the last two integral expressions on the right-hand sides of 
equations (13), (25), and the definition of 7[B(x), x], equation (28). 
The solution procedure can be summarized as follows. First, the ve
locity disturbance function distribution, A{x) on the reference blade, 
0 < x < 1, is determined in terms of a prescribed blade motion, V{x, 
0), from the flow tangency integral relation, equation (11). Then the 
pressure distribution, P(x, 0+), on the upper surface of the reference 
blade is obtained from equation (13), and the reference blade pressure 
disturbance function distribution, B(x), 0 < x < 1, is evaluated from 
the integral relation, equation (25). Finally, the pressure disturbance 
function distribution along the reference wake is determined from 
the wake integral relation, equation (30), using the truncation scheme 
given by equation (31). The results described in Part 2 of this paper 
have been obtained by numerically estimating the sum of the infinite 
series kernel function, K(x), which appears in equations (11) and (25), 
and the infinite series, equation (14), which appears in the expression 
for upper surface pressure, equation (13). In addition, the three in
tegral equations, i.e., equations (11) and (25) for 0 < x < B, and 
equation (30), have been solved by finite difference procedures which 
reduce each of these equations to a system of linear algebraic equa
tions. The finite difference approximations to equations (11) and (25) 
yield identical coefficient matrices. 

The expression for the pressure difference across the reference 
blade and wake in terms of the velocity disturbance function, A(x) 
[5], is recovered from equation (27) by replacing Bit;) and Qm,„~(x 
- £, 0) by 2iTiA(£) and Km„(x - £), respectively. The significant 
difference between the wake integral relation for A(x) and equation 
(30) is that in the former case, the value of the velocity disturbance 
function at a given wake location, say xn, depends on reference blade 
and wake disturbances originating upstream of the location XQ. For 
example, if ?[B(x), x] and S[B(x), x] are neglected, equation (30) 
reduces to B(x) — 0. The corresponding result for the velocity dis
turbance function is 

A(x) - P A(0\kJi[k(x - 0] ~ i<on'2J0[k(x - £])d£ = 0 
Jo 

x>l (32) 

The solution to equation (32) represents the wake upwash produced 
by an isolated airfoil with V(x, 0) = A(x) (cf., equation (15)). This 
solution indicates that simple truncation, e.g., that described by 
equation (31), cannot be applied to the infinite series appearing in the 
wake integral equation for the velocity disturbance function. Thus 
aerodynamic response predictions determined from the velocity po
tential solution alone [5] were based on an assumed periodic behavior 
of the partial sums of the wake series. The numerical results described 
in [5] are restricted to subresonant blade motions. A subsequent 
analysis conducted by the present investigator revealed that the 
truncation scheme based on the foregoing periodicity assumption 
could not be applied throughout the superresonant region. This factor 
coupled with the relative simplicity of equations (27) and (30) has led 
to the present approach in which the velocity potential formulation 
is used in conjunction with the pressure formulation to obtain re
sponse predictions. 

Concluding Remarks 
A method based on the successive solution of two boundary value 

problems has been developed to predict the unsteady pressure field 
produced by the small amplitude, harmonic motions of a cascade 

placed in a supersonic stream with subsonic velocity component 
normal to the cascade leading edge locus. The first boundary-value 
formulation treats the velocity potential and the second treats the 
pressure as the basic dependent flow variable. Explicit solutions for 
these dependent variables are determined in terms of blade and wake 
velocity and pressure disturbance-function distributions, respectively. 
Integral equations based on blade and wake boundary conditions are 
then used to evaluate the disturbance functions. 

For design applications the basic information required from an 
unsteady aerodynamic solution is the blade pressure distributions 
and the aerodynamic response coefficients due to a prescribed blade 
motion or upwash distribution. Pressures acting on the upper surface 
of a given blade of the cascade (say the reference blade, y = 0, 0 < x 
< 1) are readily evaluated from the velocity-potential solution. Such 
pressures depend only on values of the velocity-disturbance function 
over the extent of the reference blade and these are conveniently 
determined from a flow tangency boundary condition. However, the 
flow adjacent to the lower surface of the reference blade downstream 
of the point x = 1 — B depends on the reference wake velocity-dis
turbance function distribution. Since values of the latter do not at
tenuate far downstream of the cascade, it has proven difficult to obtain 
numerical solutions to the wake integral equation of the velocity po
tential formulation, especially for superresonant blade motions, and 
hence to complete the solution for the lower surface pressure distri
bution. 

Therefore, in the present approach, the velocity-potential solution 
is only used to provide the pressure distribution acting on the upper 
surface of the reference blade. Lower surface pressures follow from 
the explicit representation of the unsteady pressure field in terms of 
a reference blade and wake pressure disturbance function distribution. 
Values of the pressure disturbance function on the reference blade 
are governed by an integral relation which is similar in form to the flow 
tangency relation applied in the velocity potential formulation. On 
the reference wake the pressure disturbance function rapidly ap
proaches zero with increasing distance downstream Of the cascade. 
This feature permits a simple truncation procedure to be effectively 
employed for the evaluation of the wake pressure disturbance dis
tribution and, in turn, lower surface reference blade pressures. With 
the successive solution procedure, predictions of blade pressure dif
ference distributions and aerodynamic coefficients are readily ob
tained for both subresonant and superresonant blade motions. 

References 
1 Snyder, L. E., "Supersonic Unstalled Torsional Flutter," in Aeroclast-

icity in Turbomachinery, S. Fleeter, ed., Proceedings of Project SQUID 
Workshop held at Detroit Diesel Allison, Indianapolis, June 1-2,1972, Project 
SQUID, Office of Naval Research, pp. 164-195. 

2 Verdon, J. M., "The Unsteady Aerodynamics of a Finite Supersonic 
Cascade With Subsonic Axial Flow," Journal of Applied Mechanics, Vol. 95, 
TRANS. ASME, Series E, Vol. 40, No. 3, Sept. 1973, pp. 667-671. 

3 Brix, C. W., and Platzer, M. F., "Theoretical Investigation of Supersonic 
Flow Past Oscillating Cascades With Subsonic Leading-Edge Locus," AIAA 
Paper No. 74-14, Washington, D. C, 1974. 

4 Kurosaka, M., "On the Unsteady Supersonic Cascade With a Subsonic 
Leading Edge—An Exact First Order Theory: Parts 1 and 2," JOURNAL OF 
ENGINEERING FOR POWER, TRANS. ASME, Series A, Vol. 96, No. 1, Jan. 
1974, pp. 13-31. 

5 Verdon, J. M., and McCune, J. E., "Unsteady Supersonic Cascade in 
Subsonic Axial Flow," AIAA Journal, Vol. 13, No. 2, Feb. 1975, pp. 193-201. 

6 Miles, J. W., The Potential Theory of Unsteady Supersonic Flow, 
Cambridge University Press, 1959, pp. 49-53. 

7 Miles, J. W., "The Compressible Flow Past an Oscillating Airfoil in a 
Wind Tunnel," Journal of the Aeronautical Sciences, Vol. 23, July 1956, pp. 
671-678. 

8 Lane, F., "Supersonic Flow Past an Oscillating Cascade With Supersonic 
Leading-Edge Locus," Journal of the Aeronautical Sciences, Vol. 24, Jan. 1957, 
pp. 65-66. 

9 Nagashima, T., and Whitehead, D. S., "Aerodynamic Forces and Mo
ments for Vibrating Supersonic Cascade Blades," University of Cambridge 
Department of Engineering Report CUED/A—Turbo/TR59, 1974. 

10 Goldstein, M. E., "Cascade With Subsonic Leading-Edge Locus," AIAA 
Journal, Vol. 13, No. 8, Aug. 1975, pp. 1117-1118. 

11 Lane, F., and Friedman, M., "Theoretical Investigation of Subsonic 
Oscillatory Blade Row Aerodynamics," NACA TN No. 4136, 1958. 

12 Kaji, S., and Okazaki, T., "Propagation of Sound Waves Through a Blade 

Journal of Engineering for Power OCTOBER 1977 / 515 Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Row, II. Analysis Based on the Acceleration Potential Method," Journal of 
Sound and Vibration, Vol. II, No. 3, Mar. 1975, pp. 355-375. 

13 Whitehead, D. S., "Vibration and Sound Generation in a Cascade of Flat 
Plates in Subsonic Flow," R&M 3685, British Aeronautical Research Council, 
Feb. 1970. 

14 Chadwick, W. R., Bell, J. K., and Platzer, M. F., "Analysis of Supersonic 
Flow Past Oscillating Cascades," in Unsteady Flow in Turbomachinery, 
AGARD-CP-177, Papers presented at the 46th Meeting of the AGARD Pro
pulsion and Energetics Panel held at the Naval Postgraduate School, Monterey, 
Calif., Sept. 22-26,1975. 

15 Snyder, L. E., and Commerford, G. L., "Supersonic UnstaUed Flutter 
in Fan Rotors; Analytical and Experimental Results," JOURNAL OF ENGI

NEERING FOR POWER, TRANS. ASME, Series A, Vol. 96, No. 4, Oct. 1974, 
pp. 379-386. 

16 Mikolajczak, A. A., et al., "Advances in Fan and Compressor Blade 
Flutter Analysis and Predictions," AIAA Journal of Aircraft, Vol. 12, No. 4, 
Apr. 1975, pp. 325-332. 

17 Verdon, J. M., "The Unsteady Flow Downstream of an Airfoil Oscillating 
in a Supersonic Stream," AIAA Journal, Vol. 12, No. 7, July 1974, pp. 999-
1001. 

18 Verdon, J. M., "The Unsteady Supersonic Flow Downstream of an Os
cillating Airfoil," in Unsteady Flows in Jet Engines, Carta, F. 0., ed., Pro
ceedings of a Project SQUID Workshop Held at United Aircraft Research 
Laboratories, East Hartford, Conn., July 11-12, 1974, Project SQUID, Office 
of Naval Research, pp. 237-254. 

i. TITLE o.. PUBLICATION T r a n s a c t i o n s o f t h e ASME 

JOURNAL OF ENGINEERING FOR POWER 1. | . |6 |5 | , T o l 9-27-77 

345 E a s t 4 7 t h S t r e e t , New Y o r k , New Y o r k 1 0 0 1 7 

345 Eas t 4 7 t h S t r e e t , New Y o r k , New York 10017 

6, NAMES AND COMPLETE AQDntSSES OF PUBLISH E H. E DITOR. AND MAN AGING E DITOH 

The A m e r i c a n S o c i e t y o f M e c h a n i c a l E n g i n e e r s , 345 East 4 7 t h S t r e e t , New Y o r k , 

J . J . J a k l i t s c h , J r . , ASHE, 345 E a s t 4 7 t h S t r e e t , New Y o r k , NY 10017 

MANAGING EO1T0.H (Nome aid Addreal 

NY 10017 

The A m e r i c a n S o c i e t y o t 345 Eas t 4 7 t h S t r e e t 
M e c h a n i c a l E n g i n e e r . Ne „ Y o r k , New Y o r k 10017 

NAME ADOP.EI1 
None None 

.. FOB COMPLETION ,Y NONPBOBIT O.D ANIZATIONS AUTHORIZED TO MAIL AT SPECIAL SATES «7.tll«, IJ I .J I I . PSM 

i m „ ,»» , „ . . , _„™ 
. .T„T .L„ „ . „P,«. . ,»T.n,». ,P, . . .» . . , 

' ' " M Z S I L ° U V ' T ¥ . " . V A ° . "•"•."••«"•« 

' imiS"?i^Vii"m"nV^m"^!°mV''om"''' 

. .TOTAL „ „ . . . „ „ „ . » „ . , C „ . D , 

' ' I P H E S — — — 

I" A) 

-ssa=r« • 

^urs^^p^ 
4 , 2 7 5 

--
2 , 0 0 1 

2 , 0 0 1 

441 

2 ,442 

1,833 

-
4 , 2 7 5 

*SVUUEAP'IJBUSCM0EPQEK 

4 , 4 5 3 

" 
2 ,594 

2 ,594 

448 

3 ,042 

1 ,411 

-
4 , 4 5 3 

= ; ^ " 7 ^ / c ! ' ' u s ' N E " 
IJ.FOB COMPLETION >Y PUBLISHED MAILINO AT THE REOLILAB BATES i i . . l l « ill. It,. Pa.U ».-.™ »/.. . .„ 

OflECF 

a!chant* 

?:»%Kxt, 

UKJ pam» 

KU.FO|™i 3 5 ! 6 "'"ge I) 

516 / OCTOBER 1977 Transactions of the ASME Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




