
Chapter 4
Derivative-Free Optimization

Oliver Kramer, David Echeverrı́a Ciaurri, and Slawomir Koziel

Abstract. In many engineering applications it is common to find optimization
problems where the cost function and/or constraints require complex simulations.
Though it is often, but not always, theoretically possible in these cases to ex-
tract derivative information efficiently, the associated implementation procedures
are typically non-trivial and time-consuming (e.g., adjoint-based methodologies).
Derivative-free (non-invasive, black-box) optimization has lately received consid-
erable attention within the optimization community, including the establishment of
solid mathematical foundations for many of the methods considered in practice. In
this chapter we will describe some of the most conspicuous derivative-free optimiza-
tion techniques. Our depiction will concentrate first on local optimization such as
pattern search techniques, and other methods based on interpolation/approximation.
Then, we will survey a number of global search methodologies, and finally give
guidelines on constraint handling approaches.

4.1 Introduction

Efficient optimization very often hinges on the use of derivative information of
the cost function and/or constraints with respect to the design variables. In the last
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decades, the computational models used in design have increased in sophistication
to such an extent that it is common to find situations where (reliable) derivative
information is not available. Although in simulation-based design there are method-
ologies that allow one to extract derivatives with a modest amount of additional com-
putation, these approaches are in general invasive with respect to the simulator (e.g.,
adjoint-based techniques [1]), and thus, require precise knowledge of the simulation
code and access to it. Moreover, obtaining derivatives in this intrusive way often
implies significant coding (not only at the code development stage, but also sub-
sequently, when maintaining or upgrading the software), and consequently, many
simulators simply yield, as output, the data needed for the cost function and/or con-
straint values. Furthermore, optimal design has currently a clear multidisciplinary
nature, so it is reasonable to expect that some components of the overall simula-
tion do not include derivatives. This situation is even more likely when commercial
software is used, since then the source code is typically simply inaccessible.

In this chapter we review a number of techniques that can be applied to gener-
ally constrained continuous optimization problems for which the cost function and
constraint computation can be considered as a black box system. We wish to clearly
distinguish between methods that aim at providing just a solution (local optimiza-
tion; see Section 4.3), and approaches that try to avoid being trapped in local optima
(global optimization; see Section 4.4). Local optimization is much easier to handle
than global optimization, since, in general, there is no algorithmically suitable char-
acterization of global optima. As a consequence, there are more theoretical results of
practical relevance for local than for global optimizers (e.g., convergence conditions
and rate). For more details on theoretical aspects of derivative-free optimization we
strongly recommend both the review [2] and the book [3]. The techniques are de-
scribed for continuous variables, but it is possible to apply, with care, extensions of
many of them to mixed-integer scenarios. However, since mixed-integer nonlinear
programming is still an emergent area (especially in simulated-based optimization),
we prefer not to include recommendations in this case.

In some situations, numerical derivatives can be computed fairly efficiently (e.g.,
via a computer cluster), and still yield results that can be acceptable in practice.
However, if the function/constraint evaluations are even moderately noisy, numer-
ical derivatives are usually not useful. Though methods that rely on approximate
derivatives are not derivative-free techniques per se, for example, in the absence of
noise, they can address optimization in a black box approach. We should note that
in addition to their inherent additional computational costs, numerical derivatives
very often imply the tuning of the derivative approximation together with the sim-
ulation tolerances, and this is not always easy to do. Implicit filtering [4, 5] may
somehow alleviate some of these issues. This approach is essentially a gradient-
based procedure where the derivative approximation is improved as the optimization
progresses. Implicit filtering has been recommended for problems with multiple lo-
cal optima (e.g., noisy cost functions). For more details on gradient-based method-
ologies the reader is encouraged to regard nonlinear optimization references (for
example, [6, 7]).
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Many derivative-free methods are easy to implement, and this feature makes them
attractive when approximate solutions are required in a short time frame. An obvi-
ous statement that is often neglected is that the computational cost of an iteration
of an algorithm is not always a good estimate of the time needed within a project
(measured from its inception) to obtain results that are satisfactory. However, one
important drawback of derivative-free techniques (when compared, for example,
with adjoint-based approaches) is the limitation on the number of optimization vari-
ables that can be handled. For example, in [3] and [2] the limit given is a few hundred
variables. However, this limit in the problem size can be overcome, at least to some
extent, if one is not restricted to a single sequential environment. For some of the
algorithms though, adequately exploiting parallelism may be difficult or even im-
possible. When distributed computing resources are scarce or not available, and for
simulation-based designs with significantly more than a hundred optimization vari-
ables, some form of parameter reduction is mandatory. In these cases, surrogates
or reduced order models [8] for the cost function and constraints are desirable ap-
proaches. Fortunately, suitable parameter and model order reduction techniques can
often be found in many engineering applications, although they may give rise to in-
accurate models. We should add that even in theory, as long as a problem with nons-
mooth/noisy cost functions/constraints can be reasonably approximated by a smooth
function (see [9], Section 10.6), some derivative-free optimization algorithms per-
form well with nonsmooth/noisy cost functions, as has been observed in practice
[2, 3].

In the last decade, there has been a renaissance of gradient-free optimization
methodologies, and they have been successfully applied in a number of areas. Exam-
ples of this are ubiquitous; to name a few, derivative-free techniques have been used
within molecular geometry [10], aircraft design [11, 12], hydrodynamics [13, 14],
medicine [15, 16] and earth sciences [17, 18, 19, 20]. These references include
generally constrained cases with derivative-free objective functions and constraints,
continuous and integer optimization variables, and local and global approaches. In
spite of all this apparent abundance of results, we should not disregard the general
recommendation (see [3, 2]) of strongly preferring gradient-based methods if accu-
rate derivative information can be computed reasonably efficiently and globally.

This chapter is structured as follows. In Section 4.2 we introduce the gen-
eral problem formulation and notation. A number of derivative-free methodologies
for unconstrained continuous optimization are presented in the next two sections.
Section 4.3 refers to local optimization, and Section 4.4 is devoted to global op-
timization. Guidelines for extending all these algorithms to generally constrained
optimization are given in Section 4.5. We bring the chapter to an end with some
conclusions and recommendations.

4.2 Derivative-Free Optimization

A general single-objective optimization problem can be formally stated as:

min
x∈Ω⊂Rn

f (x) subject to g(x) ≤ 0, (4.1)
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where f (x) is the objective function, x ∈ R
n is the vector of control variables, and

g : R
n → R

m represents the nonlinear constraints in the problem. Bound and linear
constraints are included in the set Ω ⊂R

n. For many approaches it is natural to treat
any constraints for which derivatives are available separately. In particular, bounds
and linear constraints, and any other structure than can be exploited, should be. So
for example, nonlinear least-squares problems should exploit that inherent structure
whenever possible (see e.g. [21]). We are interested in applications for which the
objective function and constraint variables are computed using the output from a
simulator, rendering function evaluations expensive and derivatives unavailable.

We will begin by discussing some general issues with respect to optimization
with derivatives since they have important relevancy to the derivative-free case.
Essentially all approaches to the former are somewhere between steepest descent
and Newton’s method, or equivalently use something that is between a linear and
a quadratic model. This is reinforced by the realization that almost all practical
computation is linear at its core, and (unconstrained) minima are characterized by
the gradient being zero, and quadratic models give rise to linear gradients. In fact,
theoretically at least, steepest descent is robust but slow (and in fact sometimes so
slow that in practice it is not robust) whereas Newton’s method is fast but may have
a very small radius of convergence. That is, one needs to start close to the solu-
tion. It is also computationally more demanding. Thus in a sense, most practical
unconstrained algorithms are intelligent compromises between these two extremes.
Although, somewhat oversimplified, one can say that the constrained case is dealt
with by being feasible, determining which constraints are tight, linearizing these
constraints and then solving the reduced problem determined by these linearizations.
Therefore, some reliable first-order model is essential, and for faster convergence,
something more like a second-order model is desirable. In the unconstrained case
with derivatives these are typically provided by a truncated Taylor series model (in
the first-order case) and some approximation to a truncated second-order Taylor se-
ries model. A critical property of such models is that as the step sizes become small
the models become more accurate. In the case where derivatives, or good approx-
imations to them, are not available, clearly, one cannot use truncated Taylor series
models. It thus transpires that, if for example, one uses interpolation or regression
models, that depend only on function values, one can no longer guarantee that as the
step sizes become small the models become more accurate. Thus one has to have
some explicit way to make this guarantee, at least approximately. It turns out that
this is usually done by considering the geometry of the points at which the func-
tion is evaluated, at least, before attempting to decrease the effective maximum step
size. In pattern search methods, this is done by explicitly using a pattern with good
geometry, for example, a regular mesh that one only scales while maintaining the a
priori good geometry.

In the derivative case the usual stopping criteria relates to the first-order optimal-
ity conditions. In the derivative-free case, one does not explicitly have these, since
they require (approximations to) the derivatives. At this stage we just remark that
any criteria used should relate to the derivative case conditions, so, for example one
needs something like a reasonable first-order model, at least asymptotically.
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4.3 Local Optimization

The kernel of many optimizers are local methods. This is not surprising, since, as
we already mentioned, there is no suitable algorithmic characterization of global
optima unless one considers special situations such as where all local optima are
global, as for example in convex minimization problems. In this section we con-
centrate on local search methods based on pattern search and also on interpolation
and approximation models. Some constraint handling procedures are described in
Section 4.5.

4.3.1 Pattern Search Methods

Pattern search methods are optimization procedures that evaluate the cost function
in a stencil-based fashion determined by a set of directions with intrinsic prop-
erties meant to be desirable from a geometric/algebraic point of view. This sten-
cil is sequentially modified as iterations proceed. The recent popularity of these
schemes is due in part to the development of a mathematically sound convergence
theory [2, 3]. Moreover, they are attractive because they can relatively easily lever-
age the widespread availability of parallel computing resources. However, most
published computational results are not parallel exploiting.

4.3.1.1 Generalized Pattern Search

Generalized pattern search (GPS; [22, 23]) refers to a whole family of optimiza-
tion methods. GPS relies on polling (local exploration of the cost function on the
pattern) but may be enhanced by additional searches, see [23]. At any particular it-
eration a stencil (pattern) is centered at the current solution. The stencil comprises
a set of directions such that at least one direction is a descent direction. This is also
called a generating set (see e.g. [2]). If any of the points in the stencil represent an
improvement in the cost function, the stencil is moved to one of them. Otherwise,
the stencil size is decreased. The optimization progresses until some stopping crite-
rion is satisfied (typically, a minimum stencil size). Generalized pattern search can
be further generalized by polling in an asymptotically dense set of directions (this
set varies with the iterations). The resulting algorithm is the mesh adaptive direct
search (MADS; [24]). In particular, some generalization of a simple fixed pattern is
essential for constrained problems. The GPS method parallelizes naturally since, at a
particular iteration, the objective function evaluations at the polling points can be ac-
complished in a distributed fashion. The method typically requires on the order of n
function evaluations per iteration (where n is the number of optimization variables).

4.3.1.2 Hooke-Jeeves Direct Search

The Hooke-Jeeves direct search (HJDS; [25]) is another pattern search method and
was the first to use the term ‘direct search’ method and take advantage of the idea
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Fig. 4.1 Illustration of exploratory and pattern moves in Hooke-Jeeves direct search (modi-
fied from [19]). The star represents the optimum.

of a pattern. HJDS is based on two types of moves: exploratory and pattern. These
moves are illustrated in Figure 4.1 for some optimization iterations in R

2.
The iteration starts with a base point x0 and a given step size. During the ex-

ploratory move, the objective function is evaluated at successive changes of the
base point in the search (for example coordinate) directions. All the directions are
polled sequentially and in an opportunistic way. This means that if d1 ∈ R

n is the
first search direction, the first function evaluation is at x0 + d1. If this represents
an improvement in the cost function, the next point polled will be, assuming n > 1,
x0 + d1 + d2, where d2 is the second search direction. Otherwise the point x0 −d1

is polled. Upon success at this last point, the search proceeds with x0 −d1 + d2, and
alternatively with x0 +d2. The exploration continues until all search directions have
been considered. If after the exploratory step no improvement in the cost function is
found, the step size is reduced. Otherwise, a new point x1 is obtained, but instead of
centering another exploratory move at x1, the algorithm performs the pattern move,
which is a more aggressive step that moves further in the underlying successful di-
rection. After the pattern move, the next polling center x2 is set at x0 + 2(x1 −x0).
If the exploratory move at x2 fails to improve upon x1, a new polling is performed
around x1. If this again yields no cost function decrease, the step size is reduced,
keeping the polling center at x1.

Notice the clear serial nature of the algorithm. This makes HJDS a reason-
able pattern search option when distributed computing resources are not available.
Because of the pattern move, HJDS may also be beneficial in situations where an op-
timum is far from the initial guess. One could argue that initially pattern search tech-
niques should use a relatively large stencil size on the hope that this feature enables
them to avoid some local minima and, perhaps, some robustness against noisy cost
functions.
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4.3.2 Derivative-Free Optimization with Interpolation and
Approximation Models

The other major approach to derivative-free optimization is based on building mod-
els that are meant to approximate the functions and then make use of derivative
methods on the models. The advantage is that one is trying to take account of the
shape of the function rather than naively just using the function evaluations alone.
As our introductory remarks in Section 4.2 suggest we can expect our models to be
at least first-order models or better still, second-order.

A major drawback of this approach is that, since the models are not based upon
an a priori pattern, as with just polling, the geometry of the sample points used re-
quires special attention. Additionally, one pays for the extra sophistication of these
methods in that they are not obviously parallelizable. Some of the better known al-
gorithms in this class include DFO [3], NEWUOA [26] and BOOSTERS [27]. The
basic ideas will be given here but it is recommended that the diligent reader consult
Chapters 3-6 of [3].

First of all, what does good geometry mean? Essentially, for example, if one
wants to consider interpolation by a polynomial of degree d, where d = 1, that is
linear interpolation, one needs n + 1 points and good geometry means they do not
lie on or close to a linear surface. Similarly, if one wants to consider interpolation
by a polynomial of degree d, where d = 2, that is quadratic interpolation, one needs
(n + 1)(n + 2)/2 points and good geometry means they do not lie on or close to a
quadratic or linear surface. The extension to higher degree is clear. One can also
see why the problem goes away if one works with a suitable pattern, as in a pattern
search method.

Now, all three methods mentioned above are trust-region based. For an in-
troduction to trust-region techniques the readers are referred to [7], or [9] for a
monographic volume. In the case with derivatives the essential ingredients are the
following. Starting at a given point x0 one has a region about that point, coined
the trust region and denoted by Δ0. The trust region is typically a sphere in the
Euclidean or in the infinity norm. One then requires a model m(x) for the true ob-
jective function that is relatively easy to minimize within the trust region (e.g., a
truncated first-order Taylor series or an approximation to a truncated second-order
Taylor series, about the current point). A search direction from the current point is
determined based upon the model and one (approximately) minimizes the model
within the trust region.

The trust region can be updated in the following manner. Suppose y1 is the ap-
proximate minimizer of the model within the trust region Δ0. We then compare the
predicted reduction to truth in the sense that we consider

ρ =
f (x0)− f (y1)

m(x0)−m(y1)
.
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Then typically one assigns some updating strategy to the trust-region radius Δ0

like

Δ1 =

⎧
⎨

⎩

2 ·Δ0, if ρ > 0.9 ,
Δ0, if 0.1 ≤ ρ ≤ 0.9 ,
0.5 ·Δ0 if ρ < 0.1 ,

where Δ1 denotes the updated radius. In the first two cases x1 = y1 and in the third
case x1 = x0.

Thus, although oversimplified, if we are using Taylor series approximations for
our models, within the trust management scheme one can ensure convergence to a
solution satisfying first-order optimality conditions [9]. Perhaps the most important
difference once derivatives are not available is that we cannot take Taylor series
models and so, in general, optimality can no longer be guaranteed. In fact, we have
to be sure that when we reduce the trust-region radius it is because of the problem
and not just a consequence of having a bad model as a result of poor geometry of
the sampling points. So it is here that one has to consider the geometry. Fortunately,
it can be shown that one can constructively ensure good geometry, and with that,
support the whole derivative-free approach with convergence to solutions that satisfy
first-order optimality conditions. For details see [3], Chapter 6.

4.4 Global Optimization

In the previous section we have concentrated on local search methods. Unfortu-
nately, most real-world problems are multimodal, and global optima are generally
extremely difficult to obtain. Local search methods find local optima that are not
guaranteed to be global. Here we will give a short survey of global optimization
methods. However, the reader should take note of the following. In practice, often
good local optima suffice. If one is considering even a modest number of variables,
say fifty, it is generally very difficult, if not impossible, to ensure convergence to
a provable global solution, in a reasonable length of time, even if derivatives are
available, not to mention in the derivative-free case. Almost all algorithms designed
to determine local optima are significantly more efficient than global methods.

Many successful methods in global optimization are based on stochastic compo-
nents, as they allow to escape from local optima and overcome premature stagnation.
Famous classes of families of stochastic global optimization methods are evolution-
ary algorithms, estimation of distribution algorithms, particle swarm optimization,
and differential evolution. Further heuristics known in literature are simulated an-
nealing [28, 29], tabu search [30, 31], ant colony optimization [32, 33], and artificial
immune systems [34, 35]. In this section, we concentrate on the first four classes of
methods that have been successful in a number of practical applications.

4.4.1 Evolutionary Algorithms

A history of more than forty years of active research on evolutionary compu-
tation indicates that stochastic optimization algorithms are an important class of
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1 Start
2 Initialize solutions xi of population P
3 Evaluate objective function for the solutions xi in P
4 Repeat
5 For i = 0 To λ
6 Select ρ parents from P
7 Create new xi by recombination
8 Mutate xi
9 Evaluate objective function for xi
10 Add xi to P ′
11 Next
12 Select μ parents from P ′ and form new P
13 Until termination condition
14 End

Fig. 4.2 Pseudocode of a generic evolutionary algorithm.

derivative-free search methodologies. The separate development of evolutionary al-
gorithms (EAs) in the United States and Europe led to different kinds of algorithmic
variants. Genetic algorithms were developed by John Holland in the United States
at the beginning of the seventies. Holland’s intention was to exploit adaptive behav-
ior. In his book Adaptation in Natural and Artificial Systems [36] he describes the
development of genetic algorithms (GAs). His original algorithm is today known
as simple GA. Evolutionary programming by Fogel, Owens and Walsh [37] was
originally designed for optimization of the evolvement of deterministic finite au-
tomata, but has today been extended to numerical optimization. Evolution strate-
gies (ES) were developed by Rechenberg and Schwefel in the middle of the sixties
in Germany [38, 39, 40]. In the following, we introduce the idea of evolutionary
optimization, that is closely related to evolution strategies.

4.4.1.1 Algorithmic Framework

The basis of evolutionary search is a population P := {x1, . . . ,xλ} of candidate
solutions, also called individuals. Figure 4.2 shows the pseudocode of a general
evolutionary algorithm. The optimization process takes three steps. In the first step
the recombination operator (see Section 4.4.1.2) selects ρ parents and combines
them to obtain new solutions. In the second step the mutation operator (see Sec-
tion 4.4.1.3) adds random noise to the preliminary candidate solution. The objective
function f (x) is interpreted in terms of the quality of the individuals, and in EA
lexicon is called fitness. The fitness of the new offspring solution is evaluated. All
individuals of a generation form the new population P ′. In the third step, when
λ solutions have been produced, μ individuals, with μ < λ , are selected (see Sec-
tion 4.4.1.4), and form the new parental population of the following generation. The
process starts again until a termination condition is reached. Typical termination
conditions are the accomplishment of a certain solution quality, or an upper bound
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on the number of generations. We now concentrate on the stochastic operators that
are often used in evolutionary computation.

4.4.1.2 Recombination

In biological systems recombination, also known as crossover, mixes the genetic
material of two parents. Most EAs also make use of a recombination operator and
combine the information of two or more individuals into a new offspring solution.
Hence, the offspring carries parts of the genetic material of its parents. The use of
recombination is discussed controversially within the building block hypothesis by
Goldberg [41, 42], and the genetic repair effect by Beyer [43].

Typical recombination operators for continuous representations are dominant
and intermediary recombination. Dominant recombination randomly combines the
genes of all parents. If we consider parents of the form x = (x1, . . .xn), dominant re-
combination with ρ parents x1, . . . ,xρ creates the offspring vector x′ = (x′1, . . . ,x

′
n)

by random choice of the i-th component x′i:

x′i := xk
i , k ∈ random {1, . . . ,ρ}. (4.2)

Intermediate recombination is appropriate for integer and real-valued solution
spaces. Given ρ parents x1, . . . ,xρ each component of the offspring vector x′ is
the arithmetic mean of the components of all ρ parents. Thus, the characteristics of
descendant solutions lie between their parents:

x′i :=
1
ρ

ρ

∑
k=1

xk
i . (4.3)

Integer representations may require rounding procedures to produce intermediate
integer solutions.

4.4.1.3 Mutation

Mutation is the second main source for evolutionary changes. According to Beyer
and Schwefel [38], a mutation operator is supposed to fulfill three conditions. First,
from each point in the solution space each other point must be reachable. Second,
in unconstrained solution spaces a bias is disadvantageous, because the direction to
the optimum is not known. And third, the mutation strength should be adjustable
in order to adapt to solution space conditions. In the following, we concentrate on
the well-known Gaussian mutation operator. We assume that solutions are vectors
of real values. Random numbers based on the Gaussian distribution N (0,1) satisfy
these conditions in continuous domains. The Gaussian distribution can be used to
describe many natural and artificial processes. By isotropic Gaussian mutation each
component of x is perturbed independently with a random number from a Gaussian
distribution with zero mean and standard deviation σ .
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Fig. 4.3 Gaussian mutation: isotropic Gaussian mutation (left) uses one step size σ for each
dimension, multivariate Gaussian mutation (middle) allows independent step sizes for each
dimension, and correlated mutation (right) introduces an additional rotation of the coordinate
system

The standard deviation σ plays the role of the mutation strength, and is also
known as step size. The step size σ can be kept constant, but convergence can be
improved by adapting σ according to the local solution space characteristics. In
case of high success rates, i.e., a high number of offspring solutions being better
than their parents, large step sizes are advantageous in order to promote the explo-
ration of the search space. This is often the case at the beginning of the search.
Small step sizes are appropriate for low success rates. This is frequently adequate
in later phases of the search, when the optimization history can be exploited while
the optimum is approximated. An example for an adaptive control of step sizes is
the 1/5-th success rule by Rechenberg [39] that increases the step size if the success
rate is over 1/5-th, and decreases it, if the success rate is lower.

The isotropic Gaussian mutation can be extended to the multivariate Gaussian
mutation by introducing a step size vector σ with independent step sizes σi. Fig-
ure 4.3 illustrates the differences between isotropic Gaussian mutation (left) and
the multivariate Gaussian mutation (middle). The multivariate variant considers a
mutation ellipsoid that adapts flexibly to local solution space characteristics.

Even more flexibility can be obtained through the correlated mutation proposed
by Schwefel [44] that aligns the coordinate system to the solution space charac-
teristics. The mutation ellipsoid is rotated by means of an orthogonal matrix, and
this rotation can be modified along iterations. The rotated ellipsoid is also shown in
Figure 4.3 (right). The covariance matrix adaptation evolution strategies (CMA-ES)
and derivates [45, 46] are self-adapting control strategies based on an automatic
alignment of the coordinate system.

4.4.1.4 Selection

The counterpart of the variation operators mutation and recombination is selection.
Selection gives the evolutionary search a direction. Based on the fitness, a subset of
the population is selected, while the rest is rejected. In EAs the selection operator
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can be utilized at two points. Mating selection selects individuals for recombina-
tion. Another popular selection operator is survivor selection, corresponding to the
Darwinian principle of survival of the fittest. Only the individuals selected by sur-
vivor selection are allowed to confer genetic material to the following generation.
The elitist strategies plus and comma selection choose the μ best solutions and are
usually applied for survivor selection. Plus selection selects the μ best solutions
from the union P ∪P ′ of the last parental population P and the current offspring
population P ′, and is denoted by (μ +λ )-EA. In contrast to plus selection, comma
selection, which is denoted by (μ ,λ )-EA, selects exclusively from the offspring
population, neglecting the parental population − even if individuals have superior
fitness. Though disregarding these apparently promising solutions may seem to be
disadvantageous, this strategy that prefers the new population to the old population
can be useful to avoid being trapped in unfavorable local optima.

The deterministic selection scheme described in the previous paragraph is a char-
acteristic feature of ES. Most evolutionary algorithms use selection schemes con-
taining random components. An example is fitness proportionate selection (also
called roulette-wheel selection) popular in the early days of genetic algorithms [41].
Another example is tournament selection, a widely used selection scheme for EAs.
Here, the candidate with the highest fitness out of a randomly chosen subset of the
population is selected to the new population. The stochastic-based selection schemes
permit survival of not-so-fit individuals and thus helps with preventing premature
convergence and preserving the genetic material that may come in handy at later
stages of the optimization process.

4.4.2 Estimation of Distribution Algorithms

Related to evolutionary algorithms are estimation of distribution algorithms (EDAs).
They also operate with a set of candidate solutions. Similar to ES, a random set of
points is initially generated, and the objective function is computed for all these
points. The core of EDAs are successive steps where distributions of the best solu-
tions within a population are estimated, and a new population is sampled according
to the previous distribution estimation.

The principle has been extended in a number of different manners. Most EDAs
make use of parametric distributions, i.e., the parameters of distribution functions
are determined in the estimation step. The assumption of a Gaussian distribution
is frequent in EDAs. EDAs may suffer from premature convergence. The weighted
variance estimator introduced in [47] has been observed to alleviate that conver-
gence issue. Adaptive variance scaling [48], i.e., the variance can be increased if
good solutions are found, otherwise it is decreased, has also been suggested to avoid
early stagnation. The sampling process can be enhanced by anticipated mean shift
(AMS; [49]). In this approach, about two thirds of the population are sampled regu-
larly, and the rest is shifted in the direction of a previously estimated gradient. If this
estimate is accurate, all the shifted individuals, together with part of the non-shifted
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individuals, may survive, and the variance estimate in the direction of the gradient
could be larger than without AMS.

4.4.3 Particle Swarm Optimization

Similar to evolutionary algorithms, particle swarm optimization (PSO) is a pop-
ulation approach with stochastic components. Introduced by Kennedy and Eber-
hart [50], it is inspired by the movement of natural swarms and flocks. The algorithm
utilizes particles with a position x that corresponds to the optimization variables, and
a speed v which is similar to the mutation strength in evolutionary computation. The
principle of particle swarm optimization is based on the idea that the particles move
in the solution space, influencing each other with stochastic changes, while previous
successful solutions act as attractors.

In each iteration the position of particle x is updated by adding the current
velocity v

x′ := x + v . (4.4)

The velocity is updated as follows

v′ := v + c1r1(x∗p −x)+ c2r2(x∗s −x) , (4.5)

where x∗p and x∗s denote the best previous positions of the particle and of the swarm,
respectively. The weights c1 and c2 are acceleration coefficients that determine the
bias of the particle towards its own or the swarm history. The recommendation given
by Kennedy and Eberhart is to set both parameters to one. The stochastic compo-
nents r1 and r2 are uniformly drawn from the interval [0,1], and can be used to
promote the global exploration of the search space.

4.4.4 Differential Evolution

Another population-based optimization approach is differential evolution (DE),
originally introduced by Storn and Price [51]. As the algorithms in the previous
three subsections, DE exploits a set of candidate solutions (agents in DE lexicon).
New agents are allocated in the search space by combining the positions of other ex-
isting agents. More specifically, an intermediate agent is generated from two agents
randomly chosen from the current population. This temporary agent is then mixed
with a predetermined target agent. The new agent is accepted for the next generation
if and only if it yields reduction in objective function.

The basic DE algorithm uses a random initialization. A new agent y = [y1, . . . ,yn]
is created from the existing one x = [x1, . . . ,xn] as indicated below.

1. Three agents a = [a1, . . . ,an], b = [b1, . . . ,bn] and c = [c1, . . . ,cn] are randomly
extracted from the population (all distinct from each other and from x).

2. A position index p ∈ {1, . . . ,N} is determined randomly.
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3. The position of the new agent y is computed by means of the following iteration
over i ∈ {1, . . . ,n}:

i) select a random number ri ∈ (0,1) with uniform probability distribution;
ii) if i = p or ri <CR let yi = ai +F(bi−ci), otherwise let yi = xi; here, F ∈ [0,2]

is the differential weight and CR ∈ [0,1] is the crossover probability, both
defined by the user;

iii) if f (y) < f (x) then replace x by y; otherwise reject y and keep x.

Although DE resembles some other stochastic optimization techniques, unlike tra-
ditional EAs, DE perturbs the solutions in the current generation vectors with scaled
differences of two randomly selected agents. As a consequence, no separate prob-
ability distribution has to be used, and thus the scheme presents some degree of
self-organization. Additionally, DE is simple to implement, uses very few con-
trol parameters, and has been observed to perform satisfactorily in a number of
multi-modal optimization problems [52].

4.5 Guidelines for Generally Constrained Optimization

We now describe nonlinear constraint handling techniques that can be combined
with the optimization methods presented in Sections 4.3 and 4.4.

4.5.1 Penalty Functions

The penalty function method (cf. [7]) for general optimization constraints involves
modifying the objective function with a penalty term that depends on the constraint
violation h : R

n → R. The original optimization problem in (4.1) is thus modified as
follows:

min
x∈Ω⊂Rn

f (x)+ ρ h(x) , (4.6)

where ρ > 0 is a penalty parameter. The modified optimization problem may still
have constraints that are straightforward to handle.

If the penalty parameter is iteratively increased (tending to infinity), the solution
of (4.6) converges to that of the original problem in (4.1). However, in certain cases,
a finite (and fixed) value of the penalty parameter ρ also yields the correct solution
(this is the so-called exact penalty; see [7]). For exact penalties, the modified cost
function is not smooth around the solution [7], and thus the corresponding optimiza-
tion problem can be significantly more involved than that in (4.6). However, one can
argue that in the derivative-free case exact penalty functions may in some cases be
attractive. Common definitions of h(x), where I and J denote the indices that refer
to inequality and equality constraints, respectively, are

h(x) = 1
2

(

∑
i∈I

max(0,gi(x))2 + ∑
j∈J

g2
i (x)

)
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the quadratic penalty and

h(x) = ∑
i∈I

max(0,gi(x))+ ∑
j∈J

|gi(x)|

an exact penalty. It should be noticed that by these penalties, the search considers
both feasible and infeasible points. Those optimization methodologies where the
optimum can be approached from outside the feasible region are known as exterior
methods.

The log-barrier penalty (for inequality constraints)

h(x) = −∑
i∈I

log(−gi(x))

has to be used with a decreasing penalty parameter (tending to zero). This type of
penalty methods (also known as barrier methods) confines the optimization to the
feasible region of the search space. Interior methods aim at reaching the optimum
from inside the feasible region.

In [53], non-quadratic penalties have been suggested for pattern search tech-
niques. However, the optimizations presented in that work are somewhat simpler
than those found in many practical situations, so the recommendations given might
not be generally applicable. In future research, it will be useful to explore further
the performance of different penalty functions in the context of simulation-based
optimization.

4.5.2 Augmented Lagrangian Method

As mentioned above, in exterior penalty function methods, as ρ → ∞ the local mini-
mum is approached from outside the feasible region. Not surprisingly, there is a way
to shift the feasible region so one is able to determine the local solution for a finite
penalty parameter. See, for example, [54, 55] for original references, and also [7],
Chapter 17.

Augmented Lagrangian methods [56, 57] aim at minimizing, in the equality
constraint case, the following extended cost function

min
x∈Ω⊂Rn

f (x)+ 1
2 ρ ‖g(x)‖2

2 + λλλ T g(x) , (4.7)

where ρ > 0 is a penalty parameter, and λλλ ∈ R
m are Lagrange multipliers. This cost

function can indeed be interpreted as a quadratic penalty with the constraints shifted
by some constant term [56]. As in penalty methods, the penalty parameter and the
Lagrange multipliers are iteratively updated. It turns out that if one is sufficiently
stationary for Equation (4.7), which is exactly when we have good approximations
for the Lagrange multipliers, then λλλ can be updated via

λλλ + = λλλ + ρ g(x) , (4.8)
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Fig. 4.4 An idealized (pattern search) filter at iteration k (modified from [19])

where λλλ + denotes the updated Lagrange multipliers. Otherwise one should increase
the penalty parameter ρ (say by multiplying it by 10). The Lagrange multipliers are
typically initialized to zero. What is significant is that one can prove (see e.g. [56])
that after a finite number of iterations the penalty parameter is never updated, and
that the whole scheme eventually converges to a solution of the original optimization
problem in (4.1). Inequality constraints can also be incorporated in the augmented
Lagrangian framework by introducing slack variables and simple bounds [56]. The
augmented Lagrangian approach can be combined with most optimization algo-
rithms. For example, refer to [58] for a nonlinear programming methodology based
on generalized pattern search.

4.5.3 Filter Method

A relatively recent approach that avoids using a penalty parameter and has been
rather successful is the class of so-called filter methods [59, 7]. Using filters, the
original problem (4.1) is typically viewed as a bi-objective optimization problem.
Besides minimizing the cost function f (x), one also seeks to reduce the constraint
violation h(x). The concept of dominance, crucial in multi-objective optimization,
is defined as follows: the point x1 ∈ R

n dominates x2 ∈ R
n if and only if either

f (x1) ≤ f (x2) and h(x1) < h(x2), or f (x1) < f (x2) and h(x1) ≤ h(x2). A filter
is a set of pairs (h(x) , f (x)), such that no pair dominates another pair. In practice,
a maximum allowable constraint violation hmax is specified. This is accomplished
by introducing the pair (hmax,−∞) in the filter. An idealized filter (at iteration k) is
shown in Figure 4.4.

A filter can be understood as essentially an add-on for an optimization proce-
dure. The intermediate solutions proposed by the optimization algorithm at a given
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iteration are accepted if they are not dominated by any point in the filter. The filter
is updated at each iteration based on all the points evaluated by the optimizer. We
reiterate that, as for exterior methods, the optimization search is enriched by con-
sidering infeasible points, although the ultimate solution is intended to be feasible
(or very nearly so). Filters are often observed to lead to faster convergence than
methods that rely only on feasible iterates.

Pattern search optimization techniques have been previously combined with fil-
ters [60]. In Hooke-Jeeves direct search, the filter establishes the acceptance crite-
rion for each (unique) new solution. For schemes where, in each iteration, multiple
solutions can be accepted by the filter (such as in GPS), the new polling center must
be selected from the set of validated points. When the filter is not updated in a par-
ticular iteration (and thus the best feasible point is not improved), the pattern size is
decreased. As in [60], when we combine GPS with a filter, the polling center at a
given iteration will be the feasible point with lowest cost function or, if no feasible
points remain, it will be the infeasible point with lowest constraint violation. These
two points,

(
0, f F

k

)
and

(
hI

k, f I
k

)
, respectively, are shown in Figure 4.4 (it is assumed

that both points have just been accepted by the filter, and thus it makes sense to use
one of them as the new polling center). Refer to [60] and [61] for more details on
pattern search filter methods.

4.5.4 Other Approaches

We will now briefly overview a number of constraint handling methodologies that
have been proposed for evolutionary algorithms. Repair algorithms [62, 63] project
infeasible solutions back to the feasible space. This projection is in most cases ac-
complished in an approximate manner, and can be as complex as solving the op-
timization problem itself. Repair algorithms can be seen as local procedures that
aim at reducing constraint violation. In the so-called Baldwinian case, the fitness of
the repaired solution replaces the fitness of the original (infeasible) solution. In the
Lamarckian case, feasible solutions prevail over infeasible solutions.

Constraint-handling techniques borrowed from multi-objective optimization are
based on the idea of dealing with each constraint as an additional objective [64, 65,
66, 67, 68, 69]. Under this assumption, multi-objective optimization methods such
as NSGA-II [70] or SPEA [71] can be applied. The output of a multi-objective ap-
proach for constrained optimization is an approximation of a Pareto set that involves
the objective function and the constraints. The user may then select one or more so-
lutions from the Pareto set. A simpler but related and computationally less expensive
procedure is the behavioral memory method presented in [72]. This evolutionary
method concentrates on minimizing the constraint violation of each constraint se-
quentially, and the objective function is addressed separately afterwards. However,
treating objective function and constraints independently may yield in many cases
infeasible solutions.
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Further constraint handling methods have been proposed in EA literature that
do not rely either on repair algorithms or multi-objective approaches. In [73] a
technique based on a multi-membered evolution strategy with a feasibility compari-
son mechanism is introduced. The dynamic multi-swarm particle optimizer studied
in [74] makes use of a set of sub-swarms that focus on different constraints, and is
coupled with a local search algorithm (sequential quadratic programming).

4.6 Concluding Remarks

In this chapter, we have concentrated on methods for solving optimization problems
without derivates. The existence of local optima makes a hard optimization problem
even harder. Many methods have been proposed to solve non-convex optimization
problems. The approaches range from pattern search for local optimization prob-
lems to stochastic bio-inspired search heuristics for multi-modal problems. Deter-
ministic local methods are guaranteed to find local optima, and restart variants can
be applied to avoid unsatisfactory solutions. Stochastic methods are not guaranteed
to find the global optimum, but in some practical cases they can be beneficial.

The hybridization between local and global optimizers has led to a paradigm
sometimes called memetic algorithms or hybrid metaheuristics [75, 76]. A number
of hybridizations have been proposed, but they are often tailored to specific prob-
lem types and search domains due to their specific operators and methods. In the
memetic method introduced in [77] for continuous search spaces, a gradient-based
scheme is combined with a deterministic perturbation component. The local opti-
mization procedure for real-valued variables described in [78] is based on variable
neighborhood search. It would be very useful if in future research some effort is
dedicated to better understand from a theoretical point of view the hybridization of
local and global optimization algorithms.

Most problems that can be found in practice present constraints. We have outlined
a number of constraint handling techniques that can be incorporated in a derivative-
free optimization framework. Though penalty functions are appealing due to their
simplicity, some of the other approaches mentioned here may be more efficient and
still of a relatively easy implementation.

Multi-objective optimization is an important challenge for derivative-free method-
ologies. Some of the evolutionary techniques mentioned above have performed suc-
cessfully in some not especially involved multi-objective test cases. Other areas
where derivative-free optimization could potentially be very helpful include dy-
namic optimization, mixed-integer nonlinear programming, and optimization under
uncertainty (stochastic programming).
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