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Abstract

Highly complex spatio-temporal environmental data sets are becoming common in ecology

because of the increasing use of large-scale simulation models and automated data collection

devices.  The spatial and temporal dimensions present real and difficult challenges for the

interpretation of these data.  A particularly difficult problem is that the relationship among

variables can vary in dramatically in response to environmental variation; consequently, a single

model may not provide adequate fit.  The temporal dimension presents both opportunities for

improved prediction because explanatory variables sometimes exert delayed effects on

response variables, and problems because variables are often serially correlated.  This article

presents a regression strategy for accommodating these problems.  The strategy is illustrated by

a case study of simulated net primary production (SNPP) that compares ocean-atmosphere

indices to terrestrial climate variables as predictors of SNPP across the  conterminous United

States, and describes spatial variation in the relative importance of terrestrial climate variables

towards predicting SNPP.  We found that the relationship between ocean-atmosphere indices

and SNPP varies substantially over the United States, and that there is evidence of a substantive

link States .  Eonly in the western portions of the United vidence of multi-year delays in the

effect of terrestrial climate effects on SNPP were also found.

Keywords: spatio-temporal data, serial correlation, ARIMA models, NPP process models,

carbon balance.
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1.  Introduction

To motivate our regression strategy for analyzing spatio-temporal environmental data, we begin

by discussing connections between net primary production and ocean-atmosphere indices.  Net

primary production (NPP), the process of carbon sequestration via photosynthesis, appears to

be an important component of atmospheric carbon variation (Myneni and others 1997; Potter

and others 1999, Kimball and others 1997) and global climate change (Melillo and others

1993).  Presently, relationships between NPP and climate across large areas are unclear

(Nemani and others 2002; Potter and others 1999).  There are several reasons for this lack of

clarity.  Arguably, the complexity of the relationship between climate and NPP is most

troublesome because it greatly complicates describing of the relative importance of different

climate variables over large areas.    Another complication is that NPP is not directly observable

over large areas.  Two common approaches to the observational problem are to 1) use a

remotely sensed surrogate variable such leaf area index in place of NPP, and 2) simulate NPP

using a process model.  While the surrogate variable approach offers the advantage of using real

observations, data are available only for the past  years or so.  Consequently, the scope of#!

inference drawn from surrogate variables is limited.

In contrast, process models can simulate NPP far into the past, though the accuracy of the

estimates depends on model realism, accurate input variables, and accurate land cover type

identification.  Process models simulate photosynthesis and respiration using nonlinear functions

of site-specific variables such as average daily air and soil temperature, leaf area index, available

soil moisture, and solar radiation (Hunt and others 1996; Ito 2002; Potter and Klooster 1997;

Thornton and others 2002; White and others 2000).   While SNPP process models are known

and deterministic, they are also complex nonlinear functions involving numerous biophysical

variables that vary spatially and seasonally.   Consequently, it is difficult to succinctly describe

the relative importance of the climate variables as they vary over large geographic regions.  Yet

this information is important for understanding carbon cycling and global climate processes.

Melillo and others (1993) and Nemani and others (2002) have used process models and their
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estimates to investigate SNPP-climate relationships.  These analyses were not statistical in

nature, and so did not simultaneously estimate the effects of multiple variables on SNPP.

Additionally, they were not able to test the significance of one or more variables after accounting

for the effect of others.

Linear regression analysis of the relationship between SNPP and terrestrial climate variables

is useful for several reasons.  The linear form of the models allows immediate and unequivocal

interpretation of the effect of each predictor variable on the response variable.  The wealth of

statistical methods associated with linear regression analysis provides for tests of significance,

measures of model fit, confidence and prediction intervals, and methods for the analysis of

residuals and leverage.   Statistical models and methods for correlated ecological data have

been presented by Epperson (2002) and Jones and Zang (1997), among others, and case

studies analyzing spatially and temporally correlated environmental data collected over small

areas are discussed in Nychka and others (1998).  These articles do not address spatial

variation in the relationship between response and predictor variables.  In addition, strategies for

accommodating seasonal variation are not discussed though seasonality is an important attribute

of many biologic response variables.

Our approach to this problem analyzes SNPP using separate regressions for each location

among a set of locations systematically sampled across the study area.  This approach is quite

general as it can be used for problems in which observations are directly observed over large

areas and over time, such remotely sensed data, or problems in which the models generating the

data are stochastic (for example, Keane and others 2002).  In this case study, the regression

analysis approach also permits investigation of temporal aspects of the relationship between

SNPP and terrestrial climate that are not explicit components of the original NPP process

model.  Finally, a quantitative measure of the extent to which a linear terrestrial climate model

can approximate SNPP is a useful benchmark against which to judge the information content of

alternative variables such as ocean-atmosphere indices towards explaining variation in SNPP.
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The article is organized as follows.  In Section 2, we discuss the case study and our general

approach to accommodating seasonal and spatial variation in modeling NPP.  Section 3

presents the -th order autoregressive regression model and its application to analyzing the5

relationship between NPP and predictor variables.  We also discuss methods of assessing

model fit and measures of trend.  Section 4 presents results of the case study.  Section 5

compares recent empirical NPP modeling methods to the regression strategy presented herein,

and the article concludes in Section 5.

2.  The Case Study

Evidence of connections between terrestrial and ocean climate has been presented by Dai and

others (1997), Dima and others (2001), Hurrell (1995), and Hurrell (1996).  Ocean climate

effects on terrestrial climate appear to be delayed in some situations (Dima and others 2001;

Hurrell 1995; Potter and others 1999; Sutton and Allen 1997).  Connections between ocean

climate and vegetation production have been addressed by Anyamba (1994), Anyamba and

Eastman (1996), Cane and others (1994) and Myneni and others (1996).  With respect to the

conterminous United States, Li and Kafatos (2000) and Mennis (2001) present evidence of

correlation between seasonal means of normalized difference vegetation index and equatorial

Pacific sea temperatures between 1982 and 1992.  Links between ocean-atmosphere indices

and terrestrial climate suggest similar links between ocean-atmosphere indices and SNPP

(Nemani and others 2002), though the extent and strength of these links are largely unknown.

Investigation into the connections between SNPP and ocean-atmosphere indices are motivated

by the need to further understand large-scale ecosystem interactions.

The objectives of the case study were to 1) compare the extent and strength of the

relationship between SNPP and two sets of predictors, ocean-atmosphere indices and

terrestrial climate, and 2) two sets ofinvestigate the effect of scale on model fit for the 

predictors ur approach was to empirically model SNPP as a function of three terrestrial.  O

climate variables (temperature, precipitation and solar radiation), and of three ocean-

atmosphere indices series [the Southern Oscillation Index (SOI), the Pacific Decadal Oscillation
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(PDO), and the North American Oscillation (NAO)], and compare model fit.  The analysis was

conducted at two scales; the finer scale data consisted of a sample of  pixels from a ½°"$&

lattice cover of the United States, and the coarse scale data consisted of seven regional

averages computed from the pixel-scale data.  The pixel-scale terrestrial climate variables pose

a rigorous standard against which to compare ocean-atmosphere indices because the terrestrial

climates variables are spatially explicit inputs to the process model.  In contrast, the ocean-

atmosphere indices indirectly measure climate at great distances from the pixel locations, and so

are, at most, moderately associated with terrestrial climate (Hurrell 1995, 1996).

The study area is the conterminous United States and the study period is 1901 to 1993.

This area is large enough to be an important source of carbon on a global scale; moreover,

long-term climate data is available from the United States Historical Climate Network

(USHCN) (Knapp and Smith 2001), and NPP process model estimates are available.  In

particular, we obtained daily climate and NPP process model estimates from the BIOME-BGC

simulation model (Kittel and others 1997; Schimel and others 2000; Thornton and others 2002)

for 1901 through 1993.  The BIOME-BGC model simulates terrestrial ecosystem carbon,

nitrogen, and water cycles for each of  pixels in a ½° lattice coincident with the VEMAP$"')

terrestrial climate lattice (Kittel and others 1995).  A model of daily leaf canopy photosynthesis

is used to estimate carbon absorption by vegetation.  Total respiration is simulated as the sum of

maintenance and growth respiration estimates, and the difference between gross carbon uptake

and total respiration is SNPP.  To reduce the computational demands of using all  pixels,$"')

we systematically sampled the ½°  lattice by projecting a ° lattice over ½° lattice cover and#

selecting those ½° pixels with centers that coincided with ° lattice centers (Figure 1).  A#

significant portion of several sampled pixels were predominantly covered by water; these pixels

were replaced by nearby pixels that were not appreciably covered with water.   Lastly, we refer

to the SNPP data for a particular pixel, or a region, as a  in recognition of the possibilityseries

that the data obtained from a particular pixel or region may be serially correlated.
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2.1.  Spatial and Seasonal Variation in SNPP

The relationship between NPP and terrestrial climate varies across the conterminous United

States.  For example, the onset of the growing season varies with latitude, as does the effect of

March precipitation on NPP.  Consequently, the analysis of SNPP at a particular location

depends in part on identifying a time period that encompasses most of the total annual net

production of carbon, but also is short enough that the relationship between predictor variables

and SNPP is nearly time-invariant throughout the period.  We determined these periods,

henceforth referred to as growing seasons, in two stages.  First, an exploratory analysis of

spatial variation in calendar monthly means of absolute SNPP was conducted.  The results are

described immediately as they provide motivation for the methods that follow.  A star plot

(Johnson 1998) shows that absolute NPP is greatest in the eastern half of the  andUnited States

that maximum absolute NPP occurs in June and July in the north, and roughly a month earlier in

southern regions (Figure 2).  SNPP decreases rapidly after midyear except in Florida where

monthly mean SNPP is relatively constant from May through October.  Principal components

analysis of between-pixel variation in monthly mean SNPP indicated that five different sources

account for most ( %) of the spatial variation in SNPP.  Star plots showing the eigenvector)#Þ#

coefficients, or principal component loadings, for the five most dominant eigenvectors were

constructed, and adjacent pixels with similar eigenvector coefficients were aggregated to form

preliminary regions.

The second stage of defining growing season refined the preliminary regions through an

iterative process of aggregating pixels as regions, assessing the fit of regional regression models

of growing season SNPP, and reassigning pixels to regions to improve model fit.  The predictor

variables used in the regression models were growing season means of precipitation,

temperature and solar radiation, and previous winter and previous summer means of

precipitation, temperature and solar radiation.  Hence, there were  predictor variables$ ‚ $ œ *

and  observations for each model.  These SNPP models were used only for* $ � " œ * #

assessing model fit; more thorough analyses involving variable selection, analysis of residuals,
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and interpretation of model coefficients were carried out only after the regions were finalized.

Seven regions were identified, and are henceforth referred to as the Interior West, Pacific Coast

and Southwest, Great Plains, Mid-Atlantic, Northeast, Southcentral, and Southeast (Figure 1).

The regional definitions of seasons are shown in Table 1, and calendar monthly means are

plotted against calendar month in Figure 3.  Those months that were excluded from a regional

growing season are collectively referred to as a winter season.  Seasonal patterns are generally

similar throughout the  U.S., with most regions undergoing rapid increases inconterminous

monthly mean NPP between April and May, and declines from July onward. The monthly

standard deviations of SNPP exhibit a pattern similar to the means (small values in the winter

months relative to the summer months).  For instance, for the Southwest and Northcentral

regions, the January standard deviations were  and  (g m day), whereas the June!Þ!'' !Þ!$! Î Î#

values were  and  (g m day).  Because SNPP monthly means are nearly constant"Þ(*! #Þ!") Î Î#

in the winter, we infer that winter climate has little immediate effect on SNPP over much of

conterminous United States.  This observation implies that fitted relationships between annually

measured biophysical variables and annual climate summaries are potentially subject to a loss of

accuracy because winter climate variation becomes part of annual climate variation, yet winter

climate may not be directly connected to the biophysical response variable.

The regional and pixel SNPP series were standardized for regression analysis so that the

parameter estimates obtained for different locations would be comparable.  Specifically, the

SNPP seasonal series for each pixel consisted of total growing season SNPP ( ) for the1Î7#

*$ years of observation. These totals were standardized using the sample mean and standard

deviation of the  values.  Regional series were obtained by first computing unstandardized*$

regional series by averaging unstandardized pixel totals within region for each growing season;

then, the unstandardized regional series were standardized using the sample mean and standard

deviation of the unstandardized series.
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2.2.  Ocean-Atmosphere Indices and Terrestrial Climate Variables

Ocean climate is represented by three series of monthly values obtained from National Centers

for Environmental Prediction.  The first of these series, the Pacific Decadal Oscillation (PDO), is

a measure of tropical and Northern Hemisphere extratropical Pacific basin sea surface

temperature derived from the monthly Historical Sea Surface Temperatures Dataset (Mantua et

al. 1997).  The Southern Oscillation Index (SOI) series is a measure of standardized sea level

pressure difference between Tahiti and Darwin, Australia, obtained from  NOAA/NECP

Climate Prediction Center,  The third series, the North Atlantic Oscillation (NAO), measures

the difference in normalized sea level pressures between The Azores and Iceland (Hurrel 1995).

Monthly ocean-atmosphere indices were averaged to produce seasonal series for each region.

For example, the mean of the PDO observations for the region  growing season for year  is< >

K œ 8 B B > 7 K<> >7 >7
THS �" THS THS

< 7−K <!
<

 where  denotes PDO for year  and month , 

denotes the set of growing season months in region , and  is the number of months in the< 8<

growing season for region .  We also constructed lagged versions of ocean-atmosphere indices<

to account for delayed effects on SNPP.   Herein, we say that a particular predictor of SNPP

(say PDO) for year  is represented by a set of components.  These components are the current>

growing and previous winter season mean and up to three previous growing and winter season

means.  Notationally,  is the seasonal mean of PDO for the winter preceding growing[<>
THS

season  for region , and  is the growing season mean for the year preceding , and so> < K ><ß>�"
THS

on.

Observations on monthly mean daily temperature, monthly total precipitation and monthly

mean daily solar radiation were obtained for each of the  pixels sampled from the VEMAP"$&

terrestrial climate ½° lattice cover of the conterminous United States.  Mean growing season

temperature, , for pixel  and year  was computed by averaging over those daysK 3 >3>
>/7:

belonging to the regional growing season.  Mean growing season solar radiation was computed

similarly and is denoted by .  Regional means follow the same notation as established forK3>
=96+<
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ocean-atmosphere indices; for example,  denotes the total winter precipitation for[ :</-3:
<>�",

region  and the growing season preceding year . Plots of the regional means of these climate< >

variables against year show few notable patterns; in particular, there was little visual evidence of

trend over time in any of the series.

3.  Regression Analysis

Our model fitting strategy was organized around the objectives of describing the relative

importance of the terrestrial climate variables and ocean-atmosphere indices towards predicting

SNPP across the study area, measuring the information content of ocean-atmosphere indices

and terrestrial climate variables towards predicting SNPP at two scales (pixel and region), and

quantifying evidence of SNPP trend during the study period.  Models were fit using variables

from one of two sets of predictor variables: ocean-atmosphere indices and terrestrial climate

variables.

In general, data collected over time or space should not be treated as independent without

careful consideration.  Observations are dependent when near observations (near in time or

space) are more alike than distant observations, and a consequence of ignoring spatial and

temporal correlation is a lost opportunity to exploit similarities among observations and thereby

improve the accuracy of the parameter estimates.  In addition, if correlation is ignored, then

significance tests used for selecting predictor variables will tend to yield incorrect observed

significance levels (p-values).  When observations are positively correlated, the observed

significance levels are usually biased downwards (i.e., too small).  In this analysis, both serial

and spatial correlation is a concern.  It is possible to account for either source of correlation

provided that the correlation structure is relatively simple, and provided that the relationship

between the response variable and the explanatory variables does not vary temporally or

spatially.  In this situation, it is reasonable to assume that the relationship between SNPP and the

predictors at a particular location is nearly time-invariant.  On the other hand, we previously

argued that there is considerable doubt that the relationship between response and explanatory

variables is spatially invariant over the study area.  Consequently, our strategy was to model
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data originating from a single spatial unit (pixel or region) while accounting for serial correlation.

Data from different spatial units was not used to fit a particular model because we could not

justifiably assume that data from different spatial units follow a common model.  As there are

"$& ( pixels and  regions, the adopted strategy of fitting separate models for each spatial unit

required many models, and an even larger number of significance tests.  Methods of controlling

experiment-wise Type I error when testing the significance of explanatory variables were not

used because these methods are overly cautious when many tests are carried out (Ott and

Longnecker, 2001, p. 438); instead, emphasis was placed on describing the fitted models and

summarizing model fit in terms of percent variation in NPP explained by a particular set of

predictor variables.

3.1.  Autoregressive Models

Autoregressive models provide a suitable framework for regression analysis with serially

correlated response variables.  Harvey (1989), Ramsey and Schafer (2002, p. 436), and

Shumway and Stoffer (2001) discuss statistical aspects of regression with autoregressive

models, and Epperson (2000) and Manly (2001, p. 212) discuss ecological and environmental

applications.  To set up the generic model, let  denote an observation on a response variableD>

at time , let  denote the values of  predictor variables at time , and> œ " ß á ß X B ß á ß B : >"ß> :ß>

let  denote independent and normally distributed residuals with mean  and constant& &" Xß á ß !

variance.  Two sets of parameters are used.  The autoregressive parameters ,  are9 9" 5ß á

used to model the correlation structure among the response variables, and the regression

parameters ,  are used to model the relationship between the response and predictor" "" :ß á

variables.  The AR( ) model specifies that  depends on the past  observations 5 D 5 D ß> >�"

á ß D>�5 according to

D œ D � B �> < >�< = =ß> >
<œ" =œ"

5 :" "9 " & . (1)

If the AR( ) model is correctly specified, then the term  accounts for serial5 D!9< >�<
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correlation and the residuals are independent.  Note that the first  observations 5 D ß á ß D" 5

cannot be modeled via equation (1) because a complete set of past observations is unavailable

for these observations.

Often, trend over time can be accounted for in equation (1) by introducing a polynomial

function of time.  In this study, there was relatively little visual evidence of trend in the pixel and

regional mean NPP series, so we considered only second-order polynomial functions of time.

Thus, the two trend components were the linear component , and the quadraticB œ >"ß>

component .  Because our interests differ with regard to trend versus ocean-B œ >#ß>
#

atmosphere indices and terrestrial climate variables, we use the term toexplanatory variables 

refer to any of these terms and to refer to ocean-atmosphere indices and terrestrialpredictors 

climate variables.

The full ocean climate model for the th pixel specifies that , the standardized total growing3 D3>

season SNPP for pixel  for the th year after , , is a function of PDO,3 > "*!$ > œ " ß á ß X œ * !

SOI and NAO given by

D œ D � â � D

� K � [ � K � â � [

� K � [ � â � [

� K � [ � â �

3> " 3>�" 5 3>�5

" # $ )3> 3> 3ß>�" 3ß>�$
THS THS THS THS

* "! "'3> 3> 3ß>�$
WSM WSM WSM

"( ") #%3> 3>
RES RES

9 9

" " " "

" " "

" " "

, ,

 

[

� > � > � Þ
3ß>�$
RES

#& #' 3>
#" " &

(2)

An intercept is not included in the model because the standardized NPP series have mean .!

The full AR( ) model as a function of the terrestrial climate variables is5

D œ D � â � D

� K � [ � K � â � [

� K � [ � â � [

� K �

3> 3ß>�" 5 3>�5

" # $ )3> 3> 3ß>�" 3ß>�$
>/7: >/7: >/7: >/7:

* "! "'3> 3> 3ß>�$
:</-3: :</-3: :</-3:

"( 3>
=96+<

 9 9

" " " "

" " "

" "

,

") #%3> 3ß>�$
=96+< =96+<

#& #' 3>
#

[ � â � [

� > � > � Þ

"

" " &

(3)
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The AR( ) regional models of NPP differ only in that the response and predictor variables are5

regional means computed by averaging pixel values.

3.2.   Model Fitting

We used a Cochran-Orcutt scheme for fitting the AR( ) regression model (Venables and5

Ripley 1999, p. 429).  Our strategy was to first search for the smallest value of  necessary to5

remove autocorrelation, and then select explanatory variables using conventional multiple

regression methods.  The search for  began by computing the maximum likelihood estimates of5

the parameters for the full AR( ) model (equation [1] with ).  Then, the pixel (or regional)" 5 œ "

NPP series and the explanatory variables were pre-whitened using the maximum likelihood

estimate  (Box and Jenkins 1976, p. 379). Pre-whitening eliminates serial correlation by9s"

subtracting the portion of  and , , attributable to the past observations fromD B = œ " ß á ß :> =ß>

both sides of formula (1) by computing , and .D œ D � D B œ B � Bs s‡ ‡
> =ß>> =ß>" ">�" =ß>�"9 9

Conventional multiple regression methods, including variable selection techniques, can be used

without modification provided that  pre-whitening has succeeded and the residuals are normally

distributed.  Checking the residuals for serial correlation and non-normality is a necessary step

in the application of the AR( ) model.5

Model residuals were tested for autocorrelation using the Box-Ljung -statistic (also calledU

the Portmanteau statistic) (Harvey 1993, p. 79).   If the -statistic did not present evidenceU

against the null hypothesis of no autocorrelation (that is, the p-value associated with  wasU

greater than ), then the AR( ) model was adopted.  If there was evidence of!Þ!& "

autocorrelation, then the AR( ) model was tentatively adopted and maximum likelihood#

estimates  and  were computed.  The data were pre-whitened by computing 9 9s s D œ D" #
‡
> >

� D � D B œ B � B � Bs s s s9 9 9 9" # " #>�" >�# =ß>�" =ß>�#
‡
=ß> =ß> and .  Regression parameter

estimates were recomputed and the new residuals assessed for autocorrelation  If these

residuals were autocorrelated, then higher orders of  were to be investigated in the same5
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fashion. It was not necessary to do so, though.  The second stage of the model fitting (described

in detail below) sequentially removed non-significant variables from the model.

An alternative approach to the Cochran-Orcutt scheme simultaneously computes maximum

likelihood estimates of both the regression and autoregressive parameters.  Consequently, the

maximum likelihood approach is slightly simpler to execute than the Cochran-Orcutt scheme.

However, the maximum likelihood estimators and associated likelihood ratio tests may be

subject to substantial bias unless the number of observations is much larger than the number of

model parameters (e.g., ) .  Because the series used in this analysis were relativelyX � $!:

short ( ), we used the Cochran-Orcutt scheme.X œ *$

3.3.  Variable Selection and Assessment of Model Fit

Our variable selection procedure was applied to each of the three predictor variables

representing ocean-atmosphere indices, or terrestrial climate, one at a time.  Initially, the full

model [equation (2) or (3)] was adopted.  In the case of the ocean-atmosphere indices, we first

assessed the significance of PDO by successively removing the highest-order lag components

until the remaining lower-order terms were jointly significant.  That is, ,first  then[3ß>�$
THS

K3ß>�#
THS , and so on, were removed from the model until the remaining components were found

to be significant at the ! œ!Þ!& level.  The significance test, often called the extra-sums-of-

squares -statistic (Ramsey and Schafer, 2002, p. 281), compares the error sums-of-squaresJ

between the model containing a particular set of explanatory variables and the model containing

none of the terms while accounting for differences in numbers of explanatory variables between

the two models.  After analyzing PDO, the significance of SOI was investigated using the full

model [equation (2)] except that non-significant PDO components were omitted.  Lastly, NAO

was treated in the same way, by adopting the final SOI model as the initial model.  Generally,

the order in which variables are tested can affect the outcome of variable selection; in this

analysis, though, the effects of order were negligible.
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The same strategy was applied to the trend components.  First, we tested for significance of

both the linear and quadratic components; if these were not jointly significant, then we tested for

the significance of the linear component alone.  However,  for the purpose of describing

directional trend (upwards or downwards) in NPP, we also fit models containing the significant

predictor variables and the linear trend component (regardless of significance) while excluding

the quadratic term (regardless of significance) and using the unstandardized, but pre-whitened

SNPP observations.  An estimate of percent annual change after accounting for significant

predictors was computed by dividing the linear trend coefficient by the SNPP series mean.

A possible alternative to jointly testing lower-order lag components is to test individual lag

components separately using a -test.  This strategy is counter to our presumption that if a>

predictor variable is related to SNPP, then it affects SNPP through a complete set of lag

components up to some order.  Thus, singly testing each component may lead to implausible

models if a higher order term is judged to be significant, but one or more lower-order terms are

not.

Two coefficients of determination were used to measure the percent variation in the

response variable explained by the fitted model.  The coefficient of determination  measuresV#
"

the percent variation in SNPP  explained by the final model; hence, these(not pre-whitened)

models may contain one or both of the trend components.  This statistic was computed as V#
"

œ Ð � D œ !SST SSE)/SST, where SST is the total sums-of-squares about the series mean ,

SSE  is the total error sums-squares, and  is the th fitted value.  If one orœ ÐD � D Ñ D >s s! > > >#

more trend components were retained in the final model, then  would reflect the contributionsV#
"

of both the predictor variables and trend components towards explaining variation in SNPP.

Because our interests lie primarily with the predictor variables, a second coefficient of

determination  was computed after removing the trend components, regardless ofV#
#

significance, and refitting the model.  The coefficient  measures the percent variationV#
#

explained by only the ocean-atmosphere indices, or terrestrial climate predictors.  Note that if
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V � V# #
" # , then one or both of the trend components were retained in the model used to

compute .V#
"

4.  Results

The analysis of the regional series is discussed first, followed by the analysis of the individual

pixel series.  Ocean climate explained % of the variation in SNPP for the$&Þ* &"Þ' $"Þ), , and 

Interior West, Pacific Coast and Southwest, and Mid-Atlantic regions, respectively, as

measured by  (Table 2).  For the remaining four series, none of the ocean-atmosphere indexV#
#

series were found to be significant, and so no variation in SNPP was explained by ocean-

atmosphere indices.  Table 2 also shows that terrestrial climate variables were very good

predictors of SNPP given that  varied from  for V (!Þ*#
# %  the Pacific Coast and Southwest to

)*Þ$% for the Southcentral region.  tatistics Based on the -s (Table 2), the AR( ) model wasU "

judged to be adequate with respect to the assumption of independently distributed residuals.

Normal probability plots indicated that the residuals were normal in distribution.

Table 3 shows the final model coefficients for the regional ocean climate models.  PDO was

a significant predictor of SNPP for the Interior West and Pacific Coast and Southwest regions,

NAO was significant for the Mid-Atlantic region, and SOI was significant for all three regions.

There is clear evidence of delayed effects of ocean-atmosphere indices on SNPP given that the

complete set of lag components was retained in the fitted models for four of the six predictor

variables.  It should be noted that the magnitude of the higher order SOI lag coefficients are

substantially smaller than the current growing season coefficient.  This result suggests that the

SOI effect is comparatively short in duration.  Table 3 shows that lag coefficients vary sign when

comparing lag coefficients for a particular ocean-atmosphere index, and this suggests that the

relationship between ocean climate and SNPP is highly complex.  Finally, similarities between

Pacific Coast and Southwest and Interior West ocean-atmosphere index coefficients imply

similar ocean climate effects across the western third of the United States.
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Linear trend coefficients and estimated annual percent change in SNPP are shown in Table

4. After accounting for significant predictors of SNPP, there is statistical evidence of linearly

increasing trend between 1901 and 1993 in all regional series except the Mid-Atlantic and

Southeast.  Both the ocean-atmosphere index models and the terrestrial climate models yielded

the greatest annual percent change estimates for the Great Plains and Southcentral regions.

Estimates of % and % were obtained for the Great Plains, and % and!Þ""* !Þ"&! !Þ"$'

!Þ"("% for the Southcentral regions (Table 4) from the terrestrial climate and ocean climate

models, respectively.  Differences between the two types of models are attributable to different

predictor variables comprising the models.

Terrestrial climate explained a substantial portion of the variation in SNPP at the pixel scale.

Specifically, Table 5 shows that the regional averages of the terrestrial climate model coefficients

of determination ( ) varied between  and %.  In contrast, ocean-atmosphere indicesV '%Þ& )&Þ'#
#

were substantially less useful for modeling SNPP.  Table 5 also shows that ocean-atmosphere

indices were found to be significant (i.e., ) for only  of the series, and that whenV � ! %% "$&#
#

significant, the regional means of  statistics varied between  and %.   The regionalV )Þ* #(Þ!#
#

means of  are not comparable with the corresponding means for  because different sets ofV V# "
# #

pixel values were averaged in computing the two statistics.  Spatial variation in  over theV#
#

conterminous United States is substantial; in particular, Figure 4 shows that the majority of

pixels for which  are located in the southwestern portion of the United States.  InV � !#
#

contrast, there was very little spatial variation in the fit of the terrestrial climate models, and a

corresponding figure for these models is not shown.

The autoregressive modeling strategy appears to have been successful at accounting for

serial correlation given that the -statistic was significant at the  level for only 7% of theU !Þ!& 'Þ

"$& ""Þ' terrestrial climate model residual series and % of the ocean climate model residual

series.  The assumed Type I error rate (or significance level) of % implies that approximately&

&% of all residual series that are truly free of serial correlation will be (incorrectly) found to be
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significant; hence, the observed fraction of significant -statistics is consistent with there beingU

little serial correlation in the residual series.

Figures 5, 6 and 7 summarize the estimated coefficients for the terrestrial climate variables.

For each region and lag component, we averaged those coefficients that were found to be

significant and plotted the averages against lag.  Figure 5 shows that current growing season

temperature to be negatively associated with SNPP for all regions, and that the largest effects

(in terms of magnitude) of SNPP were observed for the Southeast ( ) and Southcentral�!Þ#$(

( ) regions.  In contrast, the coefficient means associated with the previous year growing�!Þ#$&

season temperature (lag ) were positive for all regions.  In general, winter season temperatures#

are relatively less important than growing season temperatures, and inconsistent in sign among

regions.  Figure 6 shows estimated effects of current growing season and previous winter

season precipitation were positive for all regions, though previous winter season precipitation is

far more important, based on the magnitude of the coefficients.  The effect of previous winter

precipitation on SNPP, as measured by the mean of the previous winter coefficients, was

greatest in the arid regions of the United States, namely, the Great Plains, Interior West, and

Pacific Coast and Southwest regions. The coefficient means associated with current growing

season solar radiation are negative for all regions, and the greatest impact on SNPP are

associated with the Northeast, Southcentral and Pacific Coast and Southwest regions (Figure

7); in contrast, previous growing season solar radiation was found to be positively associated

with SNPP for all regions.  As expected, winter season solar radiation has little effect on SNPP,

regardless of lag.  Because the terrestrial climate and SNPP series were standardized, the

coefficients associated with different climate variables can be compared to assess the relative

importance of these variables.  Comparing Figures 5, 6, and 7 shows that the effect of previous

season precipitation is an order of magnitude greater than all other effects, including temperature

and solar radiation.  For example, the average of the regional means of the previous season

precipitation coefficients was , whereas the current growing season mean of the temperature%Þ#

and solar radiation coefficients were  and , respectively.  Finally, a corresponding�!Þ"! �!Þ"*
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set of three coefficient plots was constructed using coefficients obtained from the regional

terrestrial climate models.  These plots are similar in appearance to Figures 4, 5, and 6, though

the general patterns are not as striking.

In contrast to the analysis of the regional SNPP series, there was substantially less evidence

of trend at the pixel scale after accounting for significant predictors.  Because differences

between  and  are attributable to the trend components, a comparison of the regionalV V# #
" #

means of these statistics derived from the terrestrial climate models (Table 5) shows little

evidence of trend in SNPP at the pixel scale after accounting for terrestrial climate variables.

Comparisons of the regional means of  and  computed from the ocean climate modelsV V# #
" #

cannot be drawn from Table 4 because different pixels were used in computing the two regional

means.  However, trend components were not consistently important when fitting the ocean

climate models, given that trend was found to be significant for % of the  pixels.  We%(Þ% "$&

attribute this result, at least in part, to weak power stemming from unexplained variation in the

pixel series.  To illustrate, when predictor variables were ignored and percent annual change

was computed for all pixels, then the median  percent annual change was %, and the!Þ"$&

regional medians of percent annual change varied between % for the Mid-Atlantic to!Þ!%(

!Þ"')% for the Southcentral.  These values are consistent with the estimates of annual change

obtained from the regional series (Table 4).

5.  Comparison to Empirical NPP Modeling Methods

Among the promising recent approaches to empirical modelling of NPP are modified production

efficiency models (PEMs) driven by remotely sensed data (Goetz and others 1999).  The PEM

approach exploits remotely sensed data for modeling, thereby reducing the requirements for

initial state variable specification and but also predictive utility.  Zamolodchikov and Karelin

(2001) developed a regression-based model of carbon flux for the Russian tundra that used

climate and GIS-based biophysical variables to predict NPP.  The advantage of their approach

is that direct measurements of carbon flux were used to develop the models, and that regression
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methods were used.  However, extension is problematic to other environments because of the

difficulty of measuring NPP.  Jiang and others (1999) developed an NPP modeling approach

that calibrated simple process models via regression at each point in a lattice.  Alexandrov and

others (2002) propose an "inversion" method of constructing empirical models by calibrating

NPP process models (such as the Miami model [Lieth 1975]) using biome-averaged NPP

estimates.  Their method produces simple global models, though model accuracy is a concern

because relatively few, and fundamentally different data are used in model fitting .

The regression strategy proposed in this article yields empirical models of SNPP that may be

used for predicting NPP.  Our method departs from other empirical modeling approaches by

using climate data collected over many years to fit the predictive models.  By using SNPP data

generated over many years, a substantial amount of process variation is realized and (partially)

accounted for by the fitted models.  A weakness of our approach is that process model errors

appearing in the SNPP data will be carried over to the regression models.  An advantage

common to Jiang and others (1999) is that our method generates spatially explicit models across

a lattice and allows for a high degree of spatial resolution.  Finally, our approach uses well-

understood statistical methods though out, and exploits seasonality and delayed climate effects

to improve model accuracy.

6.  Discussion and Conclusion

This article has presented a strategy for analyzing spatio-temporal biophysical data.  A

distinctive and novel feature of this strategy is that separate autoregressive regression models are

fit at each location among a set of locations regularly distributed across the study area.  By

doing so, spatially induced differences in the relationship between the response variable and the

predictor variables can be investigated.  This strategy significantly advances our abilities to

analyze the behavior of complex ecological models.

The case study analysis showed, unsurprisingly, that the three terrestrial climate variables

provide good linear models of SNPP.   The ocean-atmosphere index series PDO and SOI yield
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some predictive information at the regional scales for the Interior West and Pacific Coast and

Southwest, while NAO provides weak information for the Mid-Atlantic region.  At the pixel

scale, ocean-atmosphere indices provide roughly similar predictive information as at the regional

scale, and over a similar geographic area.  For remainder of the conterminous United States, the

methods and data used in this study did not find consistent and useful associations between

SNPP and ocean-atmosphere indices.

At the regional scale, there is statistical evidence of trend in SNPP for all regions except the

Mid-Atlantic and Southeast.  Moreover, estimated percent annual change (Table 4) was found

to be fairly consistent among regions.  Upward trend in SNPP is consistent with trend in

atmospheric CO  during the 20th century; however, changes in land use during the study period#

complicate comparisons of SNPP and atmospheric CO .  At the pixel scale, percent annual#

change in the SNPP series tended to be relatively large (ignoring predictor variables).  The

linear trend coefficients, however, tended not to be significant when terrestrial climate predictors

were accounted for.  This result implies that some of this change is at least partially accounted

for by terrestrial climate.

Regression modeling of SNPP as a function of ocean and terrestrial climate is greatly

improved by lagging the predictor variables.  Two explanations for the usefulness of lagged

variables are: 1) climate variables have long-term effects on NPP, and 2) some climate patterns

are multi-year in duration (Latif and Barnett 1994; Hurrell 1995).  Winter precipitation and

growing season solar radiation coefficients consistently reversed sign when comparing current

and previous years effects on NPP (Figures 6 and 7).  We suggest that this result is attributable

to using linear functions of these variables to approximate nonlinear relationships between soil

moisture availability and SNPP.  An example of a linear approximation that produces

coefficients of different sign is given by a response variable  that responds monotonically to C B

according to the model .  Fitting a second-order polynomial function of  to  will yield a/ œ B B CC

positive coefficient for  and a negative coefficient for .B B#
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Tables

Table 1.  Regional growing seasons.

Region Growing Season
Interior West March - November
Pacific Coast and Southwest March - October
Great Plains April - October
Mid-Atlantic February - October
Northeast March - October
Southcentral April - October
Southeast April - December
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Table 2. Summary statistics for the regional NPP models.  Tabled values are percent variation in

regional series explained by the fitted models (  and ) , Box-Ljung -statistic, and anV V U" #
# # "

approximate p-value ( )  for .: U#

Ocean Climate Models Terrestrial Climate Models
Region
Interior West
Pacific Coast and 

V V U : V V U :
$&Þ* $$Þ% 'Þ( Þ(% (*Þ' (*Þ' ""Þ( Þ$!

" # " #
# # # #

Southwest
Great Plains
Mid-Atlantic
Southcentral

&"Þ' &"Þ' 'Þ( Þ(& (!Þ* (!Þ* (Þ' Þ'(
"*Þ" ! )Þ% Þ&* )(Þ' )"Þ$ #Þ' Þ**
$"Þ) $"Þ) *Þ# Þ&" )"Þ# )"Þ# 'Þ' Þ(&

*Þ! ! *Þ" Þ&# *"Þ" )*Þ$ "'Þ' Þ!)
*Þ) ! (Þ' Þ'( (&Þ' (%Þ" (Þ% Þ')
! ! "$Þ" Þ"( )#Þ% )#Þ% "%Þ) Þ"%

Northeast
Southeast

" # #
" #V V is percent variation explained by all significant predictive variables whereas  is the

percent variation explained by all significant predictive variables excluding trend components.
# # #

"! "! The approximate -value is , where  denotes a chi-square random: : œ T Ð  UÑ; ;
variable with  degrees of freedom.5 œ "!
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Table 3. Estimates of the ocean-atmosphere index coefficients for the Interior West, Pacific

Coast and Southwest, and Mid-Atlantic regions.  Estimates were computed for each region

after eliminating non-significant components.  The ocean-atmosphere index identified in the first

row and the lag components are identified in the first column.

PDO SOI NAO
Season Int. West Pac. SW Int. West Pac. SW Mid-Atlantic Mid-Atlantic

K !Þ"#& !Þ#$# �!Þ#!" �!Þ"'# !Þ"*" !Þ#*&
[ † �!Þ$!' �!Þ!)" �!Þ!$# † �

4

4 !Þ#")
K † !Þ$)% �!Þ!%* �!Þ!(& † �!Þ"*#
[ † �!Þ!$( �!Þ!!% !Þ!"( † !Þ!(!
K † �!Þ!"! �!Þ"(! �!Þ!"( † !Þ##%
[ † �!Þ!(! !Þ!#" �!Þ!!" † !Þ!!$
K † �!Þ!

4�"

4�"

4�#

4�#

4�$ #& �!Þ"&( !Þ!'' † �!Þ$%*
[ † �!Þ### �!Þ!#( �!Þ!"& † !Þ#('4�$
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Table 4. Coefficient estimates of linear trend derived from the regional NPP models.  These

coefficients estimate change in standardized NPP per year after accounting for significant

predictors of NPP (ocean-atmosphere indices or terrestrial climate variables).  The estimated

annual percent change in the unstandardized NPP series is also shown.  Those estimates that

were not found to be significant at the  level are identified by an asterisk.! œ!Þ!&

Ocean Climate Models Terrestrial Climate Models

Region Coefficient Coefficient
Annual Annual

Change (%) Change (%)
Interior West !Þ!'& !Þ"!# !Þ!$# !Þ!&"

!Þ!(" !Þ""% !Þ!#$ !Þ!$(
!Þ"%" !Þ"&! !Þ""& !Þ""*
!Þ!#' !Þ!$# !Þ!%) !Þ!&*

Pacific Coast and Southwest
Great Plains
Mid-Atlantic
Sout

‡ ‡

hcentral
Northeast
Southeast

!Þ"!( !Þ"(" !Þ!)& !Þ"$'
!Þ""* !Þ!(( !Þ!'( !Þ!%$
!Þ!&! !Þ!($ !Þ!%( !Þ!(&‡ ‡
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Table 5. Number of pixels per region ( ) and regional means of the coefficients of83

determination (  and ) for the ocean and terrestrial climate models.  Only pixels for whichV V" #
# #

at least one of the predictor variables were significant were used in computing the regional

means.  The number of pixels used to compute the regional averages are shown in parentheses

for the ocean climate models.  For the terrestrial climate models, the numbers of pixels used to

compute the regional means were the same as number of pixels per region, and are not shown.

Ocean Climate Models Terrestrial Civatte Models
Region
Interior West  
Pacific Coast and South

8 V V V V
#$ "(Þ! Ð"%Ñ #'Þ)Ð(Ñ '*Þ& '%Þ&

3 " # " #
# # # #

west  .  
Great Plains   
Mid-Atlantic   
Southcentral  

#) #%Þ$ Ð"%Ñ #&'Ð"$Ñ '%Þ! '&Þ!
$$ ""Þ* Ð#&Ñ "*Þ# Ð*Ñ (!Þ$ (!Þ*

( )Þ* Ð%Ñ )Þ* Ð%Ñ (%Þ' (%Þ*
## "#Þ" Ð"&Ñ #(Þ! Ð%Ñ )!Þ% )!Þ(
"# "%Þ( Ð""Ñ #"Þ! Ð%Ñ '#Þ# '!Þ$
"! "$Þ' Ð$Ñ "$Þ' Ð$Ñ )&Þ' )&Þ'

 
Northeast   
Southeast   
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Figure 1. Regions and pixel locations.  Pixels are numbered according to region, and are not

drawn to scale. Interior West=1, Pacific Coast and Southwest=2, Great Plains=3, Mid-

Atlantic=4, Southcentral=5, Northeast=6, Southeast=7.
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Figure 2.  A star plot of showing monthly means of absolute daily NPP.  These values, showing

total amount of transfer of carbon (positive and negative), are plotted in lieu of NPP because

star plots cannot accommodate both positive and negative values.  January means are

positioned at 3 o'clock, and the calendar months advance in counterclockwise direction.  The

length of the star radii for the is proportional to monthly mean carbon exchange.
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Figure 3.  Calendar monthly means of NPP plotted by region.
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Figure 4.  Percent variation ( ) in NPP explained by ocean climate models for each pixel.V#
#

The circle centers are located at pixel coordinates and circle radius is proportional to .  OfV#
#

the  pixels,  values of  were non-zero, and the maximum value was %."$& %% V #(Þ!#
#

.
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Figure 5.  Regional averages of the temperature coefficients plotted against lag. Averages were

computed using only those coefficients that were found to be significant at the  level in the!Þ!&

pixel-scale NPP models.  Lag  coefficients are associated with current growing season  lag ! ß "

coefficients with the previous winter season, and so on.
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Figure 6.  Regional averages of the precipitation coefficients plotted against lag. Averages were

computed using only those coefficients that were found to be significant at the  level in the!Þ!&

pixel-scale NPP models.  Lag  coefficients are associated with current growing season  lag ! ß "

coefficients with the previous winter season, and so on.
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Figure 7.  Regional averages of the solar radiation coefficients plotted against lag. Averages

were computed using only those coefficients that were found to be significant at the  level in!Þ!&

the pixel-scale NPP models.  Lag  coefficients are associated with current growing season  lag! ß

" coefficients with the previous winter season, and so on.
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