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ABSTRACT 

A typical magnetorheological (MR) flow mode damper 
consists of a piston attached to a shaft that travels in a tightly 
fitting hydraulic cylinder. The piston motion makes fluid flow 
through an annular valve in the MR damper. An electro-magnet 
applies magnetic field to the MR fluid as it flows through the 
MR valve, and changes its yield stress. An MR fluid, modeled 
as a Bingham-plastic material, is characterized by a field 
dependent yield stress, and a (nearly constant) postyield plastic 
viscosity. Although the analysis of such an annular MR valve is 
well understood, a closed form solution for the damping 
capacity of a damper using such an MR valve has proven to be 
elusive. Closed form solutions for the velocity and shear stress 
profile across the annular gap are well known. However, the 
location of the plug must be computed numerically. As a result, 
closed form solutions for the dynamic range (ratio of field on to 
field off damper force) cannot be derived. Instead of this 
conventional theoretic procedure, an approximated closed form 
solution for a dampers dynamic range, damping capacity and 
other key performance metrics is derived. And the 
approximated solution is used to validate a rectangular duct 
simplified analysis of MR valves for small gap condition. 
These approximated equations are derived, and the 
approximation error is also provided. 

 
INTRODUCTION 

Magnetorheological (MR) fluids are suspensions of soft 
magnetic particles, such as iron or cobalt, in a carrier fluid [1-
3]. The benefits of such fluids are that the yield stress of the 
fluid can be varied through exposure to a magnetic field. MR 
fluids have been used in numerous types of smart actuation 
systems, such as dampers, clutches and isolators [4, 5]. 
Especially, the MR fluids are achieving success as hydraulic 
fluids in damping applications for military, civil and 
automotive systems.  

The performance of the MR damper is based on the MR 
valve design. Most of the MR valve has a circular cross-section 
to construct an annular duct model because of its simple design 
and higher strength of the damper structure. The circular cross-
1
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section also has an advantage of simple magnetic circuit 
construction. As a result, MR valves are physically realized as 
an annular duct. To fully account for the annular geometry of 
MR valves, several investigations have studied Poiseuille flow 
of Bingham plastic materials [6] through an annular duct. In 
some studies, a rectangular duct was used to approximate 
annular duct geometry [7,10]. Usually, the MR devices are 
designed using rectangular duct approximations [8] to exploit 
simple performance analyses.  

This study focuses on determining analytical expressions 
for damper performance using an idealized Bingham plastic 
model. Dampers with cylindrical geometry are investigated, 
where damping forces are developed in an annular bypass via 
Poiseuille flow. Although the analysis of such an annular MR 
valve is well understood [9], a closed form solution for the 
damping capacity of a damper using such an MR valve has 
proven to be elusive. In this study, an approximate closed form 
solution for a damper’s dynamic range, damping capacity and 
other key performance metrics is derived by making linear and 
quadratic approximations to the solution of plug location. The 
quadratic equation is proven to have very small error and it 
could be used as an analytical solution for the case where 
annular gap is small relative to piston radius. The approximate 
solution is utilized to verify rectangular duct analysis of MR 
valves. We will show that the approximate equivalent viscous 
damping coefficient (Ceq/C) for the annular duct reduces to that 
for the rectangular duct when the small gap assumption, d/R1 
<<1, is applied. 

NOMENCLATURE 
d Electrode gap 
∆p Pressure drop along electrodes 
r Radial coordinate measured from shaft axis 
u(r) Velocity distribution in electrode gap 
v0 Piston head or shaft velocity 
A Piston head area 
Bi Bingham number 
CN Viscous damping (Newtonian) 
Ceq Equivalent viscous damping (Bingham plastic) 
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F Force applied to damper shaft 
L Length of inner electrode 
Q Volume flux 
R1 Outer radius of inner electrode 
R2 Inner radius of outer electrode 
Rpi Inner radius of plug measured from shaft axis 
Rpo Outer radius of plug measured from shaft axis 
δ Plug thickness 
δ  Ratio of plug thickness to gap 
µ0 Plastic viscosity 
τ Shear stress 
τy Dynamic yield shear stress 
 

1 MR dampers 

A schematic of the flow mode damper is shown in Figure 1. 
The annular valve formed by magnetic poles is mounted in the 
piston. When the piston translates, the fluid is forced through 
the annular valve under a pressure gradient. This design 
develops rate-dependent damping forces due to the pressure 
drop through the annular valve as force is applied to the damper 
shaft. The governing equation for quasi-steady valve system 
obtained from force equilibrium is 

 ( )
z
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rr ∂
∂

=
∂
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where τ is the shear stress, r is the radial coordinate, z is the 
longitudinal coordinate, and p is the pressure developed via 
piston head motion. We assume that p varies linearly along the 
length of the annular gap, so that equation (1) can be rewritten 
as 
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A Bingham plastic material behaves like a rigid solid below a 
shear stress threshold called the yield stress. This stress state is 
commonly called the pre-yield state. In this pre-yield state, the 
material is rigid and does not flow. When the shear stress 
exceeds the yield stress, the material behaves much like a 
viscous fluid. This behavior can be modeled as 
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Here τy is the dynamic yield stress and µ is the plastic viscosity. 
Newtonian shear flow can be viewed as a special case of 
Bingham plastic shear flow with zero dynamic yield stress. 
 

2 Newtonian Model 

For the flow mode damper as shown in Figure 1, applying 
the boundary conditions 

    0)( 1 =Ru 0)( 2 =Ru
yields the velocity profile in the annular electrode gap as [9] 
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where P = Pin – Pout. Here, Pin and Pout are the pressures at the 
inlet and outlet of the MR valve, respectively. The volume flux 
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through the electrodes, Q , is obtained by integrating the 
velocity profile over the annular electrode gap [9] 
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  (5) 
The volume flux through the annular electrode gap, , 

must equal the volume flux displaced by the piston head, , 

which is proportional to piston head velocity, , or 
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  (6) 0AvQQ pN ==

where A is the area of the piston head minus the area of the 
shaft. Substituting equation (5) into equation (6), solving for the 
force F, and noting that ∆P=F/A yields 

  (7) 0vCF N=
where the flow mode damping can be expressed as [9] 
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Damping, , depends only on flow mode damper 

geometry and off-state viscosity. 
NC

 

 
 
 

 

 
 
Figure 2. Coordinate systems of the MR valve for 
axisymmetric duct model. 

 
 

Figure 1. Schematic of fluid velocity profile through MR valve 
inside damper.
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3 Bingham-Plastic Model 

A typical velocity profile through the annular gap for the 
Bingham plastic flow model is shown in Figure 2 with the 
coordinate system definition. The flow profile is divided into 3 
regions. In the first and third regions adjacent to the valve walls, 
the shear stress has exceeded the yield stress and the material 
flows, so that these two regions represent post-yield flows. The 
second region or central region remains rigid, because the shear 
stress is lower than the yield stress, so that this region is pre-
yield or plug flow. Rpi and Rpo represent the inner and outer 
plug boundaries, respectively. 

3.1 Shear Stress 

The shear stress profile across the valve gap for the annular 
duct model, )(rτ , can be determined from equation (2) as 
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From this equation, the yield stress can be expressed in terms of 
plug thickness, δ, as 
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3.2 Velocity profile 

The equation for the velocity profile is different for each 
region as shown in Figure 2. The volume flux through each 
region will be calculated separately, and summed to obtain the 
total volume flux through the annular electrode gap.  

 
Region 1 
 
The velocity at the inner electrode must equal zero since 

the inner electrode is stationary. The plug travels at a constant 
velocity, so that the velocity gradient at the Region 1 boundary 
adjacent to the plug must equal zero, leading to the boundary 
conditions 

     0)( 1 =Ru 0=
= piRrdr

du  

The resulting velocity profile is [9] 
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Region 2 
This region presents a constant plug velocity across the 

entire pre-yield region, from r=Rpi to r=Rpo. Plug velocity must 
be compatible with the velocity from Region 1 so that [9]: 
3
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Region 3 
 
The boundary conditions in Region 3 are similar to those 

for Region 1. At the edge of the plug, where r=Rpo, the fluid 
travels at the constant plug velocity. Also, the velocity of the 
fluid must equal zero at the outer electrode. Thus, the boundary 
conditions are 

 0)( 2 =Ru     0=
= poRrdr

du  

which leads to the velocity profile [9] 
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There are two unknowns, Rpi and Rpo, and we only have 
equation (10) which is related in these parameters. Another 
equation can be found using velocity continuity along the 
velocity profile through each region: 
  (14) )()( 321 popi RuuRu ==

Traditionally, Rpi and Rpo are iteratively calculated using 
equation (10) and (14), and then the velocity distribution in 
each of the three regions can be determined. However in this 
study, we will calculate the plug position by direct calculation 
of the plug center using equation (10). 

3.3 Plug Center 

1st approximation 
 
Figure 3 shows plug position as a function of yield stress 

of an MR fluid. The solid line in this figure shows the center of 
plug as a function of the MR fluid yield stress. When the yield 
stress is zero, the plug center is given by the value of r where 
the Newtonian velocity profile is a maximum and it can be 
expressed as [11] 
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where δc(0) denotes the plug center in the absence of field. 
As yield stress increases, the plug gradually fills in the gap. 

When the plug fills the gap, the plug center approaches the 
valve center. A linear function can be assumed to describe the 
plug center development with respect to the yield stress as a 
simple approximation. Assuming that the plug center is 
proportional to δc,N, Eq. (15), the plug center position can be 
approximated as: 
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Once cδ is calculated for a given τy, Rpi and Rpo are 
calculated by 
  (17) 2/,2/ δδδδ +=−= cpocpi RR     

Then the velocity profiles can be calculated using equations 
(11), (12), and (13). Thus, the velocity distribution in each of 
the three regions can be approximated.  
 
 

2nd approximation 
 
As can be seen in Figure 4, the plug center (dotted line) is 

not a linear function with respect to the yield stress.  For a 
more precise approximation, a quadratic function is suggested 
to predict the plug center position as a function of yield stress. 
Using the boundary conditions of 
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and applying a least squared error curve fit method, we can 
obtain an approximate  quadratic equation describing the 
center of the plug region, , as cδ
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where  denotes the radius at which the maximum 
velocity occurs for Newtonian flow. Using this equation in 
conjunction with the plug thickness equation (10), the plug 
position of the axisymmetric annular duct model can be 
computed without resorting to a numerical root finding 
procedure. 

Nc,δ

 

 

 
Figure 3.  Plug development as a function of the yield 
stress for an axisymmetric annular valve. 
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3.4 Volume Flux and Damping Coefficient 

The velocity of the piston is determined by equating the 
volume flux displace by the piston, Qp, to the volume flux 
through the annular electrode gap, Qd, and the total volume flux 
is 

  (20) pd QQQQQ =++= 321
where the volume flux through each region is computed via 
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The equivalent viscous damping, , is given by eqC
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From the definition of plug thickness, Eq. (10), the 
Bingham number, Bi, defined as the ratio between the yield 
stress and the viscous stress,   
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The damping coefficient (or dynamic range) is defined as 
the ratio of the equivalent viscous damping, equation (23), to 

Figure 4. For the annular duct, the plug center and associated 
approximation error are plotted as a function of yield stress. 
(d/R1=10.0) 
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the Newtonian damping, equation (8). The damping coefficient 
can be approximated using a Taylor series for the logarithmic 
function and plug center as: 
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  (25) 
Applying a small gap assumption, that is, the valve gap, d, 

is much smaller than the annular radius, R1, the approximate 
damping coefficient for the axisymmetric valve simplifies to 
the exact solution for the rectangular duct model [10],  
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4 Analytical Results and Discussion 

Figure 3 shows the plug position of the axisymmetric model as 
a function of the yield stress in the MR valve. In this figure, the 
nondimensional yield stress is defined as )2//( LPdyy ∆= ττ . 

Figure 3 also shows the plug center, 
2

)(
)( popi

yc

RR +
=τδ  

diagram with solid line. As shown in this figure, the plug center 
will be developed from the off-center position and the plug 
center gradually approaches to the center of the valve as the 
plug fills in the gap. Figure 4 shows the exact trajectory of the 
plug center development along with the normalized yield stress 
with fine dashed line. Even though the plug center development 
diagram shows a parabolic shape, a linear function is suggested 
as a simple approximation for plug center. This assumption 
gives reasonable result for a small gap range as shown in Figure 
5. This result reveals that the total flow rate, which is directly 
related to the damping performance, is not very sensitive to the 
plug position. Figure 5(a) shows the 1st approximated 
equivalent damping coefficients versus the plug thickness 
comparing with the analytical solutions. In these figures, δ is 
defined as a ratio between plug thickness and gap distance, δ/d. 
As can be seen in Figure 5(b), the maximum error level of this 
approximation is under 20 % when the d/R1 value is less than 1.  
A quadratic function can express more precise plug center 
trajectory along the yield stress as shown in Figure 4. Even 
though for the range of big gap distance (d/R1=10), the plug 
center position error shows less than 1%. For a small gap 
distance range, the error level becomes a numerical error level 
and this approximation function can be used as an exact 
solution of plug center for a certain range of d/R1 value. The 
equivalent viscous damping coefficient for the annular duct 
model with 2nd approximation method is shown in Figure 6(a). 
This quadratic approximation gives very precise results for the 
damping coefficient along with wide range of d/R1 value as 
shown in Figure 6. Based on this results on Figure 6(b), the 
maximum error on the damping coefficient is less than 0.5%, 
when d/R1 = 1. In a practical design of an MR damper, d/R1 is 
typically 0.1, and the approximation error on the damping 
coefficient is about 0.001%. For the cases of d/R1 <<1, the 
wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/27/2019 Terms of 
approximated quadratic equation can be assumed as an 
analytical function for the plug center calculation.  
 

 

 
(a) Damping coefficient with 1st approximation 

 

 
(b) Approximation error 

 
Figure 5. Comparison of equivalent viscous damping coefficients 
and the errors of 1st approximation for the plug center. 
 

5. Conclusions 

An axisymmetric quasi-steady Bingham plastic model was 
analyzed for an MR flow mode damper. The parametric 
analysis focused on flow mode damper and identified several 
trends of parameters and performance of the MR damper. The 
plug thickness and position are functions of magnetic field and 
applied load with yield stress of MR fluid, and the plug 
thickness has a substantial impact on the equivalent viscous 
damping levels. The approximate functions describing location 
of the plug center as a linear or quadratic equation simplified 
the calculation of the annular duct solution without resorting to 
numerical methods to solve the boundary value problem of 
5 Copyright © 2005 by ASME
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annular duct for MR valve. Especially, the quadratic equation 
shows very small error for the plug center calculation (~0.001% 
of maximum error for d/R1=0.1). This study shows that the 
equivalent viscous damping coefficient (Ceq/C) equation for 
annular duct model can be simplified to the rectangular duct 
model equation when a small gap assumption, d/R1 <<1, is 
applicable. 
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(a) Damping coefficient with 2nd approximation 

 

 
(b) Approximation error 

 
Figure 6. Comparison of equivalent viscous damping coefficients 
and the errors of 2nd approximation for the plug center. 
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