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Abstract. Let pC : C = CN → N be the bundle of linear connections on a smooth manifold N
and let pM : M → N be the bundle of pseudo-Riemannian metrics of a given signature (n+,n−),
n+ + n− = n = dimN on N. The structure of the first-order Lagrangians defined on the bundle
M×N C→ N that are invariant under the natural action of the diffeomorphisms of N, is determined.
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PRELIMINARIES

Jet bundles

Let p : E → N be an arbitrary fibred manifold, i.e., p is a surjective submersion;
we set dimN = n and dimE = m + n. An automorphism of p is a pair of diffeomor-
phisms φ : N → N, Φ : E → E such that, p ◦Φ = φ ◦ p. The group of all such auto-
morphisms is denoted by Aut(p), and its ‘Lie algebra’ is the space aut(p) ⊂ X(E) of
p-projectable vector fields on E. Equivalently, a vector field belongs to aut(p) if and
only if each transformation Φt of its flow belongs to Aut(p). A natural group homomor-
phism Aut(p)→ DiffN, Φ 7→ φ exists, the kernel of which is the subgroup of vertical
automorphisms of the fibred manifold, denoted by Autv(p).

Latin (resp. Greek) indices run from 1 to n (resp. m). A system of coordinates (xi,yα)
on an open subset V ⊆ E is said to be a ‘fibred coordinate system’ for the submersion p
if (xi) is a coordinate system for N on U = p(V ).

Let p1 : J1E → N be the 1-jet bundle of local sections of p, with natural projections
p1,0 : J1E→ E, p1,0( j1

xs) = s(x), j1
xs denoting the 1-jet at x of a section s of p defined on

a neighbourhood of x∈N. A fibred coordinate system (xi,yα) on V induces a coordinate
system (xi,yα ,yα

, j) on (p1,0)−1(V ) = J1V as follows: yα
, j( j1

xs) = (∂ (yα ◦ s)/∂x j)(x).
Every morphism Φ : E → E ′ whose associated map φ : N → N′ is a diffeomorphism,
induces a map

Φ
(1) : J1E→ J1E ′, Φ

(1)( j1
xs) = j1

φ(x)(Φ◦ s◦φ
−1). (1)
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If Φt is the flow of a vector field X ∈ aut(p), then Φ
(1)
t is the flow of a vector field

X (1) ∈ X(J1E), called the infinitesimal contact transformation of first order associated
to the vector field X . The mapping aut(p) 3 X 7→ X (1) ∈ X(J1E) is an injection of Lie
algebras, namely, one has (λX + µY )(1) = λX (1) +µY (1), and [X ,Y ](1) = [X (1),Y (1)] for
all λ ,µ ∈ R, X ,Y ∈ aut(p). In particular,

X = ui ∂

∂xi + vα ∂

∂yα
, ui ∈C∞(N),vα ∈C∞(E),

X (1) = ui ∂

∂xi + vα ∂

∂yα
+ vα

i
∂

∂yα
i

, vα
i =

∂vα

∂xi + yβ

i
∂vα

∂yβ
− yα

k
∂uk

∂xi .

The bundle J1(M(N)×N C(N))

Let N be an n-dimensional orientable and oriented connected smooth manifold. Let
pM : M = M(N)→ N (resp. pF : F(N)→ N, resp. pC : C = C(N)→ N) be the bundle of
pseudo-Riemannian metrics of a given signature (n+,n−), n+ +n− = n (resp. the bundle
of linear frames, resp. linear connections) on N, see [3, 10]. Every coordinate system (xi)
on an open domain U ⊆ N induces the following coordinate systems:

1. (xi,y jk) on (pM)−1(U), where the functions y jk = yk j are defined by,

gx = ∑
i≤ j

yi j(gx)(dxi)x⊗ (dx j)x, ∀gx ∈ (pM)−1(U).

2. (xi,xi
j) on (pF)−1(U), where the functions xi

j are defined by,

u =
(
(∂/∂x1)x, . . . ,(∂/∂xn)x

)
·
(
xi

j(u)
)
, x = pF(u),∀u ∈ (pF)−1(U).

3. (xi,A j
kl) on (pC)−1(U), where the functions A j

kl are defined as follows. We first
recall some basic facts. Connections on F(N) (i.e., linear connections of N) are the
splittings of the Atiyah sequence,

0→ adF(N)→ TGl(n,R)F(N)
(pF )∗
−−−→T (N)→ 0,

(cf. [1, 4, 7, 9]) where adF(N) = T ∗(N) ⊗ T (N) is the adjoint bundle,
TGl(n,R)(F(N)) = T (F(N))/Gl(n,R), see [3, 6], and gauF(N) = Γ(N,adF(N)) is
the gauge algebra of F(N).

We think of gauF(N) as the ‘Lie algebra’ of the gauge group GauF(N). Moreover,
pC : C → N is an affine bundle modelled over the vector bundle ⊗2T ∗(N)⊗ T (N).
The section of pC induced tautologically by the linear connection Γ is denoted by
sΓ : N → C. Every B ∈ gl(n,R) defines a one-parameter group ϕB

t : U ×Gl(n,R)→
U ×Gl(n,R) of gauge transformations by setting (cf. [3]), ϕB

t (x,Λ) = (x,exp(tB) ·Λ).
Let us denote by B̄ ∈ gau(pF)−1(U) the corresponding infinitesimal generator. If (E i

j) is



the standard basis of gl(n,R), then Ē i
j = ∑

n
h=1 x j

h∂/∂xi
h, is a basis of gau(pF)−1(U). Let

Ẽ i
j = Ē i

jmodG be the class of Ē i
j on adF(N). Unique smooth functions Ai

jk on (pC)−1(U)
exist such that,

sΓ

(
∂

∂x j

)
=

∂

∂x j − (Ai
jk ◦Γ)Ẽ i

j

for every sΓ and Ai
jk(Γx) = Γi

jk(x), where Γi
jk are the Christoffel symbols of the linear

connection Γ in the coordinate system (xi), see [8, III, Poposition 7.4].

Natural lifts

Let fM : M→M, cf. [10] (resp. f̃ : F(N)→ F(N), cf. [8, p. 226]) be the natural lift
of f ∈ DiffN to the bundle of metrics (resp. linear frame bundle); namely fM(gx) =
( f−1)∗gx (resp. f̃ (X1, . . . ,Xn) = ( f∗X1, . . . , f∗Xn), where (X1, . . . ,Xn) ∈ Fx(N)); hence
pM ◦ fM = f ◦ pM (resp. pF ◦ f̃ = f ◦ pF ), and fM : M → M (resp. f̃ : F(N)→ F(N))
have a natural extension to 1-jet bundles f (1)

M : J1(M)→ J1(M) (resp. f̃ (1) : J1(FN)→
J1(FN)) as defined in the formula (1), i.e.,

f (1)
M
(

j1
xg
)

= j1
f (x)( fM ◦g◦ f−1) (resp. f̃ (1) ( j1

xs
)

= j1
f (x)( f̃ ◦ s◦ f−1)).

As f̃ is an automorphism of the principal Gl(n,R)-bundle F(N), it acts on linear
connections by pulling back connection forms, i.e., Γ′ = f̃ (Γ) where ωΓ′ = ( f̃−1)∗ωΓ

(see[8, II, Propisition 6.2-(b)], [3, 3.3]). Hence, a unique diffeomorphism f̃C : C→ C
exists such that, for every linear connection Γ, 1) pC ◦ f̃C = f ◦ pC and 2) f̃C ◦ sΓ = s f̃ (Γ).

If ft is the flow of a vector field X ∈ X(N), then the infinitesimal generator of ( ft)M
(resp. f̃t , resp. ( f̃t)C) in DiffM (resp. DiffF(N), resp. DiffC) is denoted by XM (resp. X̃ ,
resp. X̃C) and the following Lie-algebra homomorphisms are obtained: X(N)→ X(M) , X 7→ XM,

X(N)→ X(F(N)) , X 7→ X̃ ,
X(N)→ X(C) , X 7→ X̃C.

If X = ui∂/∂xi ∈ X(N) is the local expression for X , then

1. From ([10, eqs. (2)-(4)]) we know that the natural lift of X to M is given by,

XM = ui ∂

∂xi −∑
i≤ j

(
∂uh

∂xi yh j +
∂uh

∂x j yih

)
∂

∂yi j
∈ X(M).



and its 1-jet prolongation,

X (1)
M = ui ∂

∂xi −∑
i≤ j

(
∂uh

∂xi yh j +
∂uh

∂x j yhi

)
∂

∂yi j

−∑
i≤ j

(
∂ 2uh

∂xi∂xk yh j +
∂ 2uh

∂x j∂xk yhi

+
∂uh

∂xi yh j,k +
∂uh

∂x j yhi,k +
∂uh

∂xk yi j,h

)
∂

∂yi j,k
.

2. From [5, Proposition 3](also see [8, VI, Proposition 21.1]) we know that the natural
lift of X to F(N) is given by,

X̃ = ui ∂

∂xi +
∂ui

∂xl xl
j

∂

∂xi
j
,

and its 1-jet prolongation,

X̃ (1) = ui ∂

∂xi +
∂ui

∂xl xl
j

∂

∂xi
j
+
(

∂ui

∂xr xr
j,k−

∂ur

∂xk xi
j,r +

∂ 2ui

∂xk∂xr xr
j

)
∂

∂xi
j,k

.

3. Finally,

X̃C = ui ∂

∂xi −
(

∂ 2ui

∂xk∂x j −
∂ui

∂xr Ar
jk +

∂us

∂xk Ai
js +

∂ul

∂x j Ai
lk

)
∂

∂Ai
jk

,

X̃ (1)
C = ui ∂

∂xi +wi
jk

∂

∂Ai
jk

+wi
jkh

∂

∂Ai
jk,h

,

wi
jk = − ∂ 2ui

∂xk∂x j +
∂ui

∂xr Ar
jk−

∂us

∂xk Ai
js−

∂ur

∂x j Ai
rk, (2)

wi
jkh = − ∂ 3ui

∂xh∂xk∂x j +
∂ 2ui

∂xh∂xr Ar
jk−

∂ 2us

∂xh∂xk Ai
js−

∂ 2ur

∂xh∂x j Ai
rk

+
∂ui

∂xr Ar
jk,h−

∂us

∂xk Ai
js,h−

∂ul

∂x j Ai
lk,h−

∂ut

∂xh Ai
jk,t . (3)

Let p : M ×N C → N be the natural projection. We denote by f̄ = ( fM, fC) (resp.
X̄ = (XM, X̃C) ∈ X(M×N C)) the natural lift of f (resp. X) to M×N C. The prolongation
to the bundle J1(M×N C) of X̄ is as follows:

X̄ (1)=
(
X (1)

M , X̃ (1)
C

)
=ui ∂

∂xi +∑
i≤ j

vi j
∂

∂yi j
+∑

i≤ j
vi jk

∂

∂yi j,k
+wi

jk
∂

∂Ai
jk

+wi
jkh

∂

∂Ai
jk,h

,

where

vi j = −∂uh

∂xi yh j−
∂uh

∂x j yhi,

vi jk = − ∂ 2uh

∂xi∂xk yh j−
∂ 2uh

∂x j∂xk yih−
∂uh

∂xi yh j,k−
∂uh

∂x j yih,k−
∂uh

∂xk yi j,h,



and wi
jk,w

i
jkh are given in the formulas (2), (3), respectively.

DiffN- and X(N)-invariance

A differential form ωr ∈ Ωr(J1(M×N C)), r ∈ N, is said to be DiffN-invariant—or invariant
under diffeomorphisms—(resp. X(N)-invariant) if the following equation holds: ( f̄ (1))∗ωr = ωr,
∀ f ∈ DiffN (resp. LX̄(1)ωr = 0, ∀X ∈ X(N)). Obviously, “DiffN-invariance” implies “X(N)-
invariance” and the converse is almost true. Because of this, below we consider X(N)-invariance
only.

A linear frame (X1, . . . ,Xn) ∈ Fx(N) is said to be orthonormal with respect to gx ∈ Mx(N)
(or simply gx-orthonormal) if gx(Xi,X j) = 0 for 1 ≤ i < j ≤ n, g(Xi,Xi) = 1 for 1 ≤ i ≤ n+,
g(Xi,Xi) =−1 for n+ +1≤ i≤ n.

As N is an oriented manifold, there exists a unique p-horizontal n-form v on M×N C such that,
v(gx,Γx) (X1, . . . ,Xn) = 1, for every gx-orthonormal basis (X1, . . . ,Xn) belonging to the orientation

of N. Locally v = ρvn, where ρ =
√

(−1)n− det(yi j) and vn = dx1∧·· ·∧dxn. As proved in [10,
Proposition 7], the form v is DiffN-invariant and hence X(N)-invariant. A Lagrangian density Λ

on J1(M×N C) can be globally written as Λ = L v for a unique function L ∈C∞(J1(M×N C))
and Λ is X(N)-invariant if and only if the function L is X(N)-invariant; that is X̄ (1)(L ) = 0,
∀X ∈ X(N). Therefore, the invariance of Lagrangian densities is reduced to that of scalar
functions.

As the values for uh, ∂uh/∂xi, ∂ 2uh/∂xi∂x j (i ≤ j), and ∂ 3uh/∂xi∂x j∂xk (i ≤ j ≤ k) at a
point x ∈ N can be taken arbitrarily, we deduce that the equation X̄ (1)(L ) = 0, ∀X ∈ X(N) is
equivalent to the following system of partial differential equations

0 = ∂

∂xi (L ), ∀i,
0 = X i

h (L ) , ∀h, i,
0 = X ik

h (L ) , ∀h, i≤ k,
0 = X jkh

i (L ) , ∀i, j ≤ k ≤ h,

(4)

where

X i
h = −yhi

∂

∂yii
− yh j

∂

∂yi j
− yih,k

∂

∂yii,k
− yh j,k

∂

∂yi j,k
−∑

s≤ j
ys j,h

∂

∂ys j,i
+Ai

jk
∂

∂Ah
jk

−Ar
jh

∂

∂Ar
ji
−Ar

hk
∂

∂Ar
ik

+Ai
jk,s

∂

∂Ah
jk,s
−As

jh,r
∂

∂As
ji,r
−As

hk,r
∂

∂As
ik,r
−Ar

jk,h
∂

∂Ar
jk,i

,

X ik
h = −yih

∂

∂yii,k
− ykh

∂

∂ykk,i
− yh j

∂

∂yi j,k
− yh j

∂

∂yk j,i
− ∂

∂Ah
ik
− ∂

∂Ah
ki

+Ak
js

∂

∂Ah
js,i
−As

jh
∂

∂As
jk,i
−As

hr
∂

∂As
kr,i

+Ai
js

∂

∂Ah
js,k
−As

jh
∂

∂As
ji,k
−As

hr
∂

∂As
ir,k

,

X jkh
i =

∂

∂Ai
jk,h

+
∂

∂Ai
jh,k

+
∂

∂Ai
hk, j

+
∂

∂Ai
h j,k

+
∂

∂Ai
k j,h

+
∂

∂Ai
kh, j

,

From the above expressions it is easy to prove that the number of equations in system (4) is

n+n2 +n
(n+1

2

)
+n
(n+2

3

)
= n
(n+3

3

)
.



As a simple computation shows, we have

Proposition 1 The vector fields ∂/∂xi,X i
h,X

ik
h ,X jkh

i are linearly independent and span an invo-
lutive distribution on J1(M×N C) of rank n

(n+3
3

)
. Hence, the number of functionally invariant

Lagrangians on J1(M×N C) is 1
6

(
5n4 +3n3−5n2 +3n

)
.

THE FACTORIZATION RESULT FOR THE INVARIANTS

Let BN be the sub-vector bundle of all the tensors t ∈ ∧2T ∗N ⊗ T ∗N ⊗ T N such that
SX ,Y,Zt(X ,Y,Z) = 0, ∀X ,Y,Z ∈ TxN, ∀x ∈ N, and let consider the following mapping

ϒ : J1(M×N C)→M×N
((
∧2T ∗N⊗T N

)
⊕
(
∧2T ∗N⊗T ∗N⊗T N

)
⊕BN

)
,

ϒ
(

j1
x (g,sΓ)

)
=
(
gx,
(
∇Γ−∇g

)
x ,
(
RΓ
)

x ,ϒ3
(

j1
x (g,sΓ)

))
,

where ϒ3
(

j1
x (g,sΓ)

)
(X ,Y,Z) =

(
∇Γ

ZT Γ
)
(X ,Y )+T Γ(T Γ(X ,Y ),Z)−RΓ(X ,Y )(Z).

Theorem 2 Every X(N)-invariant Lagrangian function L on J1(M×N C) factors through ϒ as
follows: L = L̄ ◦ϒ, where

L̄ : M×N
((
⊗2T ∗N⊗T N

)
⊕
(
∧2T ∗N⊗T ∗N⊗T N

)
⊕BN

)
→ R

is a smooth function that is, in turn, invariant under the natural action of X(N) on such tensorial
bundle, namely, X̂(L̄ ) = 0, for all X ∈ X(N), where X̂ denotes the natural lift of X ∈ X(N) to
M×N

((
⊗2T ∗N⊗T N

)
⊕
(
∧2T ∗N⊗T ∗N⊗T N

)
⊕BN

)
.
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