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Many random substitutional solid solutions (alloys) will display a
tendency to atomically order given the appropriate kinetic and
thermodynamic conditions. Such order–disorder transitions will
result in major crystallographic reconfigurations, where the
atomic basis, symmetry, and periodicity of the alloy change dra-
matically. Consequently, phonon behavior in these alloys will vary
greatly depending on the type and degree of ordering achieved. To
investigate these phenomena, the role of the order–disorder transi-
tion on phononic transport properties of Lennard–Jones type
binary alloys is explored via nonequilibrium molecular dynamics
simulations. Particular attention is paid to regimes in which the
alloy is only partially ordered. It is shown that by varying the
degree of ordering, the thermal conductivity of a binary alloy of
fixed composition can be tuned across an order of magnitude at
10% of the melt temperature, and by a factor of three at 40% of
the melt temperature. [DOI: 10.1115/1.4004843]
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1 Introduction

Substitutional solid solutions, or alloys, can exist in both atomi-
cally ordered and disordered states. While identical in terms of
composition, these states are distinguished from each other by their
unique crystallographic configurations. In the disordered state (ran-
dom alloy), atoms are arranged in a statistically random distribution
among the atomic sites of the crystalline lattice, where the probabil-
ity of finding a particular type of atom at any given atomic site is
based on the stoichiometry of the solution itself [1]. It is important
to note that, in this context, disorder does not imply a deviation
from crystallinity. In the ordered state, atoms are situated in a spe-
cific arrangement within each unit cell [2], and each type of atom is
said to occupy its own sublattice [3].

The particular crystallographic configuration in which a system
will order depends on several factors, e.g., the number and types of
constituent atoms comprising the solution, as well as the stoichio-
metric ratio of the solution itself. The L11 configuration is one in
which atoms arrange themselves such that a 1� 1 superlattice

forms along the [111] crystallographic direction relative to the con-
ventional face-centered-cubic (fcc) lattice vectors from which this
ordered phase is derived. CuPt is a classic example of a metallic
system that can exhibit L11 ordering, where the ordered phase is
achieved by annealing the corresponding disordered alloy at tem-
peratures below the critical temperature [1,3]. Additionally, it has
been shown that group IV binary [4–6] and group III-V ternary
and quaternary [7,8] semiconductor alloys can exhibit analogous
“L11-type” ordering. However, in semiconductor systems, long-
range order can only be achieved through thin-film growth under
very particular conditions [4–8].

In disordered fcc AB alloys, there is a 50-50 chance of finding
either an A or a B atom at each atomic site of an fcc lattice (A1
Strukturbericht designation). In L11 ordered AB alloys, atoms
preferentially arrange themselves such that there is an A atom at
(0, 0, 0) and a B atom at (1, 1, 1), again with respect to the con-
ventional lattice vectors of the A1 configuration. Despite the fact
that both the A1 an L11 primitive cells are rhombohedral, the L11

primitive cell can only be formed along a single body diagonal of
the conventional cell, indicating that the L11 configuration has
only a single axis of three-fold (trigonal) symmetry as opposed to
the four axes of three-fold symmetry of the A1 configuration.

As a result of this crystallographic reconfiguration, the proper-
ties of ordered and random alloys can differ greatly. Many theo-
retical, experimental, and computational studies have investigated
changes in material properties across the order–disorder transition
in both metallic and semiconductor systems. These include studies
of electrical resistivity [9,10], electronic band gap and band struc-
ture [11,12], magnetic anisotropy [13], Raman spectra [6,14], and
vibrational properties [15,16]. Despite these investigations, the
role of the order–disorder transition on phononic thermal conduc-
tivity (j) has been left largely unexplored [17].

In the present study, we have employed nonequilibrium molecu-
lar dynamics (NEMD) simulations to investigate the sensitivity of
thermal conductivity (j) to the degree of atomic ordering in AB
Lennard–Jones (LJ) type binary alloys. Thermal fluxes are applied
in the [001] crystallographic direction relative to the cubic conven-
tional lattice of the corresponding A1 system, thus mimicking a sit-
uation in which a thermal flux would be applied in the “growth
direction” of ordered SiGe thin films [4,5]. Special attention is
given to the thermal conductivity of partially ordered alloys, thus
establishing a gauge for future experimental validation. It is shown
that by varying the degree of ordering, the thermal conductivity of
a binary alloy of fixed composition can be tuned across an order of
magnitude at 10% of the melt temperature, and by a factor of three
at 40% of the melt temperature.

2 Molecular Dynamics Simulations

We have employed NEMD simulations to study j of ordered,
partially ordered, and disordered LJ binary alloys. Nonequilibrium
molecular dynamics is a technique in which a heat flux is applied
across a computational domain and a steady-state, one-dimensional
temperature gradient is established. With the thermal flux and tem-
perature gradient known, j can be calculated via Fourier’s law.
This technique has been used extensively to investigate thermal
transport properties in nanoscopic systems, e.g., thermal conductiv-
ity [18–21] and thermal boundary conductance [22–24]. While the
LJ interatomic potential implemented in this study cannot exactly
reproduce the properties of many materials beyond inert gases,
such simulations are still able to produce physically meaningful
results, especially in the context of phononic (vibrational) proper-
ties [20–23].

2.1 Computational Details. The A- and B-type atoms in the
various domains were distinguished by their atomic masses, which
were 40 and 120 atomic mass units, respectively. The LJ parame-
ters for both the A and B atoms were fixed (e¼ 0.0503 eV and
r¼ 3.37 Å). All results are presented in non-dimensional (reduced
LJ) units
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where m is the mass of an A atom (40 amu), and E, T, and x, are
energy, temperature, and angular frequency, respectively. From
this point forward, asterisks will be dropped and all discussion
will make use of nondimensional units.

All eight computational domains implemented in this study
were 31.6� 31.6� 232 Å3 and contained 6336 atoms. The four
outermost layers of atoms in all domains formed a rigid wall to
prevent sublimation from the free surface of the domain during
nonequilibrium heating. The eight layers of atoms immediately
inside these rigid walls were “bath” atoms, to which energy was
added or removed during nonequilibrium heating. The remaining
atoms are “normal atoms” such that they do not have any external
conditions imposed on them. The domains differed from each
other by way of their respective Bragg-Williams long-range order
parameter, g¼ (R�W)/(RþW), where R and W refer to the num-
ber of atoms that are in the “right” and “wrong” positions in the
context of the perfectly ordered crystal. Order parameters imple-
mented in this study were 1, 0.99, 0.95, 0.90, 0.85, 0.75, 0.50, and
0. Schematics of selected computational cells (g¼ 1, 0.75, and 0)
are shown in Fig. 1.

During the simulation, the equations of motion for the system
were integrated using the Nordsieck fifth-order predictor corrector
algorithm [25]. Periodic boundary conditions were initially applied
in all directions, and the system was equilibrated at a predefined
temperature via a velocity scaling routine (0.046� T� 0.470,
depending on the simulation) and zero pressure. Zero pressure was
maintained by the Berendsen barostat algorithm [26]. Once equili-
bration was complete, the periodic boundary conditions in the
z-direction were switched to free boundary conditions, and the non-
equilibrium heating procedure was implemented. The addition/
removal of energy to/from the baths was performed through a con-
stant energy approach, allowing for thermal flux across the compu-
tational cell to be controlled explicitly. This routine slightly
changes the forces acting on an atom depending on the amount of
energy to be added or removed [27]. To ensure the baths were not
being perturbed far from equilibrium they were sized such that the
amount of energy added to or removed from the bath was less than
1% of the bath kinetic energy.

During nonequilibrium heating, the system was divided into 40
equally sized slices such that a spatial-temperature profile could
be calculated along the z-axis. The temperature of each of these
slices, TS, was determined through the relationship

3
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1

2
miðvT

i Þ
2
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where NS is the number of atoms in a particular slice S, and kB is
the Boltzmann constant. Each slice was comprised of approxi-
mately 160 atoms. Linear fits of TS versus time data were made
for discrete time intervals during the simulation, and the slopes of
these lines were used to determine the onset of the steady-state

regime. Once in the steady-state regime, time-averaged spatial-
temperature profiles were created. To determine the temperature
gradient, a linear least squares fit was performed for each tempera-
ture profile. The slices (roughly two atomic layers) nearest to the
baths were not included in the fits. From the spatial-temperature
profiles, and with the applied flux known, j of the alloys were cal-
culated via Fourier’s law. The applied fluxes were chosen such
that the temperature drop across the domain did not exceed 15%
of the average domain temperature. However, this limit was only
realized for the lower-temperature simulations. In reality, the tem-
perature drop for the majority of the simulations was closer to 5%
of the average domain temperature.

2.2 Density of States Calculations. Phonon density of states
(DOS) curves of the eight computational domains was calculated.
The DOS is defined as the Fourier transform of the velocity auto-
correlation function [23,28] but, in practice, is calculated using
standard estimation procedures for power spectral density. For
each atom, the velocity is obtained at each time step to give a ve-
locity fluctuation time series of 36,864 points. The Welch method
of power spectral density estimation is then applied by creating
eight 50% overlapping segments of 8192 points. Each segment is
then multiplied by a Hamming window, and the fast Fourier trans-
form is computed. The DOS is then obtained by ensemble averag-
ing the Fourier transform magnitudes of each segment.

The DOS curves of three selected alloys are shown in Fig. 2.
As is evident from the plot, all domains have nearly identical
vibrational spectra in the low- and high-frequency limits. In the
low-frequency limit, phonons do not observe the discreteness of
the crystal and continuum theory applies. Since all domains have
the same average mass density and the same elastic constants,
long wavelength phonons effectively “see” the same effective
continuum in each of the domains, regardless of order parameter.
In the high-frequency limit, this behavior can be explained by the
fact that the highest-frequency vibrational modes will be those
between two A atoms. That is, since the effective spring constant

between all atoms is the same and x /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=ðm1m2Þ0:5

q
, the maxi-

mum frequency is related to the vibrations between groups of the
lightest atoms.

Apart from these limits, it is clear from these plots that the dis-
tribution of vibrational modes changes between these two limits
as the alloys become more ordered. In particular, the development
of vibrational peaks at x¼ 7 and 19, as well as the trough between
them, is apparent. As the order-parameter increases, the domain
approaches the limit in which a 1� 1 superlattice appears along
the [111] crystallographic direction. It has been shown that in
short-period superlattices, phonon interference leads to the forma-
tion of “optical” type phonon branches and, in turn, the formation
of phononic band gaps or stop bands [20]. This behavior manifests

Fig. 1 Selected computational domains Fig. 2 Phonon density of states curves
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itself in the DOS curves through the formation of the respective
peaks and troughs described above. However, a full band gap is
not realized, as the DOS curve represents the vibrational summary
of the entire Brillouin zone, not just that in the direction perpen-
dicular to the superlattice. It is also important to note that substan-
tial long-range ordering must be achieved to see significant
changes in the DOS curves, suggesting the same may be true in
terms of changes in j as well.

2.3 Thermal Conductivity Predictions. Thermal conductiv-
ity predictions for the eight order parameters considered are
shown as functions of temperature in Fig. 3. Each individual point
represents the average value calculated from five independent
simulations, and error bars represent the standard deviation of
these values, i.e., repeatability. The dependence of thermal con-
ductivity on temperature in the limits of complete order and disor-
der is indicative of the specific phonon scattering mechanisms that
dominate thermal conductivity in these domains. In the limit of
absolute order (g¼ 1), thermal conductivity is inversely propor-
tional to temperature, suggesting that the dominant phonon scat-
tering mechanism is the Umklapp three-phonon scattering event
[29]. In the limit of complete disorder (g¼ 0), thermal conductiv-
ity is only very weakly a function of temperature and is ultimately
limited due to scattering of phonons by mass fluctuations, i.e., im-
purity scattering [30].

It is also interesting that the thermal conductivities of all domains
begin to converge at elevated temperatures. In reality, the absolute
convergence point is not directly observed as the crystals melt
before this temperature is achieved (Tmelt� 0.5 [23]). This conver-
gence phenomenon can be explained in the following way. Thermal
conductivity can be expressed as j ¼ 1=3cvv2s, where cv is the vol-
umetric heat capacity, v is the phonon group velocity, and s is the
total scattering time. Heat capacity of all domains will be the same
(cv¼ 3NkBq, where q is molar density) regardless of the degree of
ordering, suggesting differences in j are the result of differences in
the v2s product. At high temperatures, the rate of Umklapp scatter-
ing (sU ! T�1) in the ordered alloys “catches up” to the rate of im-
purity scattering in the random alloys, leading to the observed
convergence of j.

Lastly, it is clear that at low to moderate temperatures
(0> T> 0.25, or up to� 0.5 Tmelt) j is very strongly dependent on
g. In addition, it appears the strongest sensitivity to g is in the re-
gime where g is approaches unity. For example, at T¼ 0.133, j
decreases by 48% when g goes from 1 to 0.9, whereas it only
decreases 31% when g goes from 0.9 to 0.75. This behavior is con-
sistent with that observed in dilute Si1�xGex alloys, where the effect
of the inclusion of more Ge “impurities” on j becomes less pro-
nounced with increasing Ge concentration [31]. The concentration
of impurities, in this case, is analogous to the number of wrong
atoms in the crystal, W, described above in the context of the order-

ing parameter. This nonmonotonic behavior is consistent with the
observed trends in the DOS curves discussed above.

In order to ensure the above results were not affected by the lim-
ited size of the computational domain, a second computational do-
main at g¼ 1 was created 50% larger than that reported above.
Thermal conductivity predictions of this larger domain were within
the standard deviation of the predicted values of the smaller do-
main, suggesting the eight domains described above were large
enough to capture the largest bulk phonon mean-free-paths that
contribute to j.

3 Conclusions

The role of atomic order on thermal conductivity of binary
alloys has been examined via nonequilibrium molecular dynam-
ics simulations. It has been shown that the thermal conductivity
of a binary alloy of fixed composition can be tuned across an
order of magnitude at 10% of the melt temperature and by a fac-
tor of three at 40% of the melt temperature so long as relatively
high order parameters can be achieved (>75%). Additionally, the
thermal conductivity of all alloys converges at high temperatures
regardless of the order parameter. This behavior is attributed to
the convergence of the respective v2s product (group velocity
squared times phonon scattering time) in the ordered and disor-
dered states. Again, since the observed effect is largest at low
temperatures, atomic ordering could serve as a viable means of
tuning the thermal conductivity of semiconductor alloys in low
temperature applications.
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