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Abstract

Infinitesimal calculus is heavily used in decision making analysis. This
paper demonstrates that the application of quantum calculus in analysing
preferences choice directly introduces background risk and its effects on
risk-aversion, subjective probabilities and moment preferences. Quantum
calculus provides another approach to the mathematical treatment of de-
cision making, namely analysis of utility preferences.
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Introduction

Infinitesimal calculus is heavily used in the mathematical treatment of de-
cision making in economics and finance. In the analysis of utility preferences,
infinitesimal differentiation underlies the assumption that the marginal utility
associated with a given outcome is precise. In other words, no uncertainty (or
ambiguity) is associated with it. However, the literature indicates that to every
outcome there is some degree of ambiguity that is associated with it. Hence, in
addition to risk aversion there is also an ambiguity (or uncertainty) aversion,
because ex-ante probabilities are unknown (Gilboa & Schmeidler, 1989)*.

Alternatively, this imprecision has been attributed to the presence of unde-
sirable lotteries that constitute background risk (see: Samuelson (1963); Pratt
and Zeckhauser (1987); Kimball (1993); Gollier and Pratt (1996)). In the pres-
ence of such risk, an investment is a combination of two lotteries: one that is
fair (can be hedged completely) and another that is unfair (cannot be hedged
completely). It is natural to link the latter with ambiguity, because the task
of hedging away the risks associated with an investment becomes extremely
challenging when the probabilities are ex-ante unknown.

The analysis of background risk and the ambiguity that relates to it is widely
discussed in the academic literature. This paper provides a new approach to
analyse background risk by applying quantum calculus (henceforth, g-calculus),
which directly incorporates the notion of ambiguity in the analysis of utility
preferences. At first, an analogy between the concept of background risk (Gol-
lier, 2004) and (quantum) g-derivatives is made. The application of the latter
introduces a quantum parameter that measures the degree of imprecision in
assigning a utility to a given outcome due to background risk.

Incorporating g-calculus in the analysis of choice preference affects at first
the subjective probability that is required by an agent to accept a given lottery.
Basically, the latter turns out to be distorted (i.e.: does not sum to one) when
the utility assignment is imprecise. This phenomenon is well known in physics
and has been attributed to non-extensive systems. In these systems, composing
elements bear long-range interactions and long-term memory (Borland, 2005).
Decision theory has recognised that distorted probabilities are possible when
there is ambiguity (uncertainty) associated with them. Izhakian (2012) discusses
two kind of distorted probabilities, one that sum to a number higher then one
and another that sums to a number lesser then one. The first kind corresponds
to “ambiguity loving ” and the second to an “ambiguity aversion” behaviour.
Application of g-calculus in the simple case of only two possible outcomes leads
naturally to a subjective probability whose sum is greater then one (with a
different interpretation than in Itzhakian (2012)). In this paper, deformation
is attributed to the imprecision caused by background risk. Nevertheless, the
distorted probabilities are power normalised in a similar manner as in Tsallis
(1988) and Wang (2002).

1Since probability functions provide a description of utility preferences (see: Berhold
(1973); Abbas (2006)) it is possible to relate ambiguity aversion to the imprecise measure
of marginal utility.



At last, moment preferences is analysed. Brockett and Kahane (1992) demon-
strate that given a different structure of probabilities, risk is insufficient in de-
termining preferences between two distinct lotteries. They also demonstrate
that the three first statistical moments (mean, variance and skewness) are also
not sufficient in summarising agents preferences. Their work is complemented
using the g-calculus framework. As with subjective probabilities, the structure
of the probabilities are altered when ambiguity is explicitly introduced.

The use of g-calculus framework is motivated by an analogy drawn from the
physical relation of g-calculus and background risk in decision theory. In physics,
g-calculus is related to Heisenberg (1927) uncertainty principal (Swamy, 2003).
In summary, it states that a pair of physical properties of an element cannot be
simultaneously known at the same time. In case of background risk (and the
ambiguity related to it) we have a similar situation, because it is not tradable
and hard to quantify. Therefore, it is possible to assume that the notion of
“background risk” is closely associated to the incompleteness of the set of state
preferences and therefore to probabilities being ex-ante unknown.

This paper is divided into four sections. First, we briefly present elements
of g-calculus in the analysis of utility functions. The second section derives
the subjective density by applying the g¢-Taylor expansion to a given utility
function. We also examine, using a simple model the possible relation between
state preference incompleteness and background (unfair) risk. The third section
describes the effects of background risk on moment preferences. At last, we
conclude.

1 Background risk and g-calculus
Background risk is stated in Gollier (2004) by the utility inequality:

u() > u(z + h) (1)

Where: u(-) is a utility function, x is some identified outcome and h (h < 0) is
the expected value of an unfair background risk. % is non-tradable and hard to
quantify. In its presence, the task of utility assignment to a set preferences be-
comes imprecise?. To circumvent this difficulty, Kihlstrom et al. (1981); Gollier
and Pratt (1996) and Gollier (2004) propose to change the measure of prefer-
ences:

v(xz) =u(z+ h) suchthat v"(x) = u"(x + h) (2)

The effect of background risk in equation (2) is similar to the effect of a change
of a preferences measure, i.e. change of measure from u(-) to v(-). However,
Gollier (2004) and others have shown that not all characteristics of u(-) are
transferred into v(-) when the change of measure takes place. Alternatively,
without a change of the utility measure, we have from equation (1):

u(x +h) —u(xz) <0 (3)

2see also: Schaden (2002); Accardi and Boukas (2007); Melnyk and Tuluzov (2008)



Which implies that a background risk (h) (representing a loss of financial
wealth, for example) negatively impacts agents utility. Dividing equation (3)
by h, yields the quantum derivative operator. Also known as the h-derivative
that converges to the infinitesimal derivative as h — O.

Dy fu(e)] = W) (1)

Equation (4) is interpreted as a quantum version of the marginal utility or the
g or h-marginal utility®. For example, assuming an exponential utility function
u(x) =1 —e 7" the h-marginal utility according to equation (4) is:

1+4+e
h (5)
Do [u(x)] = ve 7®

Dy, [u(x)] =e

The application of the h-derivative does not affect the sign of n’th deriva-
tive. It indicates a decrease of agent welfare per unit of background risk (h).
Therefore providing an interpretation of marginal utility when the loss (in ab-
solute value) is incurred by a latent (or background) risk associated with an
unfair lottery. In other words, the interpretation of the g-marginal utility is
bi-dimensional. A first dimension treats the effect of a change in x on agents
utility and the other treats the effect of background risk on an agent ability to
precisely assign a utility to a given preference. Further, if the second quantum
derivative decreases, it means that the effect of background risk on agents’ pre-
cision in utility assignment is reduced as wealth increases. For example, the
second derivative of u(z) =1 — e~ 7" is:

e e )

In g¢-calculus the h-derivative is equivalent to Jacksons g-derivative such that
q = e" (h <0) (Kac and Cheung, 2002). The Jackson g-derivative is presented
in a heuristic manner. Given ¢ and h, equation (3) is re-written such that:

u(gr) —u(z) <0, q €0,1] (7)

Where ¢ is as a fraction defining the residual terminal wealth = when back-
ground risk is a accounted for (being latent, however). Dividing the above by
z(g—1) yields the g-derivative that is equivalent to the h-derivative in equation
(4). Specifically:

D, fufa)] = =) 3

3Henceforth we shall use the term g-adjective to describe a quantum version a quantity or
operator.




The interpretation of Dy is similar to that of the D) operator. Applying it
to some utility functions (such as the power or logarithmic utility functions)
makes the analysis simple. For example, considering a power utility function
u(zx) = 9”11_—::, the application of the g-derivative yields:

D, u(w)] = =2

- 0
qg—1

Dy [u(z)] = =77

[1—=1]g=

The term in brackets with index ¢, [1 — v]q, is the g-analog of an integer or
g-integer. Figure 1 plots equation (9) given v = 3 and for different values of g.
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Figure 1: g-marginal utility of u(z) =

Equation (9) reveals that as ¢ decreases, g-marginal utility increases for all
levels of x. Moreover, it becomes more sensitive to changes in wealth, declining
as wealth increases. Figure 1 raises a question as to why the ¢-marginal utility
shifts upward when ¢ decreases (in other words, as background risk becomes
more significant). A possible explanation is that, given some level of ¢, an
agent attaches more value to an increase in wealth. Furthermore, recalling the
interpretation of the g-marginal utility, it also represents the decrease of agents
welfare (in absolute value) due to background risk. Thus, the shifts in the
g-marginal utility in figure 1 are representing this decrease in agents welfare.

In light of the above, the second g-derivative and the g-absolute risk aver-
sion (using the Arrow-Pratt index of risk aversion) are related to each other.
Applying again the g-derivative on a given utility function w(-), yields:

1%qu(qzac) — (% + ﬁ) u(qr) + Fu(x)

qr2(q—1) (10)

D [u(z)] =



The second ¢-derivative of u(-) in equation (10) yields a nonlinear relationship
with respect to ¢. Dividing the above equation with D, [u(z)] yields a g-absolute
risk aversion index (denoted by A%(x)):

po(oy - Do) _ T = (3 + gt ) + )
' a Dq [u(x)] B qx(u(m) — u(qx))

(1)

For a power utility function we note that A%(x) explicitly depends on g.
Applying the second derivative on u(x) = “.il;:

results for D((ZQ) [u(z)] and Al(z):

yields, respectively, the following

DP [u(z)] = @Dq [u(z)] = mxﬂfl

L7 17 (12)
) 1y (x —
Arle) = _%q [L(E;)i] - Z]q’ lim A7(x) =

200

150

100

50

LI L R B B R

Y
1—v

Figure 2: g-absolute risk aversion of u(x) = at different levels of ¢

As a result, application of the g-derivative does not affect the decreasing
absolute risk aversion (DARA) property of the power utility function. Figure 2
plots equation (12) for several values of ¢ and v = 3.

Figure 2 indicates that, for a power utility function, the g-absolute risk aver-
sion shifts upward as ¢ decreases (in other words, as background risk becomes
more significant). It confirms the results indicated in previous research (Kim-
ball, 1993), where given background risk, aversion to risk increases. Further-
more, similar to the g-marginal utility, g-absolute risk aversion becomes more



sensitive as ¢ decreases. This observation is concurrent with our interpretation
of the g-marginal utility.

An additional expansion provides a g-utility equivalence to prudence, defined
as the negative ratio of the third to the second derivative of a utility function.
For a DARA utility, prudence decreases with wealth. Kimball (1993) shows
that for these types of utility functions, a decrease in absolute prudence (due
to increase in wealth) is stronger than decreasing absolute risk aversion. In
g-calculus this relationship for an isoelastic utility function is however:

pr— DV u@) _ =0+ W, a3
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Figure 3: g-absolute risk prudence of u(x) =

Figure 3 (above) plots the g-absolute prudence for several values of ¢g. Note
that the same properties that were observed in the case of g-absolute risk aver-
sion are observed in the g-absolute prudence. Furthermore, equation (13) indi-
cates that a decreasing absolute prudence remains stronger than a decreasing
absolute risk aversion as stipulated in Kimball (1993).

We have thus demonstrated how background risk is explicitly introduced when
applying g-calculus analysis. It shows that as ¢ — 0 (or, h — —00), the quantum
parameters embodies background risk with risk-aversion increasing with change
in outcomes. A similar conclusion is drawn for absolute prudence. The next
section extends further the analysis to the subjective probability measure.



2 Incomplete subjective probability

2.1 The subjective probability

Incomplete (or distorted) probability density functions have gained much at-
tention in physics (Wang, 2002; Yamano, 2004), information theory (Darooneh
et al., 2010) and finance (Itzhakian, 2012). Performing a ¢-Taylor series approx-
imation to a utility function highlights the deforming effects that background
risk may have on the required subjective probability. In Kac and Cheung (2002)
the g-Taylor approximation (or the g-analog of the Taylor approximation) is:
> (x — k)¢
u(z) =Y DY [u(k)] W,q (14)
i=0

Where the functions, (x — &)} and [i],!, are (respectively) the g-polynomial

and ¢-factorial functions, such that:

(x—k),=(x—k)(z—qk)...(x — ¢ k), i>1 (15)

it = B0 =T &) (16)

=0

To illustrate how background risk distorts the subjective probability, consider
a utility function and a possible wealth gain or loss y. The expected utility, in
this case, is:

Bu(z) = pu(z +y) + (1 — p)u(z — y) (17)

Applying the ¢-Taylor approximation on u(z + y) and u(z — y) up to the
second order, yields:

2

u(z +y) = u(z) + yDylu(z)] + Qﬁq!Df) [u(z)] (18)
2

u(@ —y) = u(z) — yDylu(z)] + Qﬁq!Df) [u(z)] (19)

Inserting in the above the expectations given in equation (17) yields the sub-
jective probability, p:

gy DY [u(x)]
22]y! Dy[u(z)]

(20)

N =

It is trivial to conjecture that the more risk averse an agent is, the higher will
be his required subjective probability to accept this lottery. This is illustrated
with two examples, one with the isoeslastic (generalised logarithmic) utility
function and the other with the negative exponential utility.

Example 1 Isoelastic (Generalized Logarithmic) Utility Function



Consider the isoelastic utility function u(z) = ”il:;/ (y<1l)andy=¢z (¢ €

[0,1]), where ¢ is fraction of wealth at stake. In this case, equation (20) becomes:

_ 1 . [—q
P=5 " 204 g™ (1)

. 1 v
i p=5+ 496

Figure 4 plots the probability surface that equation (21) yields, as a function
of the background risk (¢) and the risk aversion parameter (y ), for a predeter-
mined level of percentage of wealth at stake (¢). It demonstrates that for any
given level of risk aversion, the subjective probability is concave with respect
to background risk, ¢. This concavity is further pronounced with an increasing
risk aversion. Thus, the more risk averse an agent is, the more sensitive will he
be to background risk.

Figure 4: The probability surface of p = % — %gﬁq ]

We further comment that for up to some threshold level of ¢ (the inflection
point where subjective probability begins to decrease with ¢), the subjective
probability increases as the effects of background risk diminishes (or ¢ increases).
This specific phenomenon is more pronounced as risk aversion is decreasing.
Thus, for extremely low levels of risk-aversion, the probability increases with ¢
(in the case of an isoelastic utility). This suggests a possible substitution effect



between risk-aversion and background risk. However, such a phenomenon is less
important than risk aversion.

Example 2 The Negative FExponential Function

The h-derivative, defined in the first section, and the identity A = Ingq are
being applied for the derivation of the subjective probability. For an exponential
utility function, the absolute risk aversion index (A?) is:

-1 -1
/(R S [ SN (22)

" Ing ’ b} Ing

Then the subjective probability in equation (19) becomes:

_l, gt
P=9 7o, g
dp 9%p
£ <0, =<0 gel0,1 23)
9 o q €[0,1] (
. 1 =z
limp=g+30r

Thus, the subjective probability is also convex with respect to q. As background
risk becomes less significant, an agents subjectively require less probability in
order to enter in a lottery.

2.2 Deformed (Distorted) Subjective Probability

Both examples indicate that some combinations of initial wealth, background
risk (¢) and degree of risk aversion (), yield a subjective probability that is
greater than one. This makes the set of identified probabilities non-additive.
This is reasonable where there is ambiguity concerning the set of possible out-
comes and their associated probabilities.

For instance, in example 1 v was restricted to be less than one. However, if
~ = 3 and the fraction of wealth at stake is ¢ = 20%, then it is sufficient for ¢ <
0.48 for the subjective probability to be greater than one. While for v = 4 and
a same fraction of wealth at stake, it is sufficient for ¢ < 0.65. In contrast, with
ordinary calculus (given the same fractional initial wealth at stake) v has to
be higher than 10. This illustrates that under some conditions, the subjective
probability might be deformed (i.e.: p > 1 in a binomial settings or summing to
a quantity higher than one) even if risk-aversion is relatively low or at relatively
normal levels. Figure 5 plots the subjective probability surface for v € [1, 2] and
different levels of ¢. It indicates that given the circumstances, an agent might
require a subjective probability higher than one.

The problem of deformed probabilities is tightly linked to the problem infor-
mation incompleteness. Explicitly, this incompleteness is present when there
is an unavoidable and uninsurable background risk. This conforms LeRoy and
Singell (1987) interpretation of Knight (1921) uncertainty, relating the latter
with the presence of outcomes bearing adverse selection or moral hazard.

10



Figure 5: The probability surface of p = 1 — 2[(_11];) oq (y€e1,2])

To circumvent this problem, while including the possibility of a deformed dis-
tribution, we apply the same notion of incomplete statistics as in Wang (2002)
where probabilities are “power” normalised so that they sum to one. This is
consistent with theories generalising the expected utility theory (for example:
Karmarkar (1979)). With a power transformation of these probabilities, equa-
tion (17) has the following form:

Eu(x) = pfu(z + y) + pu(z — y) (24)

Where the tilde signifies that the expectation above is based on the deformed
subjective probabilities. Furthermore, the probabilities p; and po are such that:

p1+p2 =1 (25)

Thus, equation (24) becomes:

Eu(z) = plu(z 4 y) + (Q — p1)bu(z — y) (26)

Writing m = p§ =B and 1y = (2 —p)* =1— B, (the “pseudo-real effective

probabilities”) and using equation (18) and equation (26), yields the following

11



equation:

2 1y 2z
m (Dq [u(z)] + qQSxDl][Q%(Z!()]) — o (Dq [u(z)] — qd)xW) (27)

With 7 + mo = 1, the above equation yields an identified system of two
equations and two unknowns. The resulting pseudo probabilities are then:

2 € <1) (28)
s D
™ =(Q-p)° =+ Dhe =1-m

The interpretation for the subjective pseudo probability in equation (28) re-
mains intact with one major difference, it does not assume completeness as long
as Q > 1. We use the fact that m, = p¢ = &, where (2 is seen as a partition or
normalising function, to deduce from equation (28) that:

1 qér DY [u(x)])g 9)

AUp,&) =p'* = <2 - 2[2],! D, [u(z)]

The above indicates that the partition function, Q(p, &), is inversely related
to (£) . Therefore, this function may be used to infer an agents belief regarding
the overall incompleteness of his probabilities (or perceived outcomes).

To demonstrate how background risk affects (given risk aversion, Df) [u] <0)
the function in equation (29), we recall the results in the preceding section.
We observe, in general, that the subjective probability increases as background
risk becomes more significant (¢ decreases). Equation (29) must, therefore, be
increasing as background risk becomes more significant (q decreases). This is
D [u]
Dglu]

also true for the ¢ -absolute risk aversion [ — ), which positively affect

Q(p,&). However, as indicated in figure 2, the g-absolute risk aversion increases
as g decreases. We deduce that background risk is possibly an important cause
for deformed subjective distributions.

3 Moment Preferences

Brockett and Kahane (1992) determine that the three first statistical moments
of aggregate wealth returns are not sufficient to describe an agent preferences.
This makes sense considering the possibility of background risk. Determining
statistical preferences to characterise agents is important, as these moments are
used to build an empirical framework for estimating pricing kernel (CAPM,
ICAPM, Merton (1973) CCAPM and other more advanced models)*. As in the
previous section, the g-Taylor expansion is considered up to the fourth moment
of aggregate wealth returns.

4Campbell et al. (1997) provide a wide discussion on parametric and non-parametric meth-
ods to estimate the pricing kernel.
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So far, we argued that the use of infinitesimal calculus in the analysis of agents
preferences is applicable when no background risk is present. In this case:

1

w(zr) = u(Zr) + (o0 — 2p) W (Tr) + 5 (zr — z0)* U (Z7)
= Bu(3r) = u(@r)+ %Uiu" (1) (30)

Where: x and T are aggregate and average aggregate wealth at time T and
u(+) is some utility function. For a power utility, equation (30) is reduced to:

- EV(flT_V)Ui (31)

Equation (31) indicates that an agent accounts for risk in determining the
acceptability of some lotteries or bets. This claim is refuted by Brockett and
Kahane (1992) on the premise that for two bets with similar expected value a
riskier bet may be preferable in terms of expected utility. This is because the
probabilities that are associated with the riskier bet are different in structure.
The g¢-calculus approach relates to this observation in the sense that given the
same conditions but different significance level for background risk, the prob-
ability of the two bets are different in structure (regardless of their respective
risks).

Performing a g¢-Taylor expansion around Z up to the fourth order (which
includes also skewness and kurtosis preferences) and taking its expectations®
yields:

. o Diu(@)] D; [u(z)] Dy [u(z)]
Bufe) = u@) + o=+ S g Ky
D2 [u(z)] <0 Dj[u(z)] <0 (32)

Where, S, and K, are the respective skewness and kurtosis. The above im-
plies that the more significant background risk is, the more over weight will
higher statistical moments be. Hence, given a certain level of risk aversion,
background risk causes agents to attach more weights to higher orders of sta-
tistical moments. In example 3, a negative exponential utility is cosidered.

Example 3 Moment Preferences for the negative exponential function

The n’th order h-derivative of u(z) = 1 — e~7* and their g-derivative coun-
terparts are:

Dy [1-e) = (et (A0 ) e (33)

5We note that: E [(:L" — :f)l} =FE [(x - 56)2]
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Note that the four g-derivatives above diverge when ¢ — 0 (h — o0). Using
the equation above, equation (30) becomes:

Eu(z)=1—e"

g

2

14+ =2

1—q™7

Sz

1—q™7

1—qg

(

Ingq

)2+[

3]

d

Ingq

(

Ing

{

2],!

>3+ o

q

)} (34)

For demonstration sake, we assume that z = 5, 02 = 1, S, = 0, and K, = 25.
Furthermore, let the coefficient of risk aversion () = 1. Figure 6 plots equation
(34) as a function of g of these values.
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-0.5
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=25

Figure 6: Fu(x)-Equation (34)-as a function of ¢

The expected utility in equation (34) increases with g, i.e., background risk is
less significant. As equation (32) indicates, the weights attached to the variance
and kurtosis are decreasing when ¢ is increasing. Note that the curve in figure
6 shifts upward as the risk aversion parameter () decreases.

Example 3 illustrates that that given a level of risk-aversion, background
risk causes disutility. This is indicated in the simple mathematical relationship
(previously stated) where both the variance and the kurtosis are overweighed
relative to the skewness parameter. Hence, ¢ can be regarded as a parameter
measuring the relative importance of the latter statistical measures. The ¢
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parameter (depicting significance of background risk) can also be interpreted as
agents valuation measure of statistical moments.

4 Conclusion

Integrating background risk in a g-calculus analysis framework is the principal
contribution of this work. It introduces a mathematical treatment of informa-
tion incompleteness and utility imprecision, which are well known problems in
finance. In particular, g-calculus provides a theoretical framework relating a
number of problems where background risk is prevalent. For example, relating
liquidity to (latent) background risk. Which enable to assess its price in terms
of its background risk. Naturally, other problems can be considered as well.
Hence it provides a fertile ground for future research.

The g-calculus approach to risk aversion, demonstrates that statistical mo-
ments are not sufficient to describe agents preferences under incomplete state
preferences (or imprecision of utility assignment). These states may then be
either over or under weighted relative to their true value. In some instances
the risk measured might be misleading when adding a possible background risk.
Further, background risk is proved to increase risk-aversion, making it more
sensitive to changes in wealth.

The appeal of g-calculus, has some drawbacks however. First and most obvi-
ous, is its dealing with more complex utility functions. For example: the Epstein
and Zin (1989) utility function. Hence, it is difficult to obtain meaningful results
without assuming a specific functional and parametric utility function. On the
other hand, limiting the analysis to simple functional forms may also be mis-
leading. For example: applying g-calculus to a simple power utility function,
where an asset-pricing kernel is derived, is perhaps misleading in presuming
that the effects of background risk may disappear in CCAPM pricing kernel.
Nevertheless, it can be circumvented by means of the ¢g-Taylor expansion on the
asset-pricing kernel.

A number of research venues are opened using the g-calculus approach. A
first possibility consists in verifying wether and how does the parameter ¢ re-
lates to “non-extensive” systems that are characterised by long-term memory
and long-range correlations that are not accounted for in standard models. Sec-
ond, it may be interesting to consider how it can be incorporated in behavioural
finance. Similarly, the ¢g-parameter may found to be associated to some impor-
tant concepts in finance such as asset prices, liquidity, price speculations as well
as factors contributing or resulting from uncertainty. Finally, ¢g-calculus may be
used to better appreciate Knightian uncertainty and its defining parameters in
asset-pricing models.
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