

Hybrid Composition of Web Services and Grid Services

R. Anane, K-M Chao
DSM Research Group

School of MIS, Coventry University, UK
{ r.anane, k.chao } @coventry.ac.uk

Y. Li1

E-Business Research Center,
Fudan University, China

liys@fudan.edu.cn

1 Corresponding Author

Abstract

Web service composition is now seen as a focal point of
research, especially as mechanisms for the coordination
of distributed tasks are acquiring more importance.
Models such as BPEL4WS can cater for local and
centralised coordination. There is, however, a need to
reconcile different technologies on a wider scale. This
requires the development of efficient and flexible
frameworks in order to ensure the optimal use and
coordination of distributed applications. The work
presented in this paper is concerned with the development
of a compositional framework, which brings together
Grid services, Web services and Semantic Web
technology within a BPEL4WS platform. It is aimed at
enhancing BPEL4WS by allowing for the hybrid
composition of Web services and Grid services, and by
incorporating dynamic binding through agent mediation.
The efficient management of workflows afforded by
BPEL4WS is combined with the versatility of agent
technology. An agent-based system, called SOA, was
developed to support the framework.

1. Introduction
The integration of distributed applications and their

coordination can be achieved either locally by means of
process management (mainly XML-based) technologies,
or globally by means of agents and Semantic Web
technologies. In XML-based approaches, this has seen the
development of compositional languages for workflow
management, such as BPEL4WS. The underlying models
are relatively efficient and lead to predictable behaviour,
with interactions taking place in a relatively stable
environment. They implement a static binding policy, and
operate at the syntactic level. BPEL4WS operates on Web
services only.

The emergence of grid computing is part of wider
initiative aimed at introducing frameworks that can
facilitate seamless interoperation between distributed
applications. Grid computing frameworks, such as the
Globus Toolkit, have so far been orthogonal to Web-
based technologies, which resulted from two main
approaches to distributed systems, XML and Semantic
Web. The advent of Web services and their potential for

increased interoperation has seen a convergence between
Grid computing and Web-based technologies. The
introduction of the Open Grid Services Architecture
(OGSA) is a testimony to the success of Web services as
a model for distributed computation, with the Open Grid
Services Infrastructure (OGSI) as an interaction model for
Grid services.

The integration of distributed applications and their
coordination can be achieved either locally by means of
process management (mainly XML-based) technologies,
or globally by means of agents and Semantic Web
technologies. In XML-based approaches, this has seen the
development of compositional languages for workflow
management, such as BPEL4WS. The underlying models
are relatively efficient and lead to predictable behaviour,
with interactions taking place in a relatively stable
environment. They implement a static binding policy, and
operate at the syntactic level. BPEL4WS operates on Web
services only.

In addition to support for interoperation Semantic Web
technologies promote a higher level of automation than
process management technologies. Agent technology, in
particular, is called upon to play a crucial role in
enhancing the functionality of Web services. In one
approach, for example, agents were generated from Web
services by using wrappers [1]. The flexibility and
pervasiveness afforded by Semantic Web technologies
may, however, lead to complex and computationally
expensive interactions.

This paper is concerned with the presentation of a
compositional framework, which allows for the seamless
composition and workflow management of Web services
and Grid services. This requires a transformation of Grid
services into Web services, and the establishment of a
symbiotic relationship between agents and Web services,
within a BPEL4WS platform.

The rest of the paper is organised as follows. Section 2
gives an introduction to Web-based technologies and the
roles of agents. Section 3 presents the architecture of the
proposed framework. Section 4 offers a motivational case
study. Section 5 gives a brief evaluation of the
framework, and Section 6 concludes the paper.

2. Web-based technologies

This section covers the salient features of the software
technologies, which are relevant to the proposed
framework.

2.1 Web Services Composition

One fundamental characteristic of Web services is that
the selection and binding of services can be performed
dynamically, thanks to the decoupling between their
ownership and their use. The utility of Web services is
further enhanced by the introduction of mechanisms for
composing them in order to generate new Web services
and applications. The composition of Web services is
defined as a process that enables the creation of
composite services, which can be dynamically
discovered, integrated, and executed to meet user
requirements.

BPEL4WS is emerging as an industry standard for Web
service composition [2]. A new Web service can be
generated from the aggregation of other Web services,
and its interface can be described as a set of WSDL
PortTypes, in the same manner as for atomic Web
services. Closely linked to BPEL4WS is BPWS4J, an
engine that takes as input a BPEL4WS script and WSDL
definitions of the bindings for the partners, and produces
a point of entry for the BPEL4WS process, as a single
Web service. BPEL4WS and one of its engines, BPWS4J,
offer predicable behaviour and performance. BPEL4WS
has, however, some limitations, notably its centralised
workflow enactment and the fact that Web services must
be known and bound a priori [3]. The early binding of
services, defined beforehand, may lead to inefficiencies
due to the sub-optimal selection of Web services, and to
potential service discontinuity.

The main criticism levelled at XML-based technologies,
in general, such as BPEL4WS and UDDI, is that they
operate at the syntactic level, are implementation focused
and require human intervention at various stages [4].
More significantly, however, is the reliance on WSDL,
and therefore on XML and XML Schema for describing
Web services. The lack of semantics of WSDL restricts
the scope of the operations that can be performed on Web
services to publication, discovery, invocation and
monitoring. In contrast, semantic technologies such as
OWL-S can support more automation, autonomy and
meaningful interaction between services.

2.2 Semantic Web technologies

The implementation of flexible frameworks for
interoperation depends on a successful integration of Web
services and on their mediation by agent technology.
There is, however, a gap between XML-based constructs
and tools such as WSDL, and the concepts manipulated

by agents. This semantic gap can be bridged by Semantic
Web technologies [5]. For Web services description, the
development and introduction of OWL-S is a significant
factor in matching service providers and service
requestors [6]. The drive towards the introduction of
richer semantics has eased the deployments of agents.
OWL-S is an ontology, which provides richer Web
service description, in terms of objects and complex
relationships. An OWL-S ontology has three components:
1. ServiceProfile: describes what the service does, its

inputs and outputs and its preconditions and effects
(IOPE); this is equivalent to UDDI content in that it
supports the automatic discovery of services.

2. ServiceModel: describes how the service works
(control and dataflow in its use). This is similar to
BPE4WS.

3. ServiceGrounding: describes how the service is
implemented and provides a mapping from OWL-S
to WSDL. The ServiceGrounding is a point of
convergence between Web services and OWL-S.

There is a symbiotic relationship between agent
technology and semantic Web technologies, in particular
OWL-S [7]. Agents are suitable for highly dynamic
environments and operate at a conceptual level. The main
characteristics of their behaviour are autonomy,
proactiveness, reactivity and social ability. BDI agents [8]
are particularly apt at exploiting the semantically rich
environment defined by OWL-S ontologies. These agents
hold beliefs (B), have desires/goals (D) and use
Intentions/plans (I) to achieve their goals. An agent can
be generated and instantiated from an OWL-S description
by the following mapping:
• The ServiceProfile in OWL-S maps to an agent’s

beliefs (B).
• The ServiceModel is mapped to a set of intentions

associated with plans (I). Each activity in the process
is associated with a sub-plan. Preconditions and
effects from the ServiceProfile will translate into
conditions and effects for the BDI plan. The elements
in the ServiceGrounding are used to define a set of
actions within plans.

• The desire (D) is specified by additional functionality
in conjunction with the specification of the
ServiceProfile.

The ServiceProfile and the ServiceModel in OWL-S
provide the semantics, while the ServiceGrounding is
used to generate the interface signatures.

2.3 Grid Services

The OGSI specification utilises the WSDL and XML
schema definition languages from Web services to define
an extended component model [9]. The specification
seeks to address issues that occur in complex distributed
applications, such as the management of distributed long-
lived states. In order to achieve this aim, OGSI introduces

the concept of a Grid service instance. “A Grid service
instance is a (potentially transient) service that conforms
to a set of conventions (expressed as WSDL interfaces,
extensions, and behaviours) for such purposes as lifetime
management, discovery of characteristics, notification,
and so forth.” [9]. The OGSI specification inherits the
interoperability features from Web services, but includes
additional features:
• Stateful interactions: serviceData is the OGSI

approach to stateful Web services. It exposes the state
data of a service instance to service requestors for
queries, updates and change notifications.

• References: OGSI uses Grid Service Handles (GSH)
to name and manage Grid service instances. A client
wishing to communicate with a service instance must
map the GSH to a Grid Service Reference (GSR).

• Collection of service instances: OGSI allows services
to be grouped together, with defined relationships, so
that clients maintain them easily.

• Life Cycle management: This gives a client the
ability to create and destroy a service instance
according to its requirements.

The OGSI specification is an attempt at creating a
favourable environment for the management of Grid
services. There are some fundamental differences
between the coordination of Web services and Grid
services. Coordination between Web service instances is
driven by data requirements in BPEL4WS. The
correlation of Web service instances in BPEL4WS is
similar to the handling tables of database systems through
index keys. Thus, developers have to define correlation
sets from PortTypes in WSDL and use them to correlate
instances. On the other hand, OGSI uses Grid service
instance references to coordinate Grid service instances.
Each Grid service instance has a unique reference (similar
to an object reference). Since the Globus Toolkit 3 (GT3)
is mainly implemented through the JAXRPC specification
(a Web Service specification based on Java RMI), the
management of a collection of instances is similar to
handling multiple instances in Java. As a result, GT3
cannot export its Grid service instance references to
BPEL4WS, and BPEL4WS cannot hold references to the
Grid service instances. BPEL4WS does not support any
construct that allows Web service instances to be
destroyed. Instead, it supports the termination of the
whole process.

3. Proposed framework

The development of a compositional framework raises
two main issues related to the execution of distributed
applications. Concern over risks of failure, especially for
processes of long duration can be addressed by a stateful
policy and by a decentralised implementation. Efficiency
and optimal use of resources promote the dynamic search
for and discovery of appropriate services.

3.1 Architecture

We propose a compositional framework for supporting

hybrid composition of Web services and Grid services.
This requires the provision of mechanisms for
overcoming some of the limitations of BPEL4WS. The
first limitation stems from its incompatibility with Grid
services. The second limitation, as highlighted above,
concerns the requirement for Web services to be known
and defined (bound) before they are incorporated as
partners. The third limitation relates to the level of
semantics and the lack of autonomy in Web services,
characteristics that restrict their scope for participation in
distributed applications and agent technology.
Circumventing these limitations and enhancing
BPEL4WS brings to light a number of issues [10]. The
first issue is concerned with the generation of Web
services and the description of potential partners. The
second relates to the means for storing and using the
descriptions for discovering and selecting partners. And
the third issue arises from the need to incorporate
discovered partners into the BPWS4J engine. These
issues are dealt with in the proposed framework, by
integrating virtual Web services, OWL-S descriptions and
agent technology.

The framework defines two levels, one concerned with
the specification of compositions, and the other with the
enactment of the process. The scope of the first level is
determined in the composition process by the introduction
of virtual Web services (VWS) for representing potential
partners, in conjunction with ordinary, concrete Web
services. Potential partners can be either Grid services or
Web services, dynamically bound and mediated by
agents. Virtual Web services offer a flexible means for
decoupling the composition process from the binding of
Web services. A virtual Web service specifies its input
and output requirements and associates itself with a
nominal PortType. It is defined and used in the
composition in the same manner as an ordinary Web
service, with the main focus on input/output. Composition
within this framework involves incorporating concrete
Web services when known and statically bound and
Virtual Web services when a Grid service is required or
when a Web service is unknown and dynamically bound.
The second level is concerned with the binding of the
VWS, and therefore with the enactment of the BPEL4WS
process. This matter points therefore to the need for a
mechanism that implements ‘late/dynamic’ binding. This
form of binding can be performed by the VWS itself as a
proxy for a Grid service or by an agent, in the case of a
Web service.

In addition to the decoupling of Web service
instantiation from composition, agent mediation promotes
the dynamic search for and discovery of Web services.
This feature is, however, predicated on the availability of

high-level semantics that can be provided by OWL-S. An
agent can be generated in two steps. A VWS, mainly
identified by its input/output (I/O), is first augmented with
richer semantics provided by OWL-S; the VWS is now
endowed with IOPE properties. The link between VWS, a
Web service, and OWL-S is through WSDL. A BDI agent
is subsequently generated from the OWL-S description,
as indicated in Section 2.2. In the process, the agent
obtains the semantic description and combines it with its
reasoning mechanism, in order to acquire the ability to
filter Web services, through matchmaking. Once the agent
is created from the OWL-S structure it acts as a proxy for
the corresponding Web service, and the OWL-S
description is kept for documentation and reasoning
purposes. The resulting agent is similar to a broker, since
it takes requests from a VWS, performs the necessary
search/discovery, and then invokes the corresponding
Web service represented by the VWS.

3.2 Implementation Issues

The focus of the implementation was on the
determination of the structure of the VWS in its
interaction with the Grid services and agents. In order to
facilitate Grid service integration into a BPEL4WS
composition, Grid services are wrapped as Virtual Web
services, as shown in Figure 1. All the interfaces defined
for the Grid services are re-defined in JavaBeans as an
XML complex type (in WSDL) with a public Grid service
instance attribute. The WSDL code associated with
Virtual Web service, in this case, includes a number of
name spaces and Partnerlinks. The role of the Virtual
Web service in WSDL is generated through the
combination of a meaningful name and a random value,
so that BPEL4WS is aware of its existence, and redefines
it as needed in the workflow. An additional operator is
defined and implemented in the Virtual Web service in
order to create new Grid service instances [11].

Figure 1. VWS and Grid Service

In agent mediation, a VWS includes operators that

trigger events in the agent when it receives the request
from the BPWS4J engine, or provides an input to

BPWS4J when the agent relays the required input from
other agents or Web services. The VWS contains no
actual operations, only interfaces to agents.

In order to facilitate the process of creating service-
oriented agents, a template agent was designed with two
elementary functions: one for listening to events triggered
by a VWS and the other one for passing the response
from other agents to the VWS. The required input and
output must be specified in the agent. The template agent
also includes a number of generic coordination protocols
such as contract net, English auction, reverse auction etc.
A matchmaking mechanism is required for discovering
appropriate Web services, according to the syntactic
signatures and semantic requirements of the composition
process. For this purpose, the auction coordination
protocol is used to coordinate the selection process.

Figure 2 Service-Oriented Agent Studio

We have implemented a system in order to support the

architectural framework presented above. The system,
called SOA (Service-Oriented Agent) 1.2 studio [12]
includes a template for creating VWS and a template for
creating agents (see Figure 2). An interface for the system
was designed so that users can describe the semantics of
Web services and can incorporate OWL-S descriptions.
Support for Web services is provided by JAXRPC 1.3 and
Tomcat, whereas the IBM BPWS4J 2.1 engine and the
BPEL4WS Editor Eclipse plug-in are used for the
creation and interpretation of workflows. Agent
technology relies on JADE agent for reasoning and
communication, and on OWL JessKB [13] for the
reasoning capability over OWL-S profiles in the agent.
Once the required information is specified, the studio
allows the generation and compilation of code to take
place in the same environment. The studio offers a
seamless combination of design environment and run-
time environment.

4. A Case Study for SOA

This section presents a case study, which illustrates the
capability of the SOA system. The scenario concerns a
manufacturer who wishes to purchase parts for a series of
products, and invites a number of suppliers to take part in
a bidding process. The manufacturer needs to evaluate the
capabilities of the suppliers and their quality of service.
The selection of a supplier involves complex negotiations
over issues such as price, quantities, and delivery time;
the determination of the overall cost follows a number of
steps, to which each department in the company is
required to contribute. Once the cost is established, the
manufacturer determines whether a loan from a bank is
required. The banks, in turn, need to assess the
manufacturer’s credit and reputation in order to approve
the loan. These various processes lead to the selection by
the manufacturer of one offer from one bank. These
processes can be automated by using Web services and
agent technologies, within the SOA framework.

Figure 3. OWL-S Grounding Profile

In the scenario, there are two types of interaction

between companies and departments. Each participating
company, such as supplier, manufacturer or bank,
delegates to an agent the task of supervising the
coordination process. Agents use coordination protocols
to communicate and discover/select services and reach an
agreement to carry out a plan. As the relationship between
departments within a company is static, each company
has a relatively fixed workflow to model the interactions
among its departments. There is, however, a certain
degree of non-determinism in the behaviour of the
process, but it can be prescribed. BPEL4WS is used to
model their activities and ensure consistency. The
manufacturer agent needs to communicate with the
supplier agent and the bank agent. The manufacturer
agent adopts the auction coordination protocol to select
one of the suppliers to carry out the negotiation and the

transactions based on their agreement. Figures 2 shows a
form provided by SOA which enables users to enter the
ServiceProfile information in OWL-S. On completing the
ServiceGrounding profile, as shown in Figure 3, the user
can store it as a project, generate the essential Java code,
compile it, and then run the resulting program. SOA
creates the agents and deploys them automatically, as
shown in Figure 4. Negotiation and the interactions
between the agents can take place.

Figure 4. Participating agents

5. Evaluation and Related Work

In this section an attempt is made at putting the

proposed framework in context, by considering two other
approaches to automation. They are characterised by the
role and the level of involvement of semantic
technologies in the coordination process. In [3] the
rationale is to move away from the rigidity of workflow
enactment of BPEL4WS/BPWS4J to the decentralised
and flexible mode of coordination of multi-agent systems.
The work is presented as one approach among many in
Web services composition and enactment, and aims at
producing a multi-agent enactment from BPEL4WS
composition. This approach has the merit that it offers
greater flexibility and can lead to the optimised use of
resources. Its main drawback, however, is the added
complexity entailed by a transition from one domain of
execution to another, and the need to ensure that
functional equivalence is achieved and maintained
between two different specifications. The fundamental
issue is whether the benefits afforded by agent
technology, such as flexibility, outweigh the drawbacks of
complexity and the increase in computational resources.

Closer to the work presented in this paper is the model
described by [10]. BPEL4WS is enhanced by Semantic
Web technologies as a means of overcoming the
limitations of BPWS4J, and in particular the requirement
for a priori service definition. BPEL4WS is extended
with a Semantic Discovery Service (SDS), which acts as a
dynamic proxy between BPWS4J and the potential
partners to be located and selected. All requests to

previously selected partners are directed to the SDS,
which implements a late binding policy. The SDS is
agnostic as to the content of the requests it deals with, and
is stateless.

Although our work is less ambitious in scope, the model
we propose offers more flexibility and customisation
because each Virtual Web service is associated with an
agent. The decentralisation of the discovery process
makes the system more reliable and more scalable and
avoids the single point of failure of the SDS. Furthermore,
unlike the SDS an agent can be stateful, learn and be
aware of the content of requests it deals with. These
features may, however, be costly in computational and in
storage terms. The model we propose has also the added
advantage that it supports hybrid composition of Web
services and Grid services. It may require a heavier
human presence in the loop than the SDS-based model,
since semantic enrichment is a crucial step in the creation
of agents. Both models maintain the original composition,
but the SDS model deals only with Web services.

The approach promoted by the framework allows for an
incremental development of composition. It exploits the
fact that composition in BPEL4WS is seen in terms of
processes that interact with partners that are external to
the composition itself and identified only in terms of
abstract interfaces. This separates the different concerns
through a two-stage refinement process. This approach
strikes a balance between the two extremes, one of total
enactment by agents, and the other of conformance to the
original BPEL4WS static model. The resulting framework
offers an enhanced means of combining the predictability
of BPEL4WS enactment with the versatility of Semantic
Web technologies. From the design point of view the
introduction of Virtual Web services, as a decoupling
factor, offers the possibility for hybrid composition of
Web services and Grid services.

Since the proposed system is to provide an integrated
environment for developing agent-based Web services,
usability, as a criterion for evaluation, acquires special
significance. Users can take advantage of the templates
that the system provides for the creation of agents and
their coordination. They can easily enhance Web services
with semantics through a user friendly GUI. The system
combines input from users and templates and generates
the necessary code. This can reduce design time and
ensure consistency.

6. Conclusion

The architectural framework presented above
overcomes BPEL4WS limitations and promotes wider
coordination by combining Virtual Web services and
agent technology. Although this approach may be
computationally expensive, it facilitates the composition
of hybrid services and capitalises on the efficiency
afforded by the BPEL4WS platform and the capabilities

of Semantic Web and agent technologies. This is achieved
by wrapping Grid services, and by enhancing Web
services through a symbiotic relationship with agent
technology. The system is operational, and work is
currently being carried out on further integration of the
different technologies, and on enhancing agent mediation.

References
[1]. Knoblock C., Minton S., Ambie J.L., Muslea M., Oh J. and

Frank M, Mixed-initiative, multi-source information
assistants, Proceedings of the World Wide Web
Conference, ACM press, New York, NY, 2001, 697-707.

[2]. Khalaf R., Mukhi N. and Weerawarana S., Service-oriented
Composition in BPEL4WS,
http://www2003.org/cdrom/papers/alternate/P768/choreo_
html/p768-khalaf.htm, 2003.

[3]. Vidal J.M., Buhler P. and Stahl C., Multiagent Systems
with Workflows, IEEE Internet Computing,
January/February 2004, 76-82.

[4]. Richards D., van Spunter S., Brazier F.M.T. and Sabou M.,
Composing Web Services using and Agent Factory, In
AAMAS Workshop on Web Services and Agent-Based
Engineering, 2003, 57-66.

[5]. Sirin E., Parsia B. and Hendler J., Filtering and selecting
Semantic Web Services with Interactive Composition
Techniques, IEEE Intelligent Systems, July/August 2004,
42-49.

[6]. Richards D., Sabou M., van Splunter S. and Brazier
F.M.T., Artificial Intelligence: a Promised Land for Web
Services, In The Proceedings of The 8th Australian and
New Zealand Intelligent Information Systems Conference
(ANZIIS2003), 10-12 December 2003, Macquarie
University, Sydney, Australia, 205-210.

[7]. Hendler J., Agents and the Semantic Web, IEEE
Intelligent Systems, March/April 2001, 30-37.

[8]. Rao, S. A., and Georgeff. M. P., BDI Agents: From
Theory to Practice, Conference Proceedings of 1st
international conference on multiple agent system, 1995,
312-319.

[9]. OGSI, Open Grid Services Infrastructure Version 1.0,
http://www-unix.globus.org/toolkit/ documentation.html.

[10]. Mandell D.J. and McIlraith S., The Bottom-Up Approach
to Web Service Interoperation, International Semantic
Web Conference 2003: 227-241.

[11]. Kuo-Ming Chao, Muhammad Younas, Nathan Griffiths,
Irfan Awan and R. Anane, Analysis of Grid Service
Composition with BPEL4WS. Proceedings of the 18th
IEEE International Conference on Advanced Information
Networking and Applications (AINA 2004), Tokyo, Japan,
March 2004, 284-289.

[12]. Yinsheng Li, Hamad Ghenniwa and Weiming Shen,
Agent-based Web Services Framework and Development
Environment, Journal of Computational Intelligence,
2004.

[13]. Joseph B. Kopena and William C. Regli, DAMLJessKB:
A Tool For Reasoning With The Semantic Web, 2nd
International Semantic Web Conference (ISWC2003),
Sanibel Island, Florida, USA, October 20--23 2003.

