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Abstract:  Physiologically-based pharmacokinetic (PBPK) modeling offers a scientifically-sound 
framework for integrating mechanistic data on absorption, distribution, metabolism 
and elimination to predict the time-course of parent chemical, metabolite(s) or 
biomarkers in the exposed organism. A major advantage of PBPK models is their 
ability to forecast the impact of specific mechanistic processes and determinants 
on the tissue dose. In this regard, they facilitate integration of data obtained with 
in vitro and in silico methods, for making predictions of the tissue dosimetry in the 
whole animal, thus reducing and/or refining the use of animals in pharmacokinetic 
and toxicity studies. This chapter presents the principles and practice of PBPK 
modeling, as well as the application of these models in toxicity testing and health 
risk assessments.

INTRODUCTION

Toxicity tests and risk assessments improve our understanding of “how much 

chemical is too much”, for human safety. Given the ethical considerations associated 

with human testing, animals have been employed as surrogates. With the highest level of 

emphasis placed on biologically relevant and cost-effective mammals, rodents are most 

often used in toxicity testing. While data from humans can be used in establishing safe 

exposure levels, human data are more frequently available for therapeutic and industrial 

compounds than for some classes of chemicals, such as pesticides (compounds developed 
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and marketed based on their ability to produce toxic, even lethal, responses) and other 

environmental contaminants. In many instances, estimates of acceptable human exposure 

limits are developed from the results of tests in animals.1-4 Studies with laboratory animals 

can be conducted to identify the toxic responses observed and to estimate the potency 

of the chemical; their results are considered to be valuable both from a qualitative and a 

quantitative perspective for extrapolation to humans exposed to low doses.5-7

Initial studies conducted for the purpose of “Hazard Identification” facilitate the 

identification of the organs, tissues and systems that are adversely affected by the chemical.8 

For the dose–response assessment, data describing the responses are interpreted in the 

context of dose—most often in the context of the applied (external) dose.8-9 This dose is 

typically reported as mg/m3 in air for inhaled toxicants and in mg/kg/day for orally ingested 

toxicants. Because chemicals are subject to pharmacokinetic processes (such as absorption, 

distribution, metabolism and elimination (ADME)) differently in animals and humans, 

a detailed understanding of the interspecies differences in these processes is essential to 

confidently extrapolate biological response data from animals to humans.10-12

The biological response results from the interaction between the toxicant and the 

target tissue. For this reason, models that can predict the target tissue concentration of the 

toxicologically-active chemical species (parent compound or metabolite) are especially useful 

and have been applied in what is referred to as the “exposure–dose–response” paradigm 

(Fig. 1).9,13 Here, the “dose” refers to the target tissue concentration of the putative toxic 

moiety of a chemical. This exposure–dose–response paradigm is critically important for 

establishing conditions where humans are at risk for adverse outcomes defined in animal 

models. Due to their strong biological underpinnings, biokinetic models have become 

the preferred approach for conducting extrapolations of potential internal dose surrogates 

associated with toxicity.14-19 In essence, biokinetic modeling, when linked with dynamic 

biological responses, serves as a systems biology tool at the whole-organ/whole-body level. 

Once validated, model-predicted target tissue concentrations should be reliable for the 

extrapolation of dosimetry across dose, route, time and species. The ability of the biokinetic 

models, especially the physiologically-based pharmacokinetic (PBPK) or toxicokinetic 

models, to calculate target tissue dose contributes to addressing and/or reducing some 

sources of uncertainty in risk assessments.15,18

This chapter introduces the principles and practice of PBPK modeling as applied in 

toxicity testing and risk assessment.

MODEL DEVELOPMENT

PBPK modeling refers to the development of quantitative descriptions of the ADME 

of chemicals, on the basis of interrelationships among the critical determinants of these 

processes.14,20-22 The critical determinants of ADME include tissue volumes, physiological flow 

rates, rates of absorption, diffusion across cell membranes, tissue:blood partition coefficients 

and rates and affinities for biochemical reactions. These models are more useful than the 

conventional data-based pharmacokinetic models, particularly for the conduct of various 

extrapolations central to predictive toxicology applications.23-25 The biological and mechanistic 

basis of the PBPK models enables them to be used, with limited animal experimentation, 

for extrapolation of the kinetic behavior of chemicals from test animal species to humans, 

from one exposure route to another and from high dose to low dose.21,26 Initial work on the 

development of PBPK models dates back to the research work of Haggard on volatile organics 
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and anaesthetics.27 Further developments in the PBPK modeling of volatile chemicals, as 

well as pharmaceuticals, ensued.28-35 Subsequently, the interest in the development of PBPK 

models has increased, due to their capacity to facilitate various extrapolations to enhance the 

scientific basis and efficiency of toxicity testing, as well as risk assessment.

At the most fundamental level, the PBPK model must be properly designed. 

Considerations include the biology of the animal species and the toxicity of the chemical. 

Failure to consider systematically the biology of the organism and the toxicity of the 

chemical of interest in guiding the model development process will prove detrimental. 

Flaws in the understanding of the key points of either will lead to incongruence and the 

failure of the developed model to meet expectations. Parsimony should be followed and 

the model should be only as complex as is necessary to address the key issues and tissues 

related to the toxicity of the chemical of interest.36-37 Once the model structure has been 

established, values for physiological, physicochemical parameters and biochemical rate 

constants must be identified. Then, once the model has been structured and parameterized, 

the practitioner must determine its suitability through a process called evaluation or 

validation. This exercise demonstrates the fit between model predictions and data describing 

pharmacokinetic information (e.g., blood concentration–time-course data for the parent 

chemical, concentrations of metabolite in a given tissue). The success of this is critical 

to model application and is a function of the model structure, the appropriateness of the 

Figure 1. The exposure–dose–paradigm. Based on references 9 and 13.
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parameter values and the reliability of the in vivo toxicokinetic data.36-37 These various 

aspects are discussed in the following sections.

Model Structure

The structure of a PBPK model corresponds to a diagrammatic representation of 

the organism (i.e., species or individual) on the basis of the critical elements, in terms 

of tissues and ADME processes. Accordingly, the following aspects are considered to 

guide the selection of specific tissues for inclusion in the PBPK model:37
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The tissue compartments are then interconnected via a systemic circulation (i.e., 

arterial and venous blood supplies), such that the mass balance of the cardiac output in 

the organism is maintained at all times in the model (Fig. 2). Tissues can be regrouped, 

if the concentration versus time-course of a chemical is comparable. Table 1 lists 

frequently used compartments in PBPK models, as well as the tissues/organs that are 

grouped together. The development of a reasonable model structure for a chemical then 

requires an understanding of the qualitative and quantitative determinants of ADME in 

the species of interest.

Figure 2. The structure of a PBPK model for a volatile organic chemical in the rat.
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Model Equations

PBPK models consist of a set of differential equations based on physiological 

clearance (CL), in terms of L blood/hr. The various clearance terms represent the influx, 

efflux, metabolism and excretion processes. The rate of change in the amount of chemical 

during a given time interval (dAt/dt) is then computed as follows:

 
(1)

where Ca � chemical concentration in arterial blood and Cvt � chemical concentraton in venous 

blood leaving, the concentrations of which are at equilibrium with concentrations in tissue t.

Equation (1) considers the tissue as a single homogenous compartment. Whereas this 

is adequate for low molecular weight compounds, it is often necessary to describe the 

uptake of high molecular substances via the vascular and intracellular compartments of 

the tissue separately.38 Tissue distribution is typically modeled as flow-limited, where the 

concentration of agent in venous blood leaving the tissue is assumed to be in equilibrium 

with the concentration of agent in the tissue.

Table 2 presents the forms of equations frequently used in PBPK models for 

describing tissue influx, tissue efflux, renal clearance, as well as metabolic clearance.37 

Even though the venous equilibration model for hepatic metabolism has often been used 

in PBPK models, other types of physiological descriptions (i.e., parallel tube model, 

distributed sinusoidal perfusion model) may be used, depending on the intended use of 

the resulting PBPK model.39-40

Table 1. Individual or groups of tissues frequently represented by compartments in 

PBPK models

Model Compartments Tissues

Liver Liver

Adipose tissue Perirenal fat

Epidymal fat

Omental fat

Subcutaneous fat

Slowly perfused tissues Muscle

Skin

Richly perfused tissues Adrenal

Kidney

Thyroid

Brain

Lung

Heart

Testis

Hepatoportal system
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Parameter Estimation

PBPK models consist of a number of input parameters that can be conveniently 

categorized as physiological, physicochemical or biochemical in nature (Table 3). The 

physiological parameters frequently required for PBPK modeling include alveolar 

ventilation rate, cardiac output, tissue blood flow rates and tissue volumes. Table 4 

provides reference values suggested by Arms and Travis41 for adult rats and mice used 

in toxicity testing. Databases on animal and human physiological parameters in various 

age groups and strains/races are still evolving.42-45

The physicochemical parameters required for PBPK modeling are partition coefficients 

(PCs), which represent the relative distribution of a chemical between two matrices (i.e., 

blood and air or tissue and blood) at equilibrium. The blood:air and tissue:blood PCs for 

a number of chemicals have been determined by using in vivo pharmacokinetic data or in 

vitro techniques (equilibrium dialysis, ultrafiltration, vial equilibration).37 Table 5 lists the 

various in silico methods that have become available for estimating the PCs for specific 

sub-groups of chemicals or drugs. A number of these animal-replacement methods use 

data on properties specific to chemicals, as well as characteristics specific to an individual 

or a population (examples are given in refs. 46-51). These in silico approaches account 

for the mechanistic determinants of tissue:blood PCs, which together with the volume 

Table 2. Examples of equations used in PBPK models for describing rate of 
change in tissues (i.e., influx-efflux), renal clearance (CLr) and rate of hepatic  

metabolism ( )

Influx and efflux 

Renal clearance 

Metabolism 

 

Ca : chemical concentration in arterial blood/plasma

Ct : concentration in tissue “t”

Cvt : concentration in venous blood/plasma leaving the tissue “t”

E : hepatic extraction ratio

Km : Michaelis-Menten affinity constant

Qt : flow rate to tissue

US : concentration of a substance in urine

Vmax : maximal velocity of enzymatic reaction

Vt : volume of tissue “t”

Vu : urine flow rate
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of tissues and blood facilitate the computation of the volume of distribution (Vd), as 

shown below:23

Vd � Vb � � Ptb* Vt (2)

where Vb � blood volume, Vt � volume of tissues and Ptb � tissue:blood PCs.

When uncomplicated by species differences in protein binding, simple allometric 

scaling of Vd determined in test species can produce reasonable estimates of Vd in 

humans. However, when such data are not available, or when interspecies difference 

in protein binding is significant, data on the fraction unbound would be essential to 

predict Vd, as well as PCs essential for PBPK modeling.52-53

The biochemical parameters required for PBPK modeling frequently include absorption 

rate constants, maximal velocity for metabolism (Vmax), Michaelis constant (Km), binding 

association constant and urinary/biliary excretion rate. These parameters have often been 

determined on the basis of time-course data collected in vivo or in vitro; data analysis to 

estimate specific parameter(s) is then conducted by using the portion of the time-course 

curve that is most sensitive to one or two dominant factors.54-56

The rate of oral absorption has been determined in vivo on the basis of kinetic data on 

the exhaled breath or blood concentrations of administered chemicals. Based on knowledge 

Table 3. Input parameters for a basic PBPK model

Type of Parameters Specific Parameters

Physiological Tissue volume
Tissue blood flow
Alveolar ventilation
Cardiac output
Glomerular filtration rate

Biochemical Maximum velocity of metabolism
Michaelis affinity constant
Rate of absorption
Binding affinity constant

Physicochemical Blood:air partition coefficient
Tissue:blood partition coefficient

Table 4. Reference physiological valuers for adult rats and mice. Based on Arms and Travis.41

Weight (g) Flow (mL/min)

Compartments Rats Mice Rats Mice

Liver 10.0 1.4 20.8 4.3

Fat 17.5 2.5 7.5 1.5

Slowly perfused tissues 187.5 17.5 12.5 2.6

Richly perfused tissues 12.5 1.3 42.3 8.7

Whole body 250.0 25.0 83.0 17.0
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of the determinants (i.e., lipophilicity, pKa, solubility, particle size, permeability, as 

well as, if applicable, release kinetics and dissolution kinetics), mathematical models 

and algorithms have been developed to simulate the rate of absorption in animals and 

humans.57-58 These types of models have more generally been used in pharmaceutical 

research, where estimation of rate of absorption is important in determining the passage 

from preclinical to clinical Phase 1 research. Often with environmental contaminants, the 

gastrointestinal absorption rates (i.e., first order rate constants) have been estimated on 

the basis of in vivo data,37 whereas a number of in vitro systems (reconstituted enzyme 

preparations, subcellular fractions, postmitochondrial preparations, isolated cells, tissue 

slices and isolated perfused organs) have been used for the estimation of metabolic rate 

constants.59-73 In this regard, several studies involving the use of microsomal protein, 

postmitochondrial fractions or freshly isolated hepatocytes, have demonstrated the 

feasibility of incorporating metabolic rate constants directly within PBPK models for 

low molecular weight organic chemicals.13,74-76 In general, the Km values obtained in vitro 

Table 5. In silico approaches and their applicability to specific chemical classes for 

estimating partition coefficients

Chemical Class Approach References

Empirical Approaches
Basic organic 

chemicals

Relationship of Pt:p with Log P 109

Weakly basic drugs Relationship of Pt:p with Log P and phosphatidylserine 

tissue content

110

Volatile organic 

chemicals and drugs

QSAR relationships of PCs (Brain:air, brain:blood, 

blood:air, brain:air, brain:blood, muscle:air, muscle:blood, 

skin:plasma, skin:blood, liver:air, liver:blood, lung:air, 

lung:blood) using various molecular descriptors

111-117

Histamine receptor 

H 2 antagonists

Relationship between brain:blood and octanol:water, 

cyclohexane:water, molecular mass and water 

accessible volume

118

Histamine receptor 

H 2 antagonists

QSAR relationship between P brain:blood and free 

energy of salvation

119

Volatile organic 

chemicals

Relationship between Pt:b and log P using tissue and 

blood composition data.

48

Barbituric acids Relationship Kpu with Log P. 120-121

Structurally diverse 

compounds

QSAR relationship between P brain:blood with several 

topological and constitutional descriptors of molecules.

122

Drugs Use of muscle:plasma as surrogate for the estimation 

of Pt:p of other tissues except fat.

53

Acid and basic 

drugs

Use of muscle:plasma as surrogate for the estimation 

of Pt:p of other tissues except fat.

123

continued on following page
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have been used directly, but Vmax obtained in vitro has been scaled to the whole organism 

based on the mass recovery of the particular fraction, as follows:37

Vmax (in vivo) � Vmax (in vitro) � Cprot � Ftiss (3)

where Vmax (in vivo) � maximal velocity of metabolism in vivo (mg/min per kg body weight), 

Vmax (in vitro) � maximal velocity of metabolism in vitro (mg/min/mg microsomal protein), 

Cprot � concentration of microsomal protein (mg/g tissue) and Ftiss refers to the fractional 

volume of the metabolizing tissue (e.g., g liver/kg body weight).

The generalizability of in vitro to in vivo extrapolation and animal-replacement 

algorithms is fairly limited, because the critical determinants in each of these cases 

are likely to vary as a function of the metabolic reactions (Phase I versus Phase II), 

metabolizing enzymes and physicochemical properties of the substrates. In fact, mechanistic 

animal-replacement approaches for predicting the numerical values of Vmax and Km of 

Phase I and Phase II metabolism of chemicals are not yet available. Some semi-empirical 

approaches relating the molecular structure information to metabolic rate constants have 

been developed.77 A pragmatic animal-replacement approach focuses on the generation of 

“envelope” of simulations representing a plausible internal dose, by specifying complete 

or negligible hepatic extraction in PBPK models.78 This approach is particularly useful for 

forecasting the possible internal dose of chemicals that are not rapidly cleared at the portal 

Table 5. Continued

Chemical Class Approach References

Mechanistic Approaches
Volatile organic 

chemicals

Estimation of Pt:b from Log P and tissue composition 

data (neutral lipids, phospholipids and water)

49

Volatile organic 

chemicals

Estimation of Pt:a and Pb:a from molecular structure 

and tissue composition data

50-51

Volatile organic 

chemicals

Estimation of Pb:a from Log P, tissue composition data 

and association binding constant for hemoglobin

50, 51, 99

Highly lipophilic 

chemicals

Estimation of adipose:plasma from tissue composition 

data only

124

Various Drugs Estimation of Pt:p from log P, fraction unbound in 

plasma and tissue composition data

123

Various Drugs Estimation of Pt:p from log P, fraction unbound in 

plasma and tissue composition data

125

Moderate to strong 

basic drugs

Estimation of Kpu from log P, pKa, fraction unbound 

in plasma and tissue composition and pH data and 

electrostatic interactions with acidic phospholipids

126

Acidic, very weak 

basic, neutral and 

zwitterionic drugs.

Estimation of Kpu from log P, pKa, fraction unbound in 

plasma, blood:plasma partitioning, tissue composition, 

pH, albumin and lipoprotein concentration data

127

Pt:p = tissue:plasma partition coefficient; Log P = n-octanol:water partition coefficient; Pt:b = 

tissue:blood partition coefficient; Kpu = tissue-to-plasma water partition coefficient
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of entry, thus making easier the construction of PBPK models to facilitate the planning 

of the exposure scenario (e.g., number of doses, dosing duration) for in vivo toxicology 

studies. Such screening level approaches to PBPK parameter estimation might help to 

determine the extent of improvement in model predictions that can be obtained while 

investing time and energy to refine or estimate specific input parameters for PBPK models.

The rate constants of chemical reaction with hemoglobin, tissue proteins, etc., 

determined in vitro or in vivo, have been incorporated into the PBPK model to make 

predictions of these phenomena in vivo.79-80 The feasibility of incorporating in vitro data 

on receptor binding and DNA binding properties of chemicals within PBPK models for 

simulating in vivo behavior, has also been demonstrated.81-82

MODEL EVALUATION

Once the model is constructed, parameterized and written in a simulation/programming 

language, it is essential to evaluate the usefulness of the model for the intended applications. 

All mathematical models of complex reality have potentially built-in uncertainty or errors 

related to model structure and model parameters.83 The adequacy of the model structure, 

as well as the parameter values, is often inferred by comparing the model simulations 

with experimental data that had not been used for estimating the parameters. This process 

has been referred to as “validation”. even though the use of the term “evaluation” is 

being increasingly preferred by PBPK modelers.84-85 Model evaluation is more global 

and consists not only of comparing model simulations with experimental data, but also 

conducting sensitivity, uncertainty and variability analyses for assessing the adequacy 

of the input parameters and structure.

Regardless of the terminology (i.e., validation versus evaluation), the intent is 

essentially to assess whether:

A. the major determinants of the system behavior are adequately captured by the 

model; and

B. the input parameters adequately represent the species or population and the 

chemical for specific exposure conditions.

The choice of method(s) for comparing model simulations with data (i.e., visual 

inspection, discrepancy indices, statistical tests including residual analysis) depends 

upon the purpose for which the model is to be used.86-88 Even though quantitative tests of 

goodness-of-fit are useful, it is equally important to consider the ability of the model to 

provide an accurate prediction of the general trend of the time-course data (i.e., bumps, 

valleys).21,89

Following the satisfactory evaluation of a PBPK model, it is used for conducting 

extrapolations and computations of internal dose for improving the dose–response 

relationship in the context of toxicity testing and risk assessment.

MODEL APPLICATION

The principal application of PBPK models is to predict the target tissue dose of the 

toxic parent chemical or its metabolite. By using the tissue dose of the toxic moiety of 
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a chemical (or its surrogate) in risk assessment calculations, a better basis is provided 

for relating to the observed toxic effects than is the use of the external or exposure 

concentrations of the parent chemical.9,15,90 A critical aspect in this regard relates to 

model selection, i.e., selecting a PBPK model that can adequately address a particular 

issue associated with an assessment. This process would require the consideration of 

the following aspects:91-92
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distributions) versus the intended end-use of the model (e.g., estimation of an 

inter-individual variability factor)

Because PBPK models facilitate the prediction of target tissue dose for various 

exposure scenarios, routes, doses and species,15,21 they can help reduce the uncertainty 

associated with the conventional extrapolation approaches and assessment factors 

employed in cancer and noncancer risk assessments, as well as improving the 

interpretation of the outcomes of toxicity tests.

Toxicity Testing

Animal tests generally focus on characterizing the pharmacokinetics, mode of 

action or toxicity associated with various dose levels, exposure routes and scenarios. 

Specifically, pharmacokinetic studies focus on determining the time-course of parent 

chemical, metabolite(s) or biomarkers in the exposed organism. In the design of such 

studies, it is critical to determine the time-points for sacrifice or sampling, so that animal 

use can be efficiently minimized. In this regard, one of the applications of PBPK models 

is to forecast the blood and tissue concentrations in the exposed animal as a function of 

time, such that appropriate sampling times can be chosen (Fig. 3). Such judicious use 

of PBPK models will facilitate the efficient determination of sacrifice/sampling times 

at which the chemical concentrations would still be above the limit of detection (LOD) 

of the analytical method, as well as be adequately representative of critical portions 

of the time-course curve to facilitate the calculation of dose metrics (e.g., AUC as a 

measure of internal exposure). When limited in vivo data are available, PBPK models 

can be particularly useful to predict kinetics in intact animals on the basis of in vitro 

data on metabolic rates and PCs.93-97 Similarly, in silico approaches can also be used 

in generating initial estimates of chemical-specific parameters for constructing PBPK 
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models to simulate the time-course of the blood or tissue concentrations of a chemical 

and its metabolite.98-99

In the context of toxicity tests focused on the characterization of the dose–reponse 

behavior of chemicals or identification of organ-specific effects, the PBPK models 

are of use in the study design and/or interpretation of results. Pharmacokinetic models 

and data are particularly useful for study design—specifically for determining the 

dose levels, as well as frequency, interval and duration of exposure. For example, 

a PBPK model can be used for determining the exposure conditions that are ideal 

for maintaining a certain level of internal dose (e.g., over a threshold level) and to 

choose dose levels that cover a range of conditions (e.g., first order, saturable). A 

PBPK model can also be used for determining the toxicologically-equivalent doses 

of systemically-acting chemicals for different exposure routes (Fig. 4). When PBPK 

models are integrated with biologically-based pharmacodynamic (PD) models, they 

allow not only the time-course of internal dose in exposed animals to be predicted, 

but also the toxicological responses, based on an understanding of the mode(s) of 

action.14 The PBPK/PD models are also powerful tools for integrating the data on 

absorption, metabolism, protein binding, receptor interaction and other relevant 

mechanistic data obtained in vitro with animal physiology, for providing simulations 

of toxicity outcome in intact animals.95,100 Even though there has been only limited 

progress in developing integrated PBPK/PD models for predicting toxicity profiles 

in silico, there are ample examples of the application of PBPK models in cancer and 

noncancer risk assessments.101

Cancer Risk Assessment

The risk assessment process for genotoxic and epigenetic carcinogens often requires 

the conduct of high-dose to low-dose, route to route and interspecies extrapolations. Instead 

Figure 3. Illustration of the use of PBPK model for prediction of the time-course (C vs T) of tissue 
dose of a chemical in exposed animals and humans.
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of relying on the conventional approaches based on body weight or body surface area, 

PBPK models are increasingly used to reduce the scientific uncertainty in the conduct of 

such extrapolations.22 Due to their strong biological underpinnings, biokinetic modeling 

has become the preferred approach for conducting extrapolations of potential internal dose 

surrogates associated with carcinogenicity.9,15,17-18 In this regard, extrapolation between 

laboratory animals and humans is achieved by using species-specific data on input parameters 

(Fig. 3). Accordingly, physiological parameters (breathing rate, cardiac output, tissue 

volumes, blood flows, glomerular filtration rate) are obtained for the species of interest or are 

computed on the basis of body surface scaling. The maximal velocity of metabolism is also 

scaled on the basis of body surface or body weight in data-poor situations, whereas tissue 

solubility and the Michaelis constant are most often considered to be species-invariant.37 

The ability of PBPK models to simulate the target tissue dose facilitates the enhancement 

of the scientific basis of cancer risk assessments. The initial application of PBPK models 

in cancer risk assessment was demonstrated with dichloromethane (DCM).9,103 The PBPK 

model-based cancer risk assessment for this chemical predicted human low-dose risk, about 

100- to 200-fold less than that predicted by the conventional approach based on linear 

extrapolation of high dose to low dose behavior and interspecies dose conversion based on 

body surface scaling.104-105 Following the DCM example, there have been several reports 

of the use of PBPK models in the prediction of the dose metric for enhancing the scientific 

basis of cancer risk assessment for environmental agents (e.g., vinyl chloride, chloroform, 

methyl chloroform, 1,4-dioxane, trichloroethylene, acrylonitrile and methyl methacrylate). 

The vinyl chloride cancer assessment illustrates the unique usefulness of PBPK models, 

not only for the conduct of high dose to low and interspecies extrapolations, but also for 

the route-to-route extrapolation. Impressively, the PBPK model-based risk estimates 

Figure 4. Illustration of the use of PBPK model to predict the concentration of the toxic moiety of 
chemical in animals exposed via the oral (A) or inhalation (B) routes or via dermal contact (C).
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facilitated the demonstration of the similarity of the range of risk estimates obtained from 

epidemiological studies and animal bioassays.106

Noncancer Risk Assessment

Risk assessments for systemically-acting noncarcinogens have conventionally 

been based on the knowledge of the point of departure (e.g., NOAEL, LOAEL (lowest 

observed adverse effect level), BMD (benchmark dose) and the application of uncertainty 

factors. These factors account for interspecies differences and intraspecies variability 

in pharmacokinetics and pharmacodynamics, as well as address uncertainty associated 

with duration extrapolation, data base completeness and data quality.107

The application of PBPK models in noncancer risk assessment relies on the 

availability of sufficient information about the mode of action to define a reasonable 

internal dose surrogate that is relevant to toxicity. The adverse interaction between 

chemical agents and living systems is best addressed on a tissue basis, or even on a 

cellular or subcellular basis. This involves three equally important issues.

First, it requires a knowledge of the most sensitive endpoint, the species that 

demonstrates that endpoint and the exposure concentration or dose at which no toxicity is 

observed (NOAEL) in that species. The toxic endpoint of concern needs to be evaluated 

for relevance—for example, the importance of male rat-specific �2� globulin-mediated 

nephrotoxicity to human risk assessment is likely to be minimal. In this scenario, the 

NOAEL will represent a point of departure (the dose–response point that marks the 

beginning of the low-dose no-effect level or the lower bound of the observed affect).

The second important issue for the use of PBPK models is an understanding of 

the dose metric, reflective of the effective (risk-relevant) internal dose of the parent 

chemical or metabolite that is associated with that most sensitive endpoint. The 

appropriate dose metric is then compared between humans and the most sensitive 

species by using a PBPK model, since human studies are rarely able to determine 

tissue-specific dose or toxicity due to ethical concerns.

The final aim is to come full circle and calculate a human equivalent exposure. 

This would be in the form of a human equivalent concentration (HEC) for inhaled 

toxicants and a human equivalent dose (HED) for orally-encountered toxicants. 

Humans encountering these concentrations would develop the same level of the dose 

metric (e.g., area under the curve [AUC] or maximal concentration [CMAX]) as in the 

animals exposed to the dose or concentration representing the point of departure (the 

NOAEL or BMDL. Generally, once a nonlethal exposure has reached a duration where 

systemic toxicity is observed, time-normalized dose metrics such as the AUC will 

represent a dose metric that is more representative of risk. CMAX values are often useful 

in establishing the dose–response relationship for acute toxicities and are dependent 

upon dosing rate, such that the high concentration bolus doses commonly encountered 

in animal experiments will lead to higher peak concentrations than the multi-exposure 

(divided-dose) scenarios most often encountered by humans.

The role of PBPK models in noncancer risk assessments, particularly for 

characterizing the magnitude of the pharmacokinetic component of the interspecies 

uncertainty factor and the intraspecies variability factor, has been summarized by 

Dewoskin et al.101 In internal dose-based assessments, the remaining uncertainty relates 
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to pharmacodynamics, i.e., the response of the tissues to the exposure.17-18 An example 

of a noncancer risk assessment that serves to illustrate the use of PBPK models would 

be ethylene glycol monobutyl ether.18 Here, the dose metric, Cmaxmetabolite associated 

with the point of departure (i.e., LOAELanimal) in the animal study was determined 

by using an animal PBPK model. Subsequently, a human PBPK model was used 

to determine the oral dose associated with the same level of the dose metric. The 

resulting human-equivalent dose (7.6 mg/kg/d) was then divided by the appropriate 

uncertainty factors (10 for human interindividual differences in pharmacokinetics and 

pharmacodynamics; 3 to account for the LOAEL to NOAEL extrapolation) for deriving 

the reference dose for humans (0.3 mg/kg/d).18,108

CONCLUSION

PBPK modeling offers a scientifically-defensible framework for integrating 

mechanistic data relating to ADME for predicting dose to target tissues during toxicity 

tests in animals. A major advantage of these kinds of models relates to their ability to 

forecast the impact of specific mechanistic processes and determinants on the tissue 

dose. For example, one can conduct simulations of tissue dose to address the question 

of “what if ….” with regard to variable factors such as the maximal rate of metabolism, 

the Michaelis constant, etc. In this regard, they provide a basis for integrating in vitro 

data and making predictions of the tissue dosimetry in the whole animal, thus reducing 

and/or refining the use of animals in pharmacokinetic and toxicity studies.

In vitro and in silico methods offer valuable alternatives to develop values for 

physicochemical parameters (e.g., tissue PCs) and biochemical rate constants for use in 

developing PBPK models. As opposed to in vivo methods, these alternatives offer the 

advantage that intact animals need not be exposed to test agents and they can be applied 

to human tissues obtained from organ donors. When the test agent is costly and/or 

potentially toxic, reducing animal use and avoiding human exposure can have obvious 

benefits. The reliability of risk values developed following advanced pharmacokinetic 

studies is largely determined by the choice of test system, so the practitioner should make 

well-informed choices among the various alternatives.

Effort should be made to assess confidence in the PBPK model for specific applications 

in toxicity testing and risk assessment. In this regard, PBPK models can support the choice 

of certain range of doses, such that they are within the linear phase of metabolism, or 

range of exposure scenarios that lead to steady-state conditions. Similarly, PBPK models 

can be used to guide dose selection for conducting toxicity test by different routes of 

exposure. In this case, the models would be used to determine the exposure dose for 

a new exposure route (e.g., dermal), based on information available for another route 

(i.e., inhalation) on the basis of equivalent tissue dose. These biologically-based models 

are dynamic constructs that can be adapted to reflect the exposure conditions of interest 

to the investigator(s) and updated as new information on mechanistic and molecular 

determinants becomes available.

In summary, the role of PBPK modeling in improving the exposure–dose–response 

relationship reflects the use of a systems approach to solving complex problems in 

experimental toxicology and risk assessment and as such it will be central to the success 

of the new toxicity paradigms.
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DISCLAIMER

This manuscript presents the collective views of the authors. Views and opinions 

expressed do not necessarily reflect those of their respective employers. The views and 

opinions herein may not represent the views and policies of the U.S. Environmental 

Protection Agency.

NOTE ADDED AFTER PROOFS

Since this chapter was drafted, a valuable guidance document has been finalized by 

the World Health Organization’s International Programme on Chemical Safety. Principles 
of Characterizing and Applying PBPK Models in Risk Assessment (WHO/IPCS, 2010)128 

offers the reader important insight into a careful evaluation process for PBPK models of 

potential use in health risk assessment. This document should be consulted by readers 

who are interested in more in-depth coverage of this topic.
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