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Abstract

In this paper we consider multiperiod mixed 0–1 linear programming models under
uncertainty. We propose a risk averse strategy using stochastic dominance con-
straints (SDC) induced by mixed-integer linear recourse as the risk measure. The
SDC strategy extends the existing literature to the multistage case and includes
both first-order and second-order constraints. We propose a stochastic dynamic
programming (SDP) solution approach, where one has to overcome the negative
impact the cross-scenario constraints, due to SDC, have on the decomposability of
the model. In our computational experience we compare our SDP against a com-
mercial optimization package, in terms of solution accuracy and elapsed time. We
use supply chain planning instances, where procurement, production, inventory, and
distribution decisions need to be made under demand uncertainty. We confirm the
hardness of the testbed, where the benchmark cannot find a feasible solution for half
of the test instances while we always find one, and show the appealing tradeoff of
SDP, in terms of solution accuracy and elapsed time, when solving medium-to-large
instances.

∗This research has been partially supported by the grants MTM2009-14087-C04-01 from the Spanish
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1 Introduction

Let T be a time horizon of length T . Let at and ct be row vectors, bt a column vector,
and At

t′ and Bt
t′ matrices, all of adequate dimensions. Consider the following multiperiod

mixed 0–1 linear programming model:

minimize
∑

t∈T

(atxt + ctyt)

subject to (MILP)

t
∑

t′=1

(At
t′xt′ +Bt

t′yt′) = bt ∀t ∈ T

xt ∈ {0, 1}nx(t), yt ∈ IRny(t) ∀t ∈ T ,

where xt (resp. yt) is a vector of 0–1 (resp. continuous) variables. In this paper we
consider the uncertainty on the parameters in (MILP) and assume it to be represented
by a multiperiod scenario tree, see Figure 1.

In uncertain environments, it is common to optimize the expected value of the objec-
tive function, yielding a risk neutral solution. Because of Risk Management considera-
tions, one would like to implement a risk averse solution to ensure that the variability in
the objective function values is low and, in particular, for those on the right tail (for a
minimization formulation). The existing risk averse models in the literature consider the
following coherent measures [8]: scenario optimization [17, 22], semi-deviations [1, 35], ex-
cess probabilities [43], Value-at-Risk [27], conditional Value-at-Risk [1, 4, 9, 38, 40, 44, 31]
and stochastic dominance constraints strategies [29, 30]. We refer the reader to [4] for a
state-of-the-art survey on risk averse strategies.

In this paper we use stochastic dominance constraints (SDC) as the risk measure [51].
SDC strategies are very appealing for Risk Management. See, for instance, [4, 15] for
applications of SDC to energy and copper extraction planning, respectively, where the
resulting Deterministic Equivalent Model (DEM), [54], is solved using the commercial
Mixed Integer Programming (MIP) solver CPLEX. For some given scenario function,
usually the objective function being optimized, SDC strategies aim to reduce the chance
of having scenarios with large objective function values (first-order SDC) or the scenario
objective function values themselves (second-order SDC). In addition to the increase in the
number of constraints and decision variables, including 0–1, the SDC strategies require
cross-scenario constraints. These affect the nice block structure of risk neutral DEMs,
and therefore pose a challenge to traditional decomposition approaches, the only viable
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approach to deal with large stochastic models, [11, 13, 14, 21, 23, 49]. Therefore, works
on algorithms for SDC strategies do not abound in the literature. Besides, SDC is a
relatively new risk averse strategy, though promising, see [18, 19, 20].

Our contribution is to propose an SDC strategy for the mixed 0–1 linear programming
problem (MILP) and a decomposition approach that can successfully deal with cross-
scenario constraints. Our SDC strategy is the multistage extension of the mixture of
the first-order SDC in [30] and the second-order SDC in [29] induced by mixed-integer
linear recourse for two-stage programs. Thus, in addition to the computational burden
coming from SDC, we have multiple stages whose scenario groups need to satisfy the
non-anticipativy principle. In [24], the multistage SDC model is treated via an exact
branch-and-fix coordination methodology that requires an affordable elapsed time but
it is only intended for medium-scale instances, although difficult ones for commercial
MIP solvers as illustrated in their computational experience. To be able to handle larger
instances, in this paper we propose a metaheuristic approach.

We extend the stochastic dynamic programming (SDP) algorithm presented in [16]
to deal with cross-scenario constraints. This metaheuristic approach decomposes the
stochastic problem into a collection of subproblems. To solve the subproblems efficiently,
piecewise linear convex estimations for the impact of the decisions to be made at a given
subproblem on the objective function value related to the future are constructed. The
SDP in [16] was designed to solve risk neutral models, and thus in the absence of cross-
scenario constraints, where the linking between subproblems is across one period, [16, 25].
The extension we propose in this paper deals with these two issues using a mechanism that
distributes the SDC bounds (or linking variable levels) among the immediate successors
of any given subproblem.

We have chosen Supply Chain Management (SCM) as our area of application, [28, 46,
47, 48, 50, 52, 53]. Risk neutral models for SCM abound in the literature, see e.g. [2,
5, 6, 7, 10, 42, 45, 55] for references in the last decade. There have only very recently
been some attempts to develop solution methods for risk averse SCM models, [3, 34].
We consider a supply chain planning model, which involves multiple products, multiple
periods and a network of players who form the supply chain (typically, markets, production
plants, distribution centers and retailers). Raw materials are available at the top of the
chain, customers are at the bottom and face demand on a set of end products. The
Bill of Materials describes how the players can produce the end products. The goal of
the supply chain planning model is to satisfy customer demand at the lowest total costs,
where procurement, production, inventory and distribution decisions need to be made.

In the computational experience we benchmark our solution approach against the
commercial MIP solver CPLEX in terms of solution accuracy and computation time. We
use twelve instances of the SCM model sketched above. These are instances with both
0–1 and continuous variables, where demand is uncertain, and S2 sets of variables model
nonlinear procurement cost functions, while the SDC risk modelling requires additional
0–1 variables. We illustrate the hardness of the instances, and therefore their adequacy as
testbed, in terms of area of application and data generation. From the numerical results,
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we conclude that SDP is attractive when solving medium-to-large instances, while CPLEX
cannot guarantee a feasible solution in half of the instances tested.

The remainder of the paper is organized as follows. In Section 2 we introduce the risk
averse SDC formulation. In Section 3 we present the stochastic dynamic programming
approach for SDC. We devote Section 4 to the computational experience. Finally, we
conclude the paper and discuss future research directions in Section 5.

2 The risk averse SDC strategy

In this section we propose an SDC risk averse strategy for (MILP). This is the multistage
extension of the mixture of the first-order SDC in [30] and the second-order SDC in
[29] induced by mixed-integer linear recourse for two-stage programs. To avoid scenarios
with high objective function values (hereafter, costs), the SDC strategy makes use of the
so-called cost thresholds. For each cost threshold the aim is to have all scenario costs
below the threshold. However, this may be too conservative and therefore one allows an
excess on the cost threshold. In order to control this excess several mechanisms are used.
First, a maximum is set on the size of the excess. Second, an upper bound is imposed
on the chance that excess occurs. Third, an upper bound is imposed on the expected
excess. Expected excess of scenario costs on the imposed cost thresholds has its roots in
Integrated Chance Constraints, which were introduced in [32] and further investigated in
[33].

In the following we introduce some notation to model the scenario tree, some of which
is illustrated in Figure 1, and the SDC strategy. There is a one-to-one correspondence
between nodes in the tree and the so-called scenario groups (denoted by g), and a one-
to-one correspondence between the leaf nodes and the scenarios (denoted by w). We use
the term immediate ancestor of a node g to refer to the only node in the previous period
(level of the tree) connected to g, and use the term ancestor of g to refer to another node
in an earlier period that is connected to g by a chain of ancestors. We also use the term
successor, which is defined similarly.

Ω, set of scenarios.

wω, likelihood given by the modeler to scenario ω, with
∑

ω∈Ω wω = 1.

G, set of scenario groups.

Ωg, set of scenarios in group g, for g ∈ G, with Ωg ⊆ Ω.

Gt, set of scenario groups in period t, for t ∈ T , with Gt ⊆ G.

t(g), period to which scenario group g belongs to, for g ∈ G, with g ∈ Gt(g).

σ(g), immediate ancestor node of scenario group g, for g ∈ G.

Ag, set consisting of scenario group g and its ancestor nodes, for g ∈ G.
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Sg, set consisting of immediate successor nodes to scenario group g, for g ∈ G. Note that
Sg = ∅ for g ∈ GT .

wg, likelihood associated with scenario group g, for g ∈ G. Note that wg =
∑

ω∈Ωg
wω

and therefore
∑

g∈Gt
wg = 1, for t ∈ T .

P, set of SDC profiles, where profiles are defined by the 4-tupla (φp, βp, ep, Ep), for
p ∈ P.

φp, cost threshold of the profile.

βp, upper bound on failure probability on reaching cost threshold φp.

ep, upper bound on expected excess on cost threshold φp.

Ep, maximum excess on cost threshold φp.

Let ag, cg, A
q
g, B

q
g and bg be the counterparts of at, ct, A

t
t′ , B

t
t′ and bt. The compact

representation of the SDC strategy for (MILP) has the following DEM:

minimize
∑

g∈G

wg(agxg + cgyg) (1)

subject to

s.t.
∑

g∈Aq

(Aq
gxg +Bq

gyg) = bg ∀q ∈ G (2)

∑

g∈Aω

(agxg + cgyg)− vpω ≤ φp ∀ω ∈ Ω, p ∈ P (3)

vpω ≤ Epνp
ω ∀ω ∈ Ω, p ∈ P (4)

∑

ω∈Ω

wωv
p
ω ≤ ep ∀p ∈ P (5)

∑

ω∈Ω

wων
p
ω ≤ βp ∀p ∈ P (6)

xg ∈ {0, 1}nx(g), yg ∈ IRny(g) ∀g ∈ G (7)

vpω ∈ IR+, νp
ω ∈ {0, 1} ∀ω ∈ Ω, p ∈ P, (8)

where xg and yg are the counterparts of xt and yt, and variables vpω and νp
ω are used to

model the first-order and the second-order stochastic dominance constraints associated
with the p-th profile. The objective function (1) and constraints (2) are the stochastic
versions of those in (MILP). Constraints (3) and (4) define the correct range for the excess
variable vpω. In particular, it is easy to see that if νp

ω = 0, then vpω = 0, and thus the cost of
scenario ω is below the threshold φp, while if vpω > 0, then νp

ω = 1. Constraints (4) impose
the expected excess to be not greater than bound Ep. In addition, constraints (5) force
the excess on threshold φp to be not greater than bound ep. Similarly, constraints (6)
force the fraction of scenarios with excess to be not greater than bound βp. Constraints
(7) and (8) define the domain of the variables. Throughout the rest of the paper we will
refer to (1)-(8) as the SDC model.
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3 The solution approach

3.1 Introduction

In this section we propose a decomposition approach to solve the SDC model. We extend
the stochastic dynamic programming (SDP) metaheuristic approach, [36, 37, 39, 41], in
[16]. In short, this SDP starts by combining consecutive time periods into stages, creating
a collection of subtrees/subproblems, see Figure 1. The subproblems are obviously not
independent but linked by decision variables in ancestor subproblems, we will refer to
those as linking variables. The SDP solves the subproblems iteratively, making use of the
so-called Expected Future Value (EFV) curves, which estimate the impact of the decisions
to be made at a given stage on the objective function value related to the future stages.
Each EFV curve is obtained using strong duality theory and Taylor’s expansion at the
so-called reference levels, and the result is a piecewise linear and convex function.

The SDP in [16] was designed to solve risk neutral models in production planning,
where the linking is across one period. The extension we propose in this paper to deal
with the SDC model is not trivial. Apart from its size and the possibility of linking across
more periods, when solving the SDC model, one has another major challenge, namely
cross-scenario constraints that link all scenarios, see constraints (5) and (6). To deal with
these constraints, we device a mechanism that distributes the SDC bounds, namely ep

and βp, among the immediate successors of any given subproblem.

The remainder of the section is organized as follows. In Section 3.2 we formulate
the subproblems. In Section 3.3 we introduce the EFV curves. In Section 3.4 the SDP
approach is outlined. In the following we introduce some notation to formulate the sub-
problems.

E , set of stages in the time horizon.

Ge ⊆ G, set of scenario groups in stage e, for e ∈ E .

Re ⊆ Ge, set of scenario groups associated with the root nodes in the subtrees of stage e,
for e ∈ E .

Cr ⊆ Ge, set of nodes in Ge that belong to the subtree rooted at r, for r ∈ Re, e ∈ E .

Lr ⊆ Cr, set of leaf nodes in Cr, for r ∈ Re, e ∈ E .

Ãq ⊆ Aq, set of ancestor nodes to scenario group q in previous stages e′, ∀e′ < e, such
that their variables have nonzero elements in the constraints associated with node
q, for q ∈ Cr, r ∈ Re, e ∈ E . Note that Ãq = ∅ for q ∈ C1.

˜̃Aℓ, set consisting of leaf node ℓ ∈ Lr and its ancestor nodes in Aℓ, such that their
variables have nonzero elements in constraints associated with the nodes in the
immediate successor subproblems to node ℓ, defined by

⋃

r′∈Sℓ
Cr′, for ℓ ∈ Lr, r ∈

Re, e ∈ E\{|E|}.

6



3.2 The subproblems

In this section we formulate the SDC subproblem defined by node r, r ∈ Re, e ∈ E . Let
xg and yg be given values of vectors xg and yg, g ∈ Ãq, q ∈ Cr. Similarly, let epr and

β
p

r , p ∈ P. Let λ′
ℓ(·) denote the expected future objective function value in the set of

scenarios Ωℓ, ℓ ∈ Lr. The SDC subproblem defined by node set Cr can be written as
follows:

F
′

r(xg, yg∀g ∈ ˜̃Aσ(r); e
p
r, β

p

r ∀p ∈ P) = wr

∑

g∈Aσ(r)

(agxg + cgyg)+

min
∑

ℓ∈Lr

wℓ[
∑

g∈Aℓ\Aσ(r)

(agxg + cgyg)+

λ′
ℓ(xq, yq ∀q ∈ ˜̃Aℓ; e

p
r′ , β

p
r′ ∀p ∈ P, r′ ∈ Sℓ)]+

∑

p∈P

(MpE
r ǫpEr +Mpe

r ǫper +Mpβ
r ǫpβr ) (9)

subject to:

∑

g∈Aq

(Aq
gxg +Bq

gyg) = bq ∀q ∈ Cr (10)

∑

g∈Aℓ

(agxg + cgyg) + λ′
ℓ(·)− vpℓ ≤ φp ∀ℓ ∈ Lr, p ∈ P (11)

vpℓ ≤ Epνp
ℓ + ǫpEr ∀ℓ ∈ Lr, p ∈ P (12)

∑

ℓ∈Lr

wℓv
p
ℓ ≤ epr + ǫper ∀p ∈ P (13)

∑

ℓ∈Lr

wℓν
p
ℓ ≤ βp

r + ǫpβr ∀p ∈ P (14)

∑

ℓ∈Lr

∑

r′∈Sℓ

epr′ = epr ∀p ∈ P (15)

∑

ℓ∈Lr

∑

r′∈Sℓ

βp
r′ = βp

r ∀p ∈ P (16)

xg = xg, yg = yg ∀g ∈ Ãq, q ∈ Cr (17)

epr = epr , β
p
r = β

p

r ∀p ∈ P (18)

xg ∈ {0, 1}nx(g), yg ∈ IR+ny(g) ∀g ∈ Aℓ, ℓ ∈ Lr (19)

epr ∈ IR+, βp
r ∈ {0, 1} ∀p ∈ P (20)

ǫpEr ∈ IR+, ǫper ∈ IR+, ǫpβr ∈ IR+ ∀p ∈ P (21)

epr′ ∈ IR+, βp
r′ ∈ {0, 1} ∀r′ ∈ Sℓ, ℓ ∈ Lr, p ∈ P (22)

vpℓ ∈ IR+, νp
ℓ ∈ {0, 1} ∀ℓ ∈ Lr, p ∈ P. (23)
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Before we explain the ingredients of this formulation, we highlight the main differences
between this subtree formulation and the SDC model on the whole tree, i.e., model (1)-
(8). First, model (9)-(23) has fixed the x, y-variables of ancestor nodes to the subtree,
see constraints (17), as well as the SDC variables of the immediate ancestor node, see
constraints (18). The right-hand-side values in these two constraints are obtained while
solving the subproblems at previous stages. Second, new variables are introduced, the
slack variables ǫpEr , ǫper , ǫpβr , p ∈ P, to ensure that constraints (12)-(14) are always satisfied.
The slack variables are penalized in the objective function using big M type parameters,
MpE

r , Mpe
r andMpβ

r , with the aim of having them equal to zero at the end of the procedure.
Third, in order for the subproblem (9)-(23) to be an appropriate approximation, the
expected objective function value of the successor subproblems is represented by the
function λ′

ℓ(·), ℓ ∈ Lr, and added to the objective function (9), and therefore to constraints
(11). Note that no decisions are taken prior to the root node r = 1, while no estimation
is required in the subproblems in the last stage |E| since the time horizon ends there.
Therefore, any reference to A1 or λ′

ℓ(·), ℓ ∈ Ω, will be dropped out from model (9)-(23).

The objective function (9) gives the expected cost along the time horizon for the set
of scenarios in Lr. It can be split into four terms, namely the constant term related to the
ancestor subproblems in the earlier stages e′ to stage e, e′ < e, the second term is related
to stage e, the third one is an approximation of the cost of all successor subproblems in
future stages e′, e′ > e, and the last one is the penalization term discussed above. The
big M parameters are monotonically increased up to the subproblems in the last stage.

Constraints (10) are the ones related to the scenario groups in the subproblem.

Constraints (11) define the average excess variable vpℓ of the cost on threshold φp for
the set of scenarios Ωℓ that belong to each leaf node ℓ ∈ Lr. So, it is an approximation,
since the cost excess is an average for the set of scenarios in group ℓ, unless the subproblem
belongs to the last stage |E| where Ωℓ is a singleton set for ℓ ∈ Lr. In this case, Ω =
⋃

ℓ∈Lr
Ωℓ.

Constraints (12)-(14) are the counterparts of constraints (4)-(6), where as mentioned
above we have added slack variables to make them always feasible.

Constraints (15) (resp. (16)) distribute the SDC variables epr (resp. βp
r ) among the

subproblems whose root nodes r′ are the immediate successors of any leaf node ℓ, ℓ ∈ Lr.
The distribution is at random for the first SDP iteration until obtaining a solution to the
original problem in a front-to-back scheme. However, when the SDP iterations go on the
function λ′(·) will correctly assign the e- and β-variables to the root nodes in the scenario
subtrees.

Constraints (17)-(18) are the fixing ones.

Constraints (19)-(23) define the domain of the variables. Note that ep1 (resp. β
p

1), i.e.,
at the root node in the only subproblem for stage e = 1, is precisely the SDC bound ep

(resp. βp) in the p-th profile.

Note that λ′
ℓ(·) and F

′

r′(·) are closely related. Indeed, for leaf node ℓ, ℓ ∈ Lr, r ∈
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Re, e ∈ E\{|E|}, we can express λ′
ℓ(·) as:

λ′
ℓ(·) =

∑

r′∈Sℓ

F
′

r′(·). (24)

3.3 The EFV curves

In general, λ′
ℓ(·) is difficult to compute and thus is F

′

r(·). The SDP approach approximates
λ′
ℓ(·) by a piecewise linear convex function λℓ(·), which we will refer to as the EFV curve

for leaf node ℓ. See Figure 2 for an example. Let Zℓ denote the set of reference levels,
where the z-th reference level is included by vector

(X
z

ℓ , π
z
g , γ

z
g ∀g ∈ ˜̃Aℓ, δ

pz

ℓ , τ p
z

ℓ ∀p ∈ P, µz
ℓ), (25)

with
X

z

ℓ ≡ (xz
g, y

z
g ∀g ∈ ˜̃Aℓ, e

pz

r′ , β
pz

r′ ∀r
′ ∈ Sℓ, p ∈ P). (26)

The SDP approach approximates λ′
ℓ(·) by

λℓ(·) = max
z∈Zℓ

{

µz
ℓ +

∑

g∈ ˜̃Aℓ

(πz
gxg + γz

gyg) +
∑

p∈P

∑

r′∈Sℓ

(δp
z

ℓ epr′ + τ p
z

ℓ βp

r′)
}

. (27)

Consider again r ∈ Re, e ∈ E\{|E|}, and suppose that we have EFV curves (27) for
stage e. Subproblem (9)-(23), defining F

′

r(·), can be approximated by

Fr(X
z

σ(r) (26)∀z ∈ Zσ(r)) = wr

∑

g∈Aσ(r)

(agxg + cgyg)+

min
{

∑

ℓ∈Lr

wℓ

[

∑

g∈Aℓ\Aσ(r)

(agxg + cgyg) + λℓ

]

+

∑

p∈P

(MpE
r ǫpEr +Mpe

r ǫper +Mpβ
r ǫpβr )

}

(28)

subject to

Constraints (10) and (12)-(23)
∑

g∈Aℓ

(agxg + cgyg) + λℓ − vpℓ ≤ φp ∀ℓ ∈ Lr, p ∈ P

λℓ ≥ µz
ℓ +

∑

g∈ ˜̃Aℓ

(πz
gxg + γz

gyg) +
∑

p∈P

∑

r′∈Sℓ

(δp
z

ℓ epr′ + τ p
z

ℓ βp
r′) ∀z ∈ Zℓ, ℓ ∈ Lr (29)

λℓ ∈ IR ∀ℓ ∈ Lr. (30)

In the next section we outline the SDP approach and explain how the parameters in (29)
are obtained. Two observations need to be made at this point. First, a refinement of the
EFV curve in leaf node ℓ, and thus a better approximation of λ′

ℓ(·), is obtained when the
set Zℓ is enlarged. Second, as in (24), the EFV curve can be written in terms of Fr′(·).
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3.4 The SDP approach

Each iteration of the SDP algorithm consists of a front-to-back scheme, followed by a
back-to-front scheme. A flowchart of the entire SDP decomposition algorithm can be
found in Figure 3, including the initialization step. Below we briefly explain these two
schemes, as well as the procedure to refine the EFV curves in each iteration.

The front-to-back scheme is aimed at building a solution for the problem, say, X =
(Xg, ∀g ∈ G) and, if it is feasible for the original SDC model (i.e., if ǫpEr = ǫper = ǫpβr =
0, r ∈ R|E|), then checking whether X improves the incumbent solution, say X∗, in which
case X becomes the incumbent one. Subproblems from stage 1 to stage |E| are solved
by passing the obtained values of linking variables onto the subproblems in the next
stage. (Note that in the first iteration of the SDP algorithm the λ-values are zero for the
front-to-back scheme.)

The back-to-front scheme is aimed at refining the EFV curves around the solution
X built in that iteration. Subproblems from stage |E| to stage 1 are solved, passing the
refinement of the EFV curves onto the subproblems in the previous stage. The algorithm
will stop if the relative change in the value

∑

g∈G wg(agxg+ cgyg) between two consecutive
front-to-back iterations is below a tolerance parameter, ε > 0, or an upper bound on the
number of iterations, say miter, is reached.

The EFV curve for ℓ ∈ Lr′, r
′ ∈ Re, e ∈ E\{|E|}, is refined in a back-to-front scheme

by adding a new reference level, z′, and therefore a new linear function to the collection

in (29). We briefly work out the details on how (πz′

g , γ
z′

g ∀g ∈ ˜̃Aℓ, δ
pz

′

ℓ , τ p
z′

ℓ ∀p ∈ P, µz′

ℓ ) is
obtained.

We first apply an ad-hoc sensitivity analysis of Fr(·) ∀r ∈ Sℓ on a small perturbation

of solution X
z′

ℓ to model (28)-(30). Let (πz′

g,r, γ
z′

g,r ∀g ∈ ˜̃Aℓ, δ
pz

′

ℓ,r , τ
pz

′

ℓ,r ∀p ∈ P) be the dual
vector of constraints (17)-(18).

We now use a similar property as (24) but for their corresponding approximations,
i.e., the EFV curve in node ℓ, λℓ(·), and Fr(·). By strong duality and Taylor’s expansion,
we have

µz′

ℓ,r = Fr(X
z′

ℓ )−
∑

g∈ ˜̃Aℓ

(πz′

g,rxg + γz′

g,ryg)−
∑

p∈P

(δp
z′

ℓ,r e
p
r + τ p

z′

ℓ,r β
p

r) (31)

µz′

ℓ =
∑

r∈Sℓ

wrµ
z
ℓ,r (32)

πz′

g =
∑

r∈Sℓ

wrπ
z′

g,r, γz′

g =
∑

r∈Sℓ

wrγ
z′

g,r ∀g ∈ ˜̃Aℓ (33)

δp
z′

ℓ =
∑

r∈Sℓ

wrδ
pz

′

ℓ,r , τ p
z′

ℓ =
∑

r∈Sℓ

wrτ
pz

′

ℓ,r ∀p ∈ P. (34)
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4 Computational experience

4.1 Introduction

In this section we illustrate the performance of the SDP metaheuristic when solving the
SDCmodel. We compare the solution accuracy and elapsed time of SDP to the commercial
MIP solver CPLEX [12]. In order to illustrate the increase computational complexity of
the SDC model, we show performance results for the risk neutral (RN) strategy using
both solution approaches. Note that the RN model can be seen as the SDC model (1)-(8)
with one single SDC profile with cost thresholds equal to ∞. In Section 4.2 we describe
the test problem instances and we report the results in Section 4.3.

4.2 The test instances

In our tests we consider supply chain planning instances. These involve multiple products,
multiple periods and piecewise linear concave functions. Raw materials are available at
the top of the chain and are procured at the beginning of the planning horizon. Customers
are at the bottom and face demand on a set of end products, though uncertain. The Bill of
Materials describes the required components/sub-assemblies to produce the end products.
Procurement, production, inventory and distribution decisions need to be made in order
to satisfy customer demand, subject to balance and capacity constraints. For more details
we refer the reader to [26]. These are problem instances with both 0–1 and continuous
variables, as well as S2 sets of variables to model the piecewise linear concave shape of the
procurement cost functions. Since procured raw materials can be used in different periods
of the planning horizon, S2 variables have an impact on multiple subproblems. Our SDP
uses a distribution mechanism to handle these variables, as we do for the cross-scenario
constraints.

We have considered two pilot cases and six values of T , yielding twelve instances in
total. For each instance, we use two SDC profiles (φp, βp, ep, Ep), p = 1, 2, where φ1

(resp. φ2) is defined by cutting off 5% from the mean (resp. maximum) scenario cost on
the RN solution vector. For each value of the threshold, we find βp by cutting off 5% from
the fraction of scenarios, and similarly for the other SDC bound, namely ep. Although
these are plausible choices, the modeling of the SDC profiles is a very interesting topic,
but beyond the scope of this paper.

Table 1 describes the scenario tree and gives the dimensions of both stochastic SCM
formulations. The first column is the identifier for the instance, where the first six in-
stances are generated using the first pilot case, and the rest using the second one. The
following four columns focus on the scenario tree. We first report the predefined struc-
ture AB1

1 AB2
2 of the scenario tree, where Ai denotes the number of children each node in

stage i has and Bi denotes the number of periods in stage i. The next three columns
give the number of periods T , the number of nodes |G| and the number of scenarios |Ω|.
The remaining columns report the dimensions of the models, where nc is the number of
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continuous variables, n01 is the number of 0–1 variables, m is the number of constraints
and nel is the number of nonzero elements in the constraint matrix. Note that for a given
value of T , the pilot 2 instance is larger than the corresponding pilot 1 one.

Except for the first two, these are medium-to-large instances. As far as the authors
know, the risk averse SDC instances 3-6 and 9-12 are larger than the ones that have been
tested in the literature. Even the risk neutral RN instances are, in general, of larger
dimensions than the ones in the state-of-the-art.

4.3 The numerical results

In this section we present the performance results of the SDP metaheuristic and CPLEX.
We use CPLEX v12.5 for solving the DEM models but also all MIP formulations arising
in the SDP metaheuristic. Our experiments were conducted on a PC with a 2.5 GHz
dual-core Intel Core i5 processor, 8 Gb of RAM and the operating system was OS X
10.9. In terms of stopping criteria, we set ε = 0.01, miter = 45 for pilot 1 instances, and
miter = 75 for pilot 2 ones. For CPLEX, we impose a limit on the elapsed time of 28800
seconds.

The results for the RN model and the SDC model can be found in Tables 2 and 3,
respectively. The first column refers again to the identifier of the instance. The following
four columns reports the results for CPLEX, where objvalLP is the solution value of the
Linear Programming (LP) relaxation of the model, tLP is the elapsed time in seconds
to solve it, objvalIP is the solution value returned by CPLEX, and tIP is the elapsed
time to obtain it. When CPLEX is not able to find a feasible solution, we denote this
with ‘-’. The remaining columns report the results for the SDP approach. Column
objvalSDP gives the solution value of the solution returned by SDP and tSDP is the
total elapsed time to obtain it. The following three columns report other SDP metrics,
namely niter is the number of iterations performed, nz is the total number of reference
levels generated, and nprob the total number of MIP subproblems solved. Finally, the
last column reports the deviation of the solution value obtained by SDP from the CPLEX
value, dev = (objvalSDP−objvalIP )/objvalIP in (%), if CPLEX returns a feasible solution.

From Table 3, we can see that solving the SDC model (1)-(8) by CPLEX requires a
high computational effort for half of instances, namely, instances 4-6 and 10-12. Note
that these are instances with larger values of the time horizon T . There, CPLEX solves
the LP relaxation in less than a minute (60 seconds), but it is not able to find even a
feasible solution when the integrality constraints of the SDC model (1)-(8) are brought
back, with a time limit of eight hours (28800 seconds). If we now turn to the CPLEX
results in Table 2, we can confirm what is common knowledge, namely SDC strategies
are computationally much harder than RN ones. In all instances, CPLEX is able to find
a feasible solution to the RN model (though the time limit is reached in five of them).
The four instances with the shortest time horizon are solved to optimality in less than 5
seconds. As we show below, our SDP approach is also challenged by the SDC instances,
confirming the adequacy of the instances when benchmarking the SDP approach for the
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SDC model, but remains attractive against CPLEX.

In all instances, SDP is able to find a feasible solution for the SDC model. This means
that we also find a feasible solution for the six instances in which CPLEX is the most
challenged, namely, instances 4-6 and 10-12. The time spent by SDP on those instances
ranges between 1000 and 8000 seconds, which can be considered to be high, but recall
that for those instances CPLEX stops after 28800 seconds with no feasible solution found.
For the three smallest ones, instances 1-2 and 7, CPLEX gives a better solution in less
time, which confirms that SDP is a metaheuristic decomposition approach that pays off
for larger instances. For medium size instances, instances 3 and 8-9, the tradeoff between
elapsed time and solution accuracy of SDP is preferred.

5 Conclusions

In this work we have presented a stochastic dynamic programming (SDP) metaheuristic
based on a recursive refinement of the so-called EFV curves. This is an extension of
the SDP decomposition approach in [16]. Our solution approach allows to solve risk
averse models with first-order and second-order stochastic dominance constraints. Those
strategies have been recently proposed in [29, 30] for dealing with the two-stage problem
and their implementation requires cross-scenario constraints. In addition to the multistage
environment, our stochastic dominance constraint strategy jointly considers bounds on
the probability of failure and the expected shortfall over the scenarios on reaching the
modeler-driven thresholds. The computational experience shows that SDP is attractive
when solving medium-to-large instances, where plain use of MIP solvers cannot guarantee
a feasible solution.

The main contribution of this paper is twofold. First, the new SDP algorithm allows
the treatment of any type of cross-scenario constraint, not only those required by SDC
strategies, which are a challenge to traditional decomposition algorithms. Our approach
also allows us to consider variables that do not belong to any scenario model in particular,
but have an impact on all subproblems in the tree, which are also a disturbance to
decomposition algorithms. S2 variables used to define piecewise linear functions, such as
procurement costs functions as the ones used in our SCM test instances, fit this framework.
Second, the new SDP algorithm paves the way for considering other risk averse strategies,
see [4], although the SDC strategy is much more computationally demanding, and it is
one of the few attempting to develop solution methods for risk averse SCM models, see
also [3, 34].

Notice that the decomposition of the original multiperiod problem into linked multi-
stage subproblems allows to solve the subproblems in each stage independently. These
tasks can be performed in parallel, saving a substantial amount of elapsed time. However,
this is a non trivial task. In the future, we plan to apply inner and outer parallelization
to those subproblems. This will allow us to solve even larger instances. We are also inter-
ested in parallel computation based on MPI (Message Passing Interface) cores to solve the
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subproblems. Notice that subproblems with different sets of successor nodes in successor
stages to their own stage do not need to wait for their solving until the optimization of
all the subproblems of successor stages but only their own successor subproblems. The
additional elapsed time reduction can be used to further refine the Expected Future Value
(EFV) curves, an essential ingredient in the SDP algorithm. The refinement can be per-
formed by adding new (hopefully active) reference levels to the EFV curve of each leaf
node of a given subproblem. Each new reference level can be obtained by solving the
successor subproblems for each related value of the linking variables in the ancestor nodes
that have been obtained at each previous iteration of the algorithm. All of those new
subproblems can be themselves solved in parallel.
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Assumed that z′ is the last reference level no-yet included in Zℓ

Set Zℓ := ∅ for ℓ ∈ Lr, r ∈ Re, e ∈ E\{|E|}

Let X∗ = (x∗, y∗) be the incumbent solution vector

Let X
z

ℓ (26) ∀z ∈ Zℓ, ℓ ∈ Lr, r ∈ Re, e ∈ E\{|E|}

Set niter := 1 and r := 1
Solve F1(·) (28)-(30)

Set (x1
g, y

1
g)g∈C1

to its optimal solution vector

e := 2

For each r ∈ Re:
Solve Fr(·) (28)-(30)

Set (xz
g, y

z
g)g∈Cr

to its optimal solution vector

e = |E| ?

If
∑

g∈G
wg(agx

z′

g + cgy
z′

g ) <
∑

g∈G
wg(agx

∗
g + cgy

∗
g) , then X∗ = X

z′

e := e − 1

For each r ∈ Re+1:
Set ℓ := σ(r)

Solve Fr(·) (28)-(30)

Set πz′

g,r, γ
z′

g,r ∀g ∈ ˜̃Aℓ, δ
pz

′

ℓ,r , τ
pz

′

ℓ,r ∀p ∈ P equal to

the dual vector of the linking constraints (17)-(18)

Compute µz′

ℓ,r using (31)

For each ℓ ∈ Lr′ , r
′ ∈ Re

Compute µz′

ℓ , πz′

g , γz′

g ∀g ∈ ˜̃Aℓ, δ
pz

′

ℓ , τ
pz

′

ℓ ∀p ∈ P using (32), (33), (34)

Append λ-constraint for z′ to constraint set (29)
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e = 1 ?
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Figure 3: Flowchart of the SDP approach
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Table 1: Dimensions of the problem instances

Scenario tree RN model SDC model
ID structure T |G| |Ω| nc n01 m nel nc n01 m nel

1 2322 5 32 16 1165 320 1903 8526 1197 352 1971 15374
2 2323 6 64 32 2285 640 3791 18222 2349 704 3923 34094
3 2423 7 128 64 4525 1280 7567 38862 4653 1408 7827 74958
4 2424 8 256 128 9005 2560 15119 82638 9261 2816 15635 163534
5 2425 9 512 256 17965 5120 30223 175182 18477 5632 31251 354382
6 2426 10 1024 512 35885 10240 60431 370254 36909 11264 62483 763470
7 2322 5 32 16 4036 1120 6636 34261 4068 1152 6704 57141
8 2323 6 64 32 7892 2240 13212 72517 7956 2304 13344 125637
9 2423 7 128 64 15604 4480 26364 153349 15732 4608 26624 274309
10 2424 8 256 128 31028 8960 52668 323653 31284 9216 53184 595013
11 2425 9 512 256 61876 17920 105276 681541 62388 18432 106304 1283141
12 2426 10 1024 512 123572 35840 210492 1431877 124596 36864 212544 2752837

22



Table 2: RN model solved with CPLEX and SDP metaheuristic

CPLEX SDP
ID objvalLP tLP objvalIP tIP objvalSDP tSDP niter nz nprob dev
1 431385 0.03 454185 1.24 456610 4.71 12 96 108 0.53
2 415313 0.03 438526 2.28 444247 16.36 14 112 126 1.30
3 433022 0.09 458531 61.89 460591 21.65 15 240 255 0.45
4 532109 0.73 562648 13798 570579 41.44 14 224 238 1.41
5 560343 1.04 592671 28800 615148 19.61 15 240 255 3.79
6 574435 3.20 608957 28800 637992 38.15 16 256 272 4.77
7 218432 0.08 220815 2.23 224460 18.42 23 184 207 1.65
8 227124 0.12 230346 4.24 231776 46.35 27 216 243 0.62
9 259253 0.24 262864 1130 268819 63.43 29 464 493 2.27
10 253955 0.56 258245 28800 262856 91.24 32 512 544 1.79
11 270881 1.10 275849 28800 283066 168.95 34 544 578 2.62
12 281047 1.57 286707 28800 301281 245.69 36 576 612 5.08
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Table 3: SDC model solved with CPLEX and SDP metaheuristic

CPLEX SDP
ID objvalLP tLP objvalIP tIP objvalSDP tSDP niter nz nprob dev
1 622791 0.04 671825 3.16 695198 35.15 30 240 270 3.48
2 608621 0.13 662788 85.00 698155 125.65 39 312 351 5.34
3 587297 0.45 686769 17480 699255 610.52 32 512 544 1.82
4 742368 4.54 – 28800 879581 2558.73 45∗ 720 765 –
5 732797 10.61 – 28800 859626 4484.16 45∗ 720 765 –
6 832611 31.84 – 28800 840182 7923.85 45∗ 720 765 –
7 278973 0.14 300266 29.42 309891 229.00 62 496 558 3.21
8 271869 0.18 303235 28800 317273 375.91 75∗∗ 600 675 4.63
9 315585 0.81 344419 28800 356748 1113.43 75∗∗ 1200 1275 3.58
10 306016 15.08 – 28800 348162 1187.78 75∗∗ 1200 1275 –
11 324661 17.93 – 28800 369718 4848.33 74 1184 1258 –
12 335667 31.12 – 28800 391658 6540.56 74 1184 1258 –
∗miter = 45
∗∗miter = 75
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