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Abstract—The traditional formulation of the total value of of aflow, which is a transfer of data between a fixed source-
information transfer is a multi-commodity flow problem. Each  destination pair. How do we quantify the value of such a flow?
data source is seen as generating a commodity along a fixed route,The c|assical formulation of the total value of information

and the objective is to maximize the total system throughput t fer i I ditv fl bl . hich h
under some concept of fairness, subject to capacity constraisiof ransier 1S a muiti-commodity flow problem, In which eac

the links used. This problem is well studied under the framework data source is seen as generating a commodity along a fixed
of network utility maximization and has led to several different route; the objective is to maximize the sum throughput under
distributed congestion control schemes. However, this view of gome concept of fairness, subject to capacity constraints o
value does not capture the fact that flows may associate value,the links used [2]-[5]. If the flow from source has a rate

not just with throughput, but with link-quality metrics such - - .
as packet delay and jitter. In this work, the congestion control 7 > 0 and the system utility associated with such a flow

problem is redefined to include individual source preferences. It IS represented by a concave, increasing functiofe,.), the
is assumed that degradation in link quality seen by a flow adds objective can be stated as
up on the links it traverses, and the total utility is maximized in
such a way that the end-to-end quality degradation seen by each maXZ U,(xz,) subjectto y; <¢, VIieL Q)
source is bounded by a value that it declares. Decoupling source- res
dissatisfaction and link-degradation through an effective capaity . .
variable, a distributed and provably optimal resource allocation Wheres is the set of source] denotes the set of links, ang
algorithm is designed to maximize system utility subject to these is the capacity of link € £. Also, the load on linK is equal to
qyality constraints. The applicabilﬁty of Fhe co.ntroller in different ¢, = ZTGS Rz, where R denotes the routing matrix of the
situations is s_upported by nume_rlcql simulations, and a _protocol network, with R, = 1 if the flow associated with souraeis
developed using the controller is simulated on ns-2 to illustrate .
its performance. routed through Im_Id. Note that we_refer to flows and sources
interchangeably; if there are multiple flows between a swurc
and a destination, we simply give them different names. This
is a convex optimization problem that is well studied under
the framework of network utility maximization [2]—[5].
This approach to network resource allocation can often be
used to decompose the problem into several subproblems,
Recent years have seen an enormous growth in demaaah of which is amenable to a distributed solution. This so-
for Internet access, with applications ranging from peasoncalled optimization decomposition framewotias yielded a
use to commercial and military operations. Several of theseh set of control schemes and protocols whose architalctur
applications are sensitive to a quality of packet delivéiyr implications are discussed in [6]. For example, there is a
instance, archiving data transfers can tolerate long delagtrong connection between thpgimal solutionto the utility
while voice over Internet protocol (VolP) is very sensitivanaximization problem and TCP-Reno [7], [8] characterized
to latency. Between these extreme examples lies a spectinn2], [3]. Similarly, one can identify connections betwee
of applications with varying service requirements, e.gleei TCP-Vegas and théual solutionof the problem [9]. The same
conferencing, electronic commerce and online gaming. Adpproach has been taken in the design of several new prstocol
these applications require the allocation of enough nétwasuch as Scalable TCP [10], [11] (which allows scaling of rate
resources for satisfactory performance. increases/decreases based on network characterisS])- F
The design of efficient network control systems demand$cP [12] (meant for high bandwidth environments), TCP-
that end-user value be taken into consideration when difaga lllinois [13] (which uses loss and delay signals to attaighhi
resources. The Internet architecture is built around tmeept throughput), and TRUMP [14] (a multipath protocol with fast
convergence properties). A good tutorial on network wtilit
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with the quality of service? In many cases the quality of dattepends solely on this decision and not on the actual liakklo
transfer over a link decreases with load. For example, o®tri Each source declares itissatisfactionto the links it uses
such as the delay and the jitter experienced by packetsbased on the difference between the quality it sees and what
they pass through a router depend on the total load on fheequires. The links select price based on the difference
corresponding links. Such quality degradation may alsougdd between load aneffective capacitywhich in turn depends
over multiple hops. Indeed, the delay experienced by packen link-load and aggregate dissatisfaction of users sarin
in a flow is the sum of the delays over each hop taken. the link. This decoupling of link-load and effective caggci
Once we have a clear conception of quality degradation agpears to have the correct properties to allow a distribute
a function of link load, a pertinent question becom€&sin solution. Finally, sources employ route-prices (the sunalbf
we design a simple distributed algorithm for fair resourcéink-prices on a route) to determine their source-rates.
allocation under which each users’ quality is no worse than a We prove that the algorithm is indeed capable of solving our
prescribed value7o address this question, we need to redefinesource allocation problem using Lyapunov technique$ [16
the traditional congestion control problem to explicitycaunt \We report numerical results about the simulated operatfon o
for the tradeoff between throughput and quality degradatiothe controller in Section VI to illustrate its performanéenew
We denote the degradation in the quality of lihkvith load  contribution over our earlier version [1] is the developmeh
yi by a convex increasing functiol(y;), and assume that a realistic protocol based on the proposed controller. Fhe p
degradation in link quality seen by a flow is additive ovefocol is presented in Section VII, where we report simulatio
the links it traverses. Furthermore, we assume that thétguakxperiments on ns-2 to show that it performs as desired. We
degradation is inherent to a link, and is identical for alivlo conclude with pointers to future work in Section VIII.
sharing the link. Thus, there are no priorities assigned to
particular flows. We maximize utility in such a way that the
total degradation seen by sourcds no greater than a pre- !l. EXAMPLES OF QUALITY DEGRADATION FUNCTIONS

specified positive value,.. The modified objective becomes We begin this section by discussing candidate measures of

maxz U.(z,) subject to ZRzer () <or,  (2) Ii_nk quality degradatﬁon With load. We make seyeral assump-
es el tions on the properties of link quality degradation funeto

where, againg, > 0, y = Rx and under the assumptionThey can be _exp_ressed in the following manner; if the total
sum-rate on link is y; = > s Ry, then

that lim,_,., Vi(y) = oco. We emphasize that this convex
optimization problem requires the quality degradation ache  « the quality degradation functiol(y;) is non-negative,
route to remain bounded. In this article, our objective is convex increasing in link-loag;,

to design a distributed control scheme that can approacte the total quality degradation seen by flowis 3, (r) =
the optimal operating point which trades off throughput and > B Vi(y:) (i.e., quality degradation adds up over
quality, without maintaining per-flow information or prier multiple hops), and

tizing certain packets at intermediate hops. We overview ou « the service process at one link does not impact the arrival
main contributions below, with details contained in suhsey process at the succeeding link.

sections. The above assumptions ensure the analytical tractabifity o
Classical optimization-decomposition techniques tylica our optimization problem. We also believe that they provide
yield a “source-rate responds to link-price” type of conacceptable models of quality degradations in communigatio
troller [2]-[6], wherein each link’s price increases withet systems with queues. Below, we support these assumptions
link-load in order to prevent the link-capacity from beingyith common examples of quality degradation functions.
exceeded. As the link-price increases, sources cut down the For an M/M/1 queue with arrival ratg and service rate,
transmission rates, where the aggressiveness of the SOYFEexpected waiting time in the queueyig(c (c — y)) for a
controller is determined by its utility function. Howevehe gtgple queue, that is when< c. In this case, one can select

solution to our delay-aware problem has remained elusiee de quality degradation function to be the expected waiting
to the strong coupling between the quality seen at sourggne for any packet in the queue,

which requires a hard guarantee, dimt quality degradation
which depends on the link-loads along its route. V(y) =y/(c(c—y)).

We present illustrative examples of what quality degraxtati
functions may look like in Section II, and discuss an example note that the quality degradation function is non-negati
that we use later in the paper. We then proceed to provide@nvex, and increases fromto oo whenz ranges inf0, c).
centralized solution to our problem of interest in Sectiin |  As a second example, consider a single server fluid queue
We develop two algorithms to this end. A primal algorithnwith constant-rate arrivaly and a two-state on-off service
is proposed in Section IV. Our main contribution, a dugrocess where on and off times are exponentially distribute
algorithm, is presented in Section V, and stems from thvéith ratesy and A, respectively. When the service is on and
realization that it is possible to decouple the QoS guaesd¢ the buffer is non-empty, it is serviced at a constant raseich
sources and link quality degradation usingediective capacity thaty < r\/(\ + p). It can be shown [17] that the probability
that is based on the link-price and user-dissatisfactiamceO of buffer exceeding a thresholdis exponentially decreasing
we set the effective capacity for a link, the quality degtama asz increases. A possible quality degradation function in this



case is the inverse of this decay-rate. One can write theydecket w; be the Lagrange multipliers corresponding to the
rate explicitly in terms of the above parameters as quality degradation constraint of flow The Lagrangianis

1/V(y) = — lim 2z YogPr(L > 2) = Ny — r—1). 3 2 )
/V(y) = = lim z"logPr(L > z) = Ay — p/(r = y) Llw) =3 agloga + 3w <10g <1_xz+x3>+0i>
i=1 i=1

Ci
If we denoter\/(A + 1) by ¢ then, one can write

V(y) =ylc—y) " (cxl —y(u+ A)‘l) . + w3 (; log (1 - xzjz‘?’) + 03> .

Again, note that the quality degradation function is nonfFherefore, we can derive the KKT conditions for this system,
negative, convex, and increases fronto co when x ranges

in [0,c). Recent results [18] suggest that, under appropriate  %i/%; — (wi +ws)/(ci —aj —w3) =0, i=1,2

conditions, the delay seen in a queue is independent of 2
other queues even though packets traverse the network alongs/z5 — Y _(w; +ws)/(c; — x} — %) =0,
connected paths. =1 _ (5)
Wy (log (1 - (xL + 'I3)/Ci) + 01) = 05 L= 17 2
2
[1l. CENTRALIZED RESOURCEALLOCATION ws (Z log (1 — (21 + 3) /) +03> —0
We begin by developing ideas on how to solve the resource i=1

allocation problem of (2) in a centralized fashion, and we- cr| gt ys consider the situation whesg < min{cy, o2 }. I this
ate model networks that we will use as examples to illustraigse wy = wy = 0 and

the performance of various control loops throughout. Ciarsi
the scenario where the utility functions assume unbounded 2 x; + T3

negative values when,, = 0 and the quality degradation Zlog (1 T ) to3=0.

functions grow unbounded when sum-ratgsapproach;. In =1

this case, an optimal solution is characterized:by> 0 and For the simple case whetg = 1 and¢; = ¢ for i = 1,2, 3,
y < ¢. Letz* = {aF : r € S} be a feasible point such thatwe get optimal rates

y* = Ra*, and suppose there exist constants> 0 such that

2c
m*zx*:2x*=—<1—e_”3/2). 6
Ul(x7) = > ws y_ RisRi V] () =0, s ©
s€eS  leL 3) This illustrative example provides supporting evidencat th
wy (Br(x*) —0p) =0, our modeling intuition is accurate for resource allocatidth
service guarantees. We list pertinent observations dkfieen

forall r € S, thenz* is a global maximum. Moreover, if,(-)
is strictly concave, then* is the unique global maximum.

We illustrate by the following example how our model takes
into consideration all of the desired properties of the igual
degradation function and how they impact resource allonati
with service guarantees.

this model:

» for any finite service requirement, the sum-rate is always
less than the capacity of each link;

« throughputs decrease with the number of hops due to
service requirements;

o when quality degradation is inherent to a link, the flow

s with the most stringent service requirements limits the
\—/ throughput of every neighboring flow.

/S X\ /N IV. PRIMAL ALGORITHM

In this section, we develop an algorithm that can be em-
Fig. 1. Three flows sharing a two-link network. ployed to obtain an approximate solution to our optimizatio

Example [Three-Flows Two-Hop Network] Consider a netProblem. The approach that we adopt is called Bremal
work composed of three sources transmitting over two linkglethod, as it follows from the primal formulation of the prob
as shown on F|g 1. Let link have Capacityji and suppose lem. The main idea is to relax the constraints by incorpngiti
that we are using logarithmic utility and quality degradati them as a cost into the objective. Essentially, the ideads th

functions. Then, the resource allocation problem becomes there is a price for violating the quality constraints ansl, a
such, we can maximize the difference between utility and. cos

A Zai log z; subject to We consider the objective

i=1 J(x) = Ur(x,) — B, (Br(z ) 7
el e o s (0= 3 Wl = B o) ™)

2
- Zlog (1 it xg) < os. where B,.(-) is a convex barrier function that increases from
Pt N zero to infinity as its argument ranges from zero dp.



To maximize this function, we can use a gradient descentNevertheless, this formulation gives us the hint that idte
approach, of link load and link-degradation being dependent on each
B0 = k(@) (U (22) — g0 other directly with loady = Rz and degradatior’/(y), we
A o can break up their coupling. We do this by introducing a new
¢ = B, (B:(2) > RiRiVi (w)- ®)  variable §;, we refer to aseffective capacityof link 1. This
s€S lec variable upper bounds the total link loggd andV;(g;) upper
Since the problem is convex, it is straightforward to shofounds the link degradation. We then define “effective dyali
using Lyapunov techniques [2], [3], [16] that this algonth degradation’s, = 3~ - Ri,Vi(,) seen by flowr. Then, the
converges and leads to a maximizer of (7). To this end, ndglaxed version of the resource allocation problem becomes
that J(x), as defir_wed in (7)_, i_s a s:[rictly concave function. maXZUr(xr)
We denote its unique maximizer by. Then, J(z) — J(z)
is non-negative and equals zero onlyzat= z. This makes
W(z) £ J(2) — J(x) a natural candidate Lyapunov function;
we use it in the following proposition, which has a similar
proof to that found in [3]. Assuming that our concave utility and convex quality degra-

Proposition 1. Consider a network in which all sources followdatlon functions ensure that values of and (c; — ) are

the primal control algorithm(8). Suppose/(x) is as defined alWE_iYS positive, we can express the dual problem in terms of
in (7) and let functiong,.(-), k,-(-), Vi(-) and B,(-) be such positive Lagrange multipliers, andw;.

res
subjecttoy; < g, VI L
o, <o, andz, >0V resS.

C)

that W (x) grows unbounded asz|| — oo, andi; > 0 for all min D(p,w). (10)
1. Then, the controller in(8) is globally asymptotically stable piw=0
and the equilibrium value maximiz¢g). Here, D(p,w) is the maximum of theLagrangian function

L(z, 9, p,w) with respect tar, g, where

L= ZU€(I9) - Zpl (yl 71,~/l) - Zws (58 *(75)'

Proof: Differentiating W (x) with time ¢, we get

. aJ .
W =— Z %zr = - Z k?‘('rf‘) (Url(mr) - QT)Q < 07 SES leL SES
res =7 res Let z*,§* be the maximizers foL for any p, w, then
for all x # &, andW = 0 for x = Z. Note that the second U (27) = ZRzrpu p= V() Zerwr.

equality follows from (7) and (8). Thus, all the conditionks o

the Lyapunov theorem are satisfied, which ensures that the ] o i

system state necessarily converges:to We_ find the partial derivatives oD (p,w) with respect to
Convergence is a highly desirable attribute. Yet, the primj2riablesp andw,

controller suffers from the following drawbacks. The apmio oD _, y oD .

is not optimal; the relaxation will produce an acceptable ap T ow,

solution only if the barrier values at the optimal solutiofyhere, and & are link-load and effective degradation for
of our Qngmal objective (2) are smaII._ Further, the abovﬁaximizing rates* and effective-capacityj*. We employ
formulation does not allow for optimal points on the bou'wargradient descent method for minimizing the dual of the re-

of the constraint set. To overcome these limitations, we caiqq problem. Therefore, the update equations for Lagrang
approach the problem from a dual perspective and hope fﬂﬁltiplierSp w can be Written as

better performance. N N
oD oD
5, — h - [ = kT r —_—— 3 12
yzi 1) ( 8pz> w (wr) ( apz) (12)

)
P W

lel resS

(11)

V. DUAL ALGORITHM

We start by writing adual formulation for the resource whereh;(-), k.(-) are positive functions and the notation)
allocation problem defined in (2). This provides new insigh$ used to represent the function

on how to obtain a distributed means of achieving optimal { . p>0

resource allocation. The dual formulation correspondinguir (Z),J,r = max{z,0} p=0

optimization problem is given by
Function(z)} can be thought of as net input-rate into a fluid

D(w) =max » Us(xs) —ws (Bs(z) — 05). queuep. Clearly, when queue is non-empty fluid can enter at
Tses rate z, or leave at rate-z. However, when queue is empty
Let z* be the optimal maximizer, then for alle S fluid can only enter, but not leave.
L L We can now easily see that the above algorithm is distributed
Up(a7) = Zws ZRlservl (i) in nature. At any time during the evolution of our algorithm,
s€S el we can treat Lagrange multipliegg andw,. as link-price and

This gives us a system of equations that can be solved to fimdite-dissatisfaction, respectively. A flow needs to “pay”
the optimalx* for any vectorw. However, it requires knowl- link-price p; for congesting linki if it uses the link (with the
edge of the load on every link a flow traverses. Therefors, thioute-price being the sum of all sug}), andw.. is its end-to-
approach is not completely distributed. end dissatisfaction under the current system state. Theti#é



capacity of linki is g; and is decoupled from the actual loadProposition 2. Assume thaflj(-) is strictly convex and in-
on this link, y; = > s Riyx.. We denote the sum of link- creasing, and,. is finite for a[l r € §. Then, at equilibrium,
prices byg. = >_,c, Rip for any flow r, and the sum of for all [ € £, 2{le L9 <y}, we havep, = i = 0.
route-dissatisfaction on a linkby v, = 2 pes Rirwy 10 yield Proof: Our proof is by contradiction. Let us assume that
the total dissatisfaction on that link. Note that such altota S . . -

S . L . _at the equilibrium, there is & € £ such thaty; < g; and
implies that there is no need to maintain per-flow infornatio .

. . . . _ 1 # 0. For thisl, we havep, = 0 by KKT conditions. Note
at the Imk' NOt'Ce. again that_due_ 0 deco_uplmg thro_Lg,gh thatV}/(-) is a non-negative increasing function. That is, either
the perceived quality degradation is a function of the eiffec VI(0) =0 or V/ 0 for all 0 For the f
capacity, and not the actual link-load. /(0) =00rV/(z) > 0forall 2 € [0, c;]. For the former case,

~ L o -1 . Ao =
The algorithm is illustrated in Fig. 2. Although the dia-q <G <y=0=V,7(0),ie.g =y. For the latter case,

. 1 . . .
gram is reminiscent of traditional “source-rate responais P €@nnot be zero since, = (0) is not in the feasible range
link-price” [2]-[5] corresponding to the congestion cantr ©f % and hence this will forcey, = g, at the equilibrium.

problem defined in (1), the system is actually very differenf herefore, the result holds. o =
The system may be described as follows: We have in effect, shown that the equilibrium conditions of

our control loop satisfy the KKT conditions of the original
optimization problem defined in (2). The conditions are easy
to verify, and we may state this result as a corollary to
Proposition 2.

o Each flowr, as it traverses its route, accrues the price
that it needs to “pay” for using each of the linksUsing
this route-price, each source computes a feasible rate

-1
e =U," (ar). Corollary 3. The stationary point 0f12) is a maximizer of
Furthermore, each source declaresdissatisfactionw, the convex optimization problem described(2).
to the links it uses based on the difference between the
quality degradatiow, that it sees and the degradation
that it is willing to tolerate. The dissatisfaction is upelat
using

It is quite easy to show that the above algorithm is globally
asymptotically stable. To show this, we choose our Lyapunov
function to be

Wy = ke(w,) (6, — o)) Q(p,w) = D(p,w) — D(p, ), (13)

« Each link detects the total dissatisfactionof flows it Wherep, @ are the unique minimizers ab(p, w). It is clear
accommodates, and it computes effective capacity ~ thatQ(p,w) > 0 for all values ofp, w. Also, it is easily seen
that D(p, w) grows radially unbounded ip, w for our choice

a=V, " (o/m) of V;(-). Therefore, to prove that the above algorithm is stable
and updates the link price by it suffices to showD(p,w) < 0, with equality if and only
if p = pandw = w. Note that atp,w, one would have
B = Pa(po) (s = ), - pr=w, = 0.

The link ensures that the quality degradation inflicted aBroposition 4. Let Q(p, w) be as defined i13) and functions
its users isV;(7;) by increasing or reducing its aggregates (.) v;(.), k,(-) and k() be such thatQ(p,w) grows un-
flow as needed. bounded with|p|| and ||w||. The controller in(12) is globally

In summary, along with the two traditional elements of seurcasymptotically stable and the equilibrium value maxim{@s
ratex,. and link-pricep;, we have two additional control vari-

ables: source-dissatisfactian. and effective capacity; (with
link-degradationV;(g;)) that provide two further dimensions D(p w) = Z 82131 n 87Dw
of control that are required for a distributed solution. \xin ’ dp = Owr !
ghow that for admissible funct|oﬁ§(~), the effe.ct|ve capacity _ Z ha(on) (i — ) (o — 30)
is equal to the sum rate for all links for which the capacity m

Proof: Differentiating D with respect to time, we get

el

constraint is binding. leL
=3 ke(w,) (67 — 04) (6r — 00), <0,
resS
x andw y andv . .
R for all (p,w) # (p,w) and D(p,w) = 0. The second equality
Sources Links follows from equations (11) and (12). Thus, all the conditio
o 3 m of the Lyapunov theorem [16] are satisfied and we have proved
7 =07 ar) =V that the Lagrange multipliers converge fow. Hence, the
o L _ ot system converges to the minimizer of (10). From the conyexit
i = (10r) (67 = 01 )u, P =hu(p) (0 =0, of our original problem (2) and Corollary 3, it follows thétet
stable point is the maximizer of (2). [ ]
T
q andé i pandV(y) VI. NUMERICAL STUDIES

We utilize two realistic topologies presented in [14], sHu
trated in Fig. 3, to conduct numerical experiments. Our ©bje
tive is to study the performance of our value-aware corgroll

Fig. 2. Block diagram of value-aware resource allocatiothwiecoupling
of user-dissatisfaction on the source side, and qualityhenlink side.



(a) Access Core Topology (b) Abilene Topology

Fig. 3. Two realistic topologies for numerical experimeruati
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Fig. 4. Convergence performance on Access-core topology.

in different networking scenarios. We simulated our disttéed 2-4 are0.3,1,0.4 respectively. We chose nodés6 to have
resource allocation algorithm in Matlab using discreteeti identical access link capacities of

evolution oflink-pricesandend-to-end dissatisfactioSources

send packets at the rate generated by the controller, akel lig. Abilene Topology

average this rate out using an exponential averaging factor

. . - ) Our second network represents the major nodes of the
Links base their decision on this average rate.

Abilene network topology [19], shown in Fig. 3(b). The
network consists of high bandwidth links, and connects sev-
A. Access-Core Topology eral universities and research labs. Traffic consists afelar

Our first network is anaccess-coretopology shown in scale data transfers (low quality constraints) and disteith
Fig. 3(a). It represents a paradigm similar to commercial§emputation (where flows have strict delay constraints).
available Internet access, wherein users have a relatveti ~ We consider3 flows over the Abilene network as shown
access bandwidth (from homes and businesses), connedfefig. 3(b) with labels denoting the capacity of the corre-
together by a resource rich core-network. User bandwidth§8onding link. Note, they are of same order. We call the flow
constrained, either directly at the final hop into the honre, 80 bottom to be flow 1 and one on the top, flow 2. These
at a neighborhood head-end. Applications such as P2P ff¢ flows have QoS constraint on dissatisfact®rand 15
transfers (low quality constraint), as well as voice andewid respectively. Flow 3 has the zigzag path and has the most
calls (higher quality constraints) result in end-to-eraffic on stringent QoS constraint df We plot the convergence of flow
such a topology. rates in Fig. 5(a). We also plot loag andeffective capacityj

We consider the situation when nodes 1 and 3 wish f@r the link of capacity3 shared by flows 2 and 3, in Fig. 5(b).
communicate to node 5; and similarly nodes 2 and 4, to nod&\é& have also plotted the quality seen by the zigzag flow and
over an access-core network as shown in Fig. 3(a). The labéf acceptable constraint; = 1 in Fig. 5(c).
on the links denote their respective capacity. We refer to aThe conclusions that we draw from our simulations are
flow by its origin node. The QoS constraints on quality ofi) our value-aware resource allocation algorithm congsrg
degradation for flows 1-4 arg, 1,3, 2, respectively. We plot t0 & stable solution, (ii) user quality constraints are st
the convergence of the source rates in Fig. 4(a). We also pitequilibrium, i.e., the algorithm performs as designewtj a
loady; andeffective capacityj, for the diagonal core link used (iil) the effective capacity is identical to the actual litdad
by flows 2 & 3 in Fig. 4(b). We also plotted the quality seeft equilibrium showing that our relaxation produces a tight
by the flow 2 and its constraint, = 1 in Fig. 4(c). Note, we solution.
have different rates of convergence of different paranseter

We assume that core links have a capacity of much higher VII. NS-2 EXPERIMENTS
order than that of access links. Thereby, every link on tlre co We adopt utility functions of the forrv,.(x,.) = a, log(z,.).
is taken to be of capacity0, whereas access node 1 conneci#/e takea,, = 100 and normalize source-rates to Megabits
to the core with capacity.5. Similarly, capacities for nodes per second. The header of each packet transmitted by a source
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TS Queue Router Queue

contains two additional fields, (i) source dissatisfactignand I+|:|:l—\_’
(i) route pricegq,. Dissatisfaction is updated for each packet N
at the destination node as indicated by our dual algorithm. DDD

We selected the scaling functidn (w,.) to be a constant03. Tokens
Route pricey. is initialized to zero and is updated by the links.

Depending on the current value, sources update their durrei. 7. The dynamics of the TS-queue and router queue in ouersys
rate as indicated by the algorithm. Tokens are used in order to modulate the arrival rate into ¢éer queue.

. . . Tokens are dropped when they reach the head of the routeequeu
As indicated by our algorithm, the price-update can be PP Y f

implemented by a virtual queue being served at rate equal . ) .

to theeffective capacityith an arrival rate ofy;. This virtual 1%/(ct = %)°. Therefore, we can update effective capadity
queue is implemented by traffic shaping (TS) queue, degtritd Periodic time intervals according to the following edoat
below._We al~so need to compute the quality degradgtion at i =c —Ku/p. (14)
each linkV;(g;). We choose quality degradation per link to _

be the delay experienced by packets arriving in a queue wi¥g choosei” = 10° for fast convergence. Unlike the analyt-
a rateg, and being served at link-capacity. This queue is ical result presented earlier, we note that in reality itetak
implemented by the router queue that buffers packets pgndithile for the impact of changing effective capacifyto be felt

transmission over the link. The queues are shown in Fig. 60N the end-to-end delay. Therefore, we do not chajge the
same time scale as source rates. Instead, we do so perigdical

Link at each link. The times at which each link changes its value
of ¢, are not synchronized. The objective is to get the source
TS Queue Router Queue . ” -
rates to converge to effective capaciy . The value ofy;
Y ——’m ll ll@ > is again changed after a time interval, assuming that the sum
of source rates converged to that and hence the observed
delay isV;(4).
We now study the performance of our protocol using
a network simulator (ns-2) on the two realistic topologies
The Traffic Shaping Queu€elhe purpose of this queue ispresented that we saw earlier in Section VI. &t denote
to shape traffic entering the router queue, and is illusdratéhe propagation delay for flow with no queueing delays.
by the queue on the left in Fig. 7. Since our system requir€r objective is to study the performance of our value-aware
decoupling of the real loag; on link [ from the effective controller in different networking scenarios, and our epém
capacityy;, we need to either add or subtract packets arrivirgituations are shown in Fig. 8.
at the link. For example, if two sources(, S2) are using  Abilene Topology:As shown in Fig. 8(a), the rates of the
link [, then a packet arrival fron$; or S; is enqueued into three flows arez;, z» and zs. In the system considered,
the TS queue. The TS queue is drained at agat&he queue 7, = 50 ms, 7, = 45 ms andT; = 25ms. We consider two
dynamics are implemented using a token generator at eaeldes. In the first case, flow 1 has stringent quality degaadat
link. Tokens are created at rafg. Each token observes theconstraint. In particular, respective degradation tolees in
TS queue and if it is non-empty, it places the packet at therms of delays are; = 55 ms andoy = 03 = 1000 s. Thus,
head of the TS queue into the router queue. Otherwise, {he have set a very high delay tolerance for flows 2 and 3,
token itself is placed in the router queue. Delays are cteatghereas for flow 1 this tolerance is very low and nearly equals
due to the time that packets spend in the TS queue, but wie propagation delay df0 ms, and hence allows a queuing
will see that these delays are small. We choose a large buffielay of only5 ms for the five intermediate queues at routers 1,
size (10,000 packets) to ensure that very few packets are 108, 4, 6 and 10. The tight delay constraint on flow 1 has an effect
The Router QueueWe approximate the delay in routeron the other two flows which share the link between routers 6
gueue with a decreasing function of difference in link-aagya and 10 with it. In Fig. 9(a) we plot the rates associated with
¢; and the effective capacity. In particular, we také}(7;) ~ individual flows. Figure 9(b) shows the acceptable delay for

Y0

Tokens Dropped

Fig. 6. Each node in our system contains a TS-queue and ar rquésie
for each out-going link.



Flow 1

(a) Abilene Topology

Fig. 8. Flows considered for ns-2 experimentation.

(b) Access-Core Topology

packets for flow 1, the delay through the router queues (tkeheme, the source chooses its rate based muta price
control delay), and the actual total delay (TS queue plugerouand it declares dissatisfactiorbased on the quality of service
qgueue) for packets to reach node 11 from node 1. Figure 9toat it sees. Links choose an effective capacity based on
plots the effective capacity for the link between nodes 6 dissatisfaction andink-price, and modify the price as if the
and 10 (shared by all the three flows), which is less than te#ective capacity were the actual capacity of the link. The
total link capacity of25 Mbps. It is clear that the protocol is control scheme only requires that links be awaraggregate
successful in ensuring a good delay performance for flow duantities of the flows using them, and the sources perform

at the expense of overall system throughput.

computations solely based on the parameters obtained from

Access-Core Topology:Our other experiment involves the links they traverse, hence satisfying our requirements
the Access-Core topology, with flows of interest shown in We studied illustrative examples of quality-degradation
Fig. 8(b). In the system considerdd = 73 = 20 ms and functions that helped us gain insight into the working of the
T, = 25 ms. Flow 1 has very stringent delay constraint. Isystem. We performed simulations on realistic topolog@s t

particular, delay tolerances asge = 25 ms, oo = o3 = 1000

illustrate the performance of our algorithm, and used it as a

s. In this case, flows 2 and 3 are highly delay toleranbasis for developing a delay-sensitive protocol. We showed
while flow 1 has low delay tolerance and it nearly equakhat the protocol does indeed trade delay and throughput, so
the propagation delay of 20ms, and allows a queuing delag to maximize the total utility of the system. In the future w
of 5ms for the three intermediate queues at routers Bnd would like to test out our ideas on a real network.

r4. The tight delay constraint on flow 1 has an effect on the
other two flows which share the link between and 4 with

it. In Fig. 10(a) we plot the three rates for flows 1, 2 and
3. Fig. 10(b) shows the acceptable delay for packets for flow
1, the delay through the router queue (control delay) and the
actual total delay (TS queue plus router queue) for packe
to reach node 4 from node 1. The total delay is close to the

target. Fig. 10(c) plots thg at routerr, which is shared by [l

all the three flows. Again, the throughput is less than thle lin

capacity of15 Mbps in the interest of reducing delay. [4]
(5]

VIII. CONCLUSIONS

In this paper we considered the design of a distribute%}
resource allocation algorithm that would allow each indlivi
ual flow to specify its measure of value. We assumed that
every flow passing through a link suffers a certain quality-
degradation due to the load on the link, and that such degrao%]
tion adds up over the multiple links that the flow traversde T [g]
objective is to ensure that the system throughput is maxichiz o]
in a fair manner, subject to each flow's quality of service
satisfying a hard constraint. Our aim was to ensure that the
algorithm should be simple, use local information, and tH&C!
relays need not maintain per-flow information.

We first showed that attempting to solve this problem by1]
the usual optimization decomposition techniques using the
primal formulation yields an approximate solution, andngsi [12]
the dual formulation yields a centralized solution. Howeve
the observation that decoupling the link-load from the tyal
degradation using a secondary variable that we effdictive
capacity allows us to design such a controller. Under our

(23]
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