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Abstract—The traditional formulation of the total value of
information transfer is a multi-commodity flow problem. Each
data source is seen as generating a commodity along a fixed route,
and the objective is to maximize the total system throughput
under some concept of fairness, subject to capacity constraints of
the links used. This problem is well studied under the framework
of network utility maximization and has led to several different
distributed congestion control schemes. However, this view of
value does not capture the fact that flows may associate value,
not just with throughput, but with link-quality metrics such
as packet delay and jitter. In this work, the congestion control
problem is redefined to include individual source preferences. It
is assumed that degradation in link quality seen by a flow adds
up on the links it traverses, and the total utility is maximized in
such a way that the end-to-end quality degradation seen by each
source is bounded by a value that it declares. Decoupling source-
dissatisfaction and link-degradation through an effective capacity
variable, a distributed and provably optimal resource allocation
algorithm is designed to maximize system utility subject to these
quality constraints. The applicability of the controller in different
situations is supported by numerical simulations, and a protocol
developed using the controller is simulated on ns-2 to illustrate
its performance.

Index Terms—Utility maximization, quality of service (QoS),
distributed algorithm, resource allocation, congestion control.

I. I NTRODUCTION

Recent years have seen an enormous growth in demand
for Internet access, with applications ranging from personal
use to commercial and military operations. Several of these
applications are sensitive to a quality of packet delivery.For
instance, archiving data transfers can tolerate long delays,
while voice over Internet protocol (VoIP) is very sensitive
to latency. Between these extreme examples lies a spectrum
of applications with varying service requirements, e.g. video
conferencing, electronic commerce and online gaming. All
these applications require the allocation of enough network
resources for satisfactory performance.

The design of efficient network control systems demands
that end-user value be taken into consideration when allocating
resources. The Internet architecture is built around the concept
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of a flow, which is a transfer of data between a fixed source-
destination pair. How do we quantify the value of such a flow?
The classical formulation of the total value of information
transfer is a multi-commodity flow problem, in which each
data source is seen as generating a commodity along a fixed
route; the objective is to maximize the sum throughput under
some concept of fairness, subject to capacity constraints on
the links used [2]–[5]. If the flow from sourcer has a rate
xr ≥ 0 and the system utility associated with such a flow
is represented by a concave, increasing functionUr(xr), the
objective can be stated as

max
∑

r∈S

Ur(xr) subject to yl ≤ cl, ∀ l ∈ L (1)

whereS is the set of sources,L denotes the set of links, andcl
is the capacity of linkl ∈ L. Also, the load on linkl is equal to
yl =

∑

r∈S Rlrxr whereR denotes the routing matrix of the
network, withRlr = 1 if the flow associated with sourcer is
routed through linkl. Note that we refer to flows and sources
interchangeably; if there are multiple flows between a source
and a destination, we simply give them different names. This
is a convex optimization problem that is well studied under
the framework of network utility maximization [2]–[5].

This approach to network resource allocation can often be
used to decompose the problem into several subproblems,
each of which is amenable to a distributed solution. This so-
called optimization decomposition frameworkhas yielded a
rich set of control schemes and protocols whose architectural
implications are discussed in [6]. For example, there is a
strong connection between theprimal solution to the utility
maximization problem and TCP-Reno [7], [8] characterized
in [2], [3]. Similarly, one can identify connections between
TCP-Vegas and thedual solutionof the problem [9]. The same
approach has been taken in the design of several new protocols
such as Scalable TCP [10], [11] (which allows scaling of rate
increases/decreases based on network characteristics), FAST-
TCP [12] (meant for high bandwidth environments), TCP-
Illinois [13] (which uses loss and delay signals to attain high
throughput), and TRUMP [14] (a multipath protocol with fast
convergence properties). A good tutorial on network utility
maximization algorithms is [15].

Still, there is a growing realization that throughput cannot
be considered as the sole value metric. As mentioned above,
in applications such as voice calls, data is rendered useless
after a certain delay threshold. Thus, simply ensuring thatlink
capacities are not exceeded is not sufficient to capture value in
this scenario. How do we ensure that the user is not dissatisfied
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with the quality of service? In many cases the quality of data
transfer over a link decreases with load. For example, metrics
such as the delay and the jitter experienced by packets as
they pass through a router depend on the total load on the
corresponding links. Such quality degradation may also addup
over multiple hops. Indeed, the delay experienced by packets
in a flow is the sum of the delays over each hop taken.

Once we have a clear conception of quality degradation as
a function of link load, a pertinent question becomes:Can
we design a simple distributed algorithm for fair resource
allocation under which each users’ quality is no worse than a
prescribed value?To address this question, we need to redefine
the traditional congestion control problem to explicitly account
for the tradeoff between throughput and quality degradation.
We denote the degradation in the quality of linkl with load
yl by a convex increasing functionVl(yl), and assume that
degradation in link quality seen by a flow is additive over
the links it traverses. Furthermore, we assume that the quality
degradation is inherent to a link, and is identical for all flows
sharing the link. Thus, there are no priorities assigned to
particular flows. We maximize utility in such a way that the
total degradation seen by sourcer is no greater than a pre-
specified positive valueσr. The modified objective becomes

max
∑

r∈S

Ur(xr) subject to
∑

l∈L

RlrVl (yl) ≤ σr, (2)

where, again,xr ≥ 0, y = Rx and under the assumption
that limy→cl Vl(y) = ∞. We emphasize that this convex
optimization problem requires the quality degradation on each
route to remain bounded. In this article, our objective is
to design a distributed control scheme that can approach
the optimal operating point which trades off throughput and
quality, without maintaining per-flow information or priori-
tizing certain packets at intermediate hops. We overview our
main contributions below, with details contained in subsequent
sections.

Classical optimization-decomposition techniques typically
yield a “source-rate responds to link-price” type of con-
troller [2]–[6], wherein each link’s price increases with the
link-load in order to prevent the link-capacity from being
exceeded. As the link-price increases, sources cut down their
transmission rates, where the aggressiveness of the source
controller is determined by its utility function. However,the
solution to our delay-aware problem has remained elusive due
to the strong coupling between the quality seen at source,
which requires a hard guarantee, andlink quality degradation,
which depends on the link-loads along its route.

We present illustrative examples of what quality degradation
functions may look like in Section II, and discuss an example
that we use later in the paper. We then proceed to provide a
centralized solution to our problem of interest in Section III.
We develop two algorithms to this end. A primal algorithm
is proposed in Section IV. Our main contribution, a dual
algorithm, is presented in Section V, and stems from the
realization that it is possible to decouple the QoS guarantees at
sources and link quality degradation using aneffective capacity
that is based on the link-price and user-dissatisfaction. Once
we set the effective capacity for a link, the quality degradation

depends solely on this decision and not on the actual link-load.
Each source declares itsdissatisfactionto the links it uses

based on the difference between the quality it sees and what
it requires. The links select aprice based on the difference
between load andeffective capacity, which in turn depends
on link-load and aggregate dissatisfaction of users sharing
the link. This decoupling of link-load and effective capacity
appears to have the correct properties to allow a distributed
solution. Finally, sources employ route-prices (the sum ofall
link-prices on a route) to determine their source-rates.

We prove that the algorithm is indeed capable of solving our
resource allocation problem using Lyapunov techniques [16].
We report numerical results about the simulated operation of
the controller in Section VI to illustrate its performance.A new
contribution over our earlier version [1] is the development of
a realistic protocol based on the proposed controller. The pro-
tocol is presented in Section VII, where we report simulation
experiments on ns-2 to show that it performs as desired. We
conclude with pointers to future work in Section VIII.

II. EXAMPLES OF QUALITY DEGRADATION FUNCTIONS

We begin this section by discussing candidate measures of
link quality degradation with load. We make several assump-
tions on the properties of link quality degradation functions.
They can be expressed in the following manner; if the total
sum-rate on linkl is yl =

∑

r∈S Rlrxr then

• the quality degradation functionVl(yl) is non-negative,
convex increasing in link-loadyl,

• the total quality degradation seen by flowr is βr(x) =
∑

l∈L RlrVl(yl) (i.e., quality degradation adds up over
multiple hops), and

• the service process at one link does not impact the arrival
process at the succeeding link.

The above assumptions ensure the analytical tractability of
our optimization problem. We also believe that they provide
acceptable models of quality degradations in communication
systems with queues. Below, we support these assumptions
with common examples of quality degradation functions.

For an M/M/1 queue with arrival ratey and service ratec,
the expected waiting time in the queue isy/(c (c− y)) for a
stable queue, that is wheny < c. In this case, one can select
the quality degradation function to be the expected waiting
time for any packet in the queue,

V (y) = y/(c (c− y)).

We note that the quality degradation function is non-negative,
convex, and increases from0 to ∞ whenx ranges in[0, c).

As a second example, consider a single server fluid queue
with constant-rate arrivaly and a two-state on-off service
process where on and off times are exponentially distributed
with ratesµ andλ, respectively. When the service is on and
the buffer is non-empty, it is serviced at a constant rater such
thaty < rλ/(λ+ µ). It can be shown [17] that the probability
of buffer exceeding a thresholdz is exponentially decreasing
asz increases. A possible quality degradation function in this
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case is the inverse of this decay-rate. One can write the decay-
rate explicitly in terms of the above parameters as

1/V (y) = − lim
z→∞

z−1log Pr (L > z) = λ/y − µ/(r − y).

If we denoterλ/(λ+ µ) by c then, one can write

V (y) = y(c− y)−1

(

cλ−1 − y(µ+ λ)
−1
)

.

Again, note that the quality degradation function is non-
negative, convex, and increases from0 to ∞ whenx ranges
in [0, c). Recent results [18] suggest that, under appropriate
conditions, the delay seen in a queue is independent of
other queues even though packets traverse the network along
connected paths.

III. C ENTRALIZED RESOURCEALLOCATION

We begin by developing ideas on how to solve the resource
allocation problem of (2) in a centralized fashion, and we cre-
ate model networks that we will use as examples to illustrate
the performance of various control loops throughout. Consider
the scenario where the utility functions assume unbounded
negative values whenxr = 0 and the quality degradation
functions grow unbounded when sum-ratesyl approachcl. In
this case, an optimal solution is characterized byxr > 0 and
yl < cl. Let x∗ = {x∗

r : r ∈ S} be a feasible point such that
y∗ = Rx∗, and suppose there exist constantswr ≥ 0 such that

U ′
r(x

∗
r)−

∑

s∈S

ws

∑

l∈L

RlsRlrV
′
l (y

∗
l ) = 0,

wr (βr(x
∗)− σr) = 0,

(3)

for all r ∈ S, thenx∗ is a global maximum. Moreover, ifUr(·)
is strictly concave, thenx∗ is the unique global maximum.

We illustrate by the following example how our model takes
into consideration all of the desired properties of the quality
degradation function and how they impact resource allocation
with service guarantees.

x1
x2

x3

c1 c2

Fig. 1. Three flows sharing a two-link network.

Example [Three-Flows Two-Hop Network] Consider a net-
work composed of three sources transmitting over two links,
as shown on Fig. 1. Let linki have capacityci and suppose
that we are using logarithmic utility and quality degradation
functions. Then, the resource allocation problem becomes

max

n
∑

i=1

ai log xi subject to

− log (1− (xi + x3)/ci) ≤ σi, i = 1, 2

−

2
∑

i=1

log

(

1−
xi + x3

ci

)

≤ σ3.

(4)

Let wi be the Lagrange multipliers corresponding to the
quality degradation constraint of flowi. The Lagrangian is

L(x,w) =
3
∑

i=1

ai log xi +
2
∑

i=1

wi

(

log

(

1−
xi + x3

ci

)

+ σi

)

+ w3

(

2
∑

i=1

log

(

1−
xi + x3

ci

)

+ σ3

)

.

Therefore, we can derive the KKT conditions for this system,

ai/x
∗
i − (wi + w3)/(ci − x∗

i − x∗
3) = 0, i = 1, 2

a3/x
∗
3 −

2
∑

i=1

(wi + w3)/(ci − x∗
i − x∗

3) = 0,

wi (log (1− (xi + x3)/ci) + σi) = 0, i = 1, 2

w3

(

2
∑

i=1

log (1− (xi + x3)/ci) + σ3

)

= 0.

(5)

Let us consider the situation whereσ3 < min{σ1, σ2}. In this
case,w1 = w2 = 0 and

2
∑

i=1

log

(

1−
xi + x3

ci

)

+ σ3 = 0.

For the simple case whereai = 1 and ci = c for i = 1, 2, 3,
we get optimal rates

x∗
1 = x∗

2 = 2x∗
3 =

2c

3

(

1− e−σ3/2
)

. (6)

This illustrative example provides supporting evidence that
our modeling intuition is accurate for resource allocationwith
service guarantees. We list pertinent observations derived from
this model:

• for any finite service requirement, the sum-rate is always
less than the capacity of each link;

• throughputs decrease with the number of hops due to
service requirements;

• when quality degradation is inherent to a link, the flow
with the most stringent service requirements limits the
throughput of every neighboring flow.

IV. PRIMAL ALGORITHM

In this section, we develop an algorithm that can be em-
ployed to obtain an approximate solution to our optimization
problem. The approach that we adopt is called thePrimal
method, as it follows from the primal formulation of the prob-
lem. The main idea is to relax the constraints by incorporating
them as a cost into the objective. Essentially, the idea is that
there is a price for violating the quality constraints and, as
such, we can maximize the difference between utility and cost.
We consider the objective

J(x) =
∑

r∈S

(Ur(xr)−Br (βr(x))) , (7)

whereBr(·) is a convex barrier function that increases from
zero to infinity as its argument ranges from zero toσr.
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To maximize this function, we can use a gradient descent
approach,

ẋr = kr(xr) (U
′
r(xr)− qr) ,

qr =
∑

s∈S

B′
s (βs(x))

∑

l∈L

RlsRlrV
′
l (yl) .

(8)

Since the problem is convex, it is straightforward to show
using Lyapunov techniques [2], [3], [16] that this algorithm
converges and leads to a maximizer of (7). To this end, note
that J(x), as defined in (7), is a strictly concave function.
We denote its unique maximizer bŷx. Then, J(x̂) − J(x)
is non-negative and equals zero only atx = x̂. This makes
W (x) , J(x̂)− J(x) a natural candidate Lyapunov function;
we use it in the following proposition, which has a similar
proof to that found in [3].

Proposition 1. Consider a network in which all sources follow
the primal control algorithm(8). SupposeJ(x) is as defined
in (7) and let functionsUr(·), kr(·), Vl(·) andBs(·) be such
thatW (x) grows unbounded as‖x‖ → ∞, and x̂i > 0 for all
i. Then, the controller in(8) is globally asymptotically stable
and the equilibrium value maximizes(7).

Proof: DifferentiatingW (x) with time t, we get

Ẇ = −
∑

r∈S

∂J

∂xr
ẋr = −

∑

r∈S

kr(xr) (U
′
r(xr)− qr)

2
< 0,

for all x 6= x̂, and Ẇ = 0 for x = x̂. Note that the second
equality follows from (7) and (8). Thus, all the conditions of
the Lyapunov theorem are satisfied, which ensures that the
system state necessarily converges tox̂.

Convergence is a highly desirable attribute. Yet, the primal
controller suffers from the following drawbacks. The approach
is not optimal; the relaxation will produce an acceptable
solution only if the barrier values at the optimal solution
of our original objective (2) are small. Further, the above
formulation does not allow for optimal points on the boundary
of the constraint set. To overcome these limitations, we can
approach the problem from a dual perspective and hope for
better performance.

V. DUAL ALGORITHM

We start by writing adual formulation for the resource
allocation problem defined in (2). This provides new insight
on how to obtain a distributed means of achieving optimal
resource allocation. The dual formulation corresponding to our
optimization problem is given by

D(w) =max
xs≥0

∑

s∈S

Us(xs)− ws (βs(x)− σs) .

Let x∗ be the optimal maximizer, then for allr ∈ S

U ′
r(x

∗
r) =

∑

s∈S

ws

∑

l∈L

RlsRlrV
′
l (y

∗
l ) .

This gives us a system of equations that can be solved to find
the optimalx∗ for any vectorw. However, it requires knowl-
edge of the load on every link a flow traverses. Therefore, this
approach is not completely distributed.

Nevertheless, this formulation gives us the hint that instead
of link load and link-degradation being dependent on each
other directly with loady = Rx and degradationV (y), we
can break up their coupling. We do this by introducing a new
variable ỹl, we refer to aseffective capacityof link l. This
variable upper bounds the total link loadyl, andVl(ỹl) upper
bounds the link degradation. We then define “effective quality
degradation”̃σr ,

∑

l∈L RlrVl(ỹl) seen by flowr. Then, the
relaxed version of the resource allocation problem becomes

max
∑

r∈S

Ur(xr)

subject toyl ≤ ỹl, ∀ l ∈ L

σ̃r ≤ σr, andxr ≥ 0 ∀ r ∈ S.

(9)

Assuming that our concave utility and convex quality degra-
dation functions ensure that values ofxr and (cl − ỹl) are
always positive, we can express the dual problem in terms of
positive Lagrange multiplierspl andwr,

min
p,w≥0

D(p, w). (10)

Here, D(p, w) is the maximum of theLagrangian function
L(x, ỹ, p, w) with respect tox, ỹ, where

L =
∑

s∈S

Us(xs)−
∑

l∈L

pl (yl − ỹl)−
∑

s∈S

ws (σ̃s − σs) .

Let x∗, ỹ∗ be the maximizers forL for any p, w, then

U ′
r(x

∗
r) =

∑

l∈L

Rlrpl, pl = V ′
l (ỹ

∗
l )
∑

r∈S

Rlrwr.

We find the partial derivatives ofD(p, w) with respect to
variablesp andw,

∂D

∂pl
= ỹ∗l − y∗l ,

∂D

∂wr
= σr − σ̃∗

r , (11)

wherey∗l and σ̃∗
r are link-load and effective degradation for

maximizing ratex∗ and effective-capacitỹy∗. We employ
gradient descent method for minimizing the dual of the re-
laxed problem. Therefore, the update equations for Lagrange
multipliers p, w can be written as

ṗl = hl(pl)

(

−
∂D

∂pl

)+

pl

, ẇr = kr(wr)

(

−
∂D

∂pl

)+

wr

, (12)

wherehl(·), kr(·) are positive functions and the notation(z)+ρ
is used to represent the function

(z)+ρ =

{

z ρ > 0
max{z, 0} ρ = 0.

Function(z)+ρ can be thought of as net input-rate into a fluid
queueρ. Clearly, when queue is non-empty fluid can enter at
rate z, or leave at rate−z. However, when queue is empty
fluid can only enter, but not leave.

We can now easily see that the above algorithm is distributed
in nature. At any time during the evolution of our algorithm,
we can treat Lagrange multiplierspl andwr as link-price and
route-dissatisfaction, respectively. A flowr needs to “pay”
link-price pl for congesting linkl if it uses the link (with the
route-price being the sum of all suchpl), andwr is its end-to-
end dissatisfaction under the current system state. The effective
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capacity of linkl is ỹl and is decoupled from the actual load
on this link, yl =

∑

r∈S Rlrxr. We denote the sum of link-
prices byqr =

∑

l∈L Rlrpl for any flow r, and the sum of
route-dissatisfaction on a linkl by νl =

∑

r∈S Rlrwr to yield
the total dissatisfaction on that link. Note that such a total
implies that there is no need to maintain per-flow information
at the link. Notice again that due to decoupling throughỹ,
the perceived quality degradation is a function of the effective
capacity, and not the actual link-load.

The algorithm is illustrated in Fig. 2. Although the dia-
gram is reminiscent of traditional “source-rate responds to
link-price” [2]–[5] corresponding to the congestion control
problem defined in (1), the system is actually very different.
The system may be described as follows:

• Each flowr, as it traverses its route, accrues the priceqr
that it needs to “pay” for using each of the linksl. Using
this route-price, each source computes a feasible rate

xr = U
′−1
r (qr).

Furthermore, each source declares itsdissatisfactionwr

to the links it uses based on the difference between the
quality degradatioñσr that it sees and the degradationσr

that it is willing to tolerate. The dissatisfaction is updated
using

ẇr = kr(wr) (σ̃r − σr)
+

wr
.

• Each link detects the total dissatisfactionνl of flows it
accommodates, and it computes effective capacity

ỹl = V
′−1

l (pl/νl)

and updates the link price by

ṗl = hl(pl) (yl − ỹl)
+

pl
.

The link ensures that the quality degradation inflicted on
its users isVl(ỹl) by increasing or reducing its aggregate
flow as needed.

In summary, along with the two traditional elements of source-
ratexr and link-pricepl, we have two additional control vari-
ables: source-dissatisfactionwr and effective capacitỹyl (with
link-degradationVl(ỹl)) that provide two further dimensions
of control that are required for a distributed solution. We next
show that for admissible functionsVl(·), theeffective capacity
is equal to the sum rate for all links for which the capacity
constraint is binding.

Sources

x andw y andν

Links

p andV(ỹ)q andσ̃

R

RT

xr = U
′−1
r (qr)

ẇr = kr(wr) (σ̃r − σr)
+

wr

ỹl = V
′−1

l (pl

νl
)

ṗl = hl(pl) (yl − ỹl)
+

pl

Fig. 2. Block diagram of value-aware resource allocation with decoupling
of user-dissatisfaction on the source side, and quality on the link side.

Proposition 2. Assume thatVl(·) is strictly convex and in-
creasing, andσr is finite for all r ∈ S. Then, at equilibrium,
for all l ∈ L1 , {l ∈ L : ŷl < ˆ̃yl}, we havep̂l = ν̂l = 0.

Proof: Our proof is by contradiction. Let us assume that
at the equilibrium, there is al ∈ L such thatŷl < ˆ̃yl and
ν̂l 6= 0. For this l, we havep̂l = 0 by KKT conditions. Note
thatV ′

l (·) is a non-negative increasing function. That is, either
V ′
l (0) = 0 or V ′

l (z) > 0 for all z ∈ [0, cl]. For the former case,
0 ≤ ŷl ≤ ˆ̃yl = 0 = V

′−1

l (0), i.e., ŷl = ˆ̃yl. For the latter case,
p̂l cannot be zero sinceV

′−1

l (0) is not in the feasible range
of ŷl and hence this will forcêyl = ˆ̃yl at the equilibrium.
Therefore, the result holds.

We have in effect, shown that the equilibrium conditions of
our control loop satisfy the KKT conditions of the original
optimization problem defined in (2). The conditions are easy
to verify, and we may state this result as a corollary to
Proposition 2.

Corollary 3. The stationary point of(12) is a maximizer of
the convex optimization problem described in(2).

It is quite easy to show that the above algorithm is globally
asymptotically stable. To show this, we choose our Lyapunov
function to be

Q(p, w) = D(p, w)−D(p̂, ŵ), (13)

where p̂, ŵ are the unique minimizers ofD(p, w). It is clear
thatQ(p, w) ≥ 0 for all values ofp, w. Also, it is easily seen
thatD(p, w) grows radially unbounded inp, w for our choice
of Vl(·). Therefore, to prove that the above algorithm is stable
it suffices to showḊ(p, w) ≤ 0, with equality if and only
if p = p̂ and w = ŵ. Note that atp̂, ŵ, one would have
ṗl = ẇr = 0.

Proposition 4. LetQ(p, w) be as defined in(13)and functions
Ur(·), Vl(·), kr(·) and hl(·) be such thatQ(p, w) grows un-
bounded with‖p‖ and ‖w‖. The controller in(12) is globally
asymptotically stable and the equilibrium value maximizes(2).

Proof: DifferentiatingD with respect to time, we get

Ḋ(p, w) =
∑

l∈L

∂D

∂pl
ṗl +

∑

r∈S

∂D

∂wr
ẇr

= −
∑

l∈L

hl(pl) (yl − ỹl) (yl − ỹl)
+

pl

−
∑

r∈S

kr(wr) (σ̃r − σr) (σ̃r − σr)
+

wr
< 0,

for all (p, w) 6= (p̂, ŵ) andḊ(p̂, ŵ) = 0. The second equality
follows from equations (11) and (12). Thus, all the conditions
of the Lyapunov theorem [16] are satisfied and we have proved
that the Lagrange multipliers converge tôp, ŵ. Hence, the
system converges to the minimizer of (10). From the convexity
of our original problem (2) and Corollary 3, it follows that the
stable point is the maximizer of (2).

VI. N UMERICAL STUDIES

We utilize two realistic topologies presented in [14], illus-
trated in Fig. 3, to conduct numerical experiments. Our objec-
tive is to study the performance of our value-aware controller
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Fig. 3. Two realistic topologies for numerical experimentation.
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Fig. 4. Convergence performance on Access-core topology.

in different networking scenarios. We simulated our distributed
resource allocation algorithm in Matlab using discrete-time
evolution oflink-pricesandend-to-end dissatisfaction. Sources
send packets at the rate generated by the controller, and links
average this rate out using an exponential averaging factorα.
Links base their decision on this average rate.

A. Access-Core Topology

Our first network is anaccess-coretopology shown in
Fig. 3(a). It represents a paradigm similar to commercially
available Internet access, wherein users have a relativelysmall
access bandwidth (from homes and businesses), connected
together by a resource rich core-network. User bandwidth is
constrained, either directly at the final hop into the home, or
at a neighborhood head-end. Applications such as P2P file
transfers (low quality constraint), as well as voice and video
calls (higher quality constraints) result in end-to-end traffic on
such a topology.

We consider the situation when nodes 1 and 3 wish to
communicate to node 5; and similarly nodes 2 and 4, to node 6
over an access-core network as shown in Fig. 3(a). The labels
on the links denote their respective capacity. We refer to a
flow by its origin node. The QoS constraints on quality of
degradation for flows 1-4 are2, 1, 3, 2, respectively. We plot
the convergence of the source rates in Fig. 4(a). We also plot
loadyl andeffective capacitỹyl for the diagonal core link used
by flows 2 & 3 in Fig. 4(b). We also plotted the quality seen
by the flow 2 and its constraintσ2 = 1 in Fig. 4(c). Note, we
have different rates of convergence of different parameters.

We assume that core links have a capacity of much higher
order than that of access links. Thereby, every link on the core
is taken to be of capacity10, whereas access node 1 connects
to the core with capacity0.5. Similarly, capacities for nodes

2-4 are0.3, 1, 0.4 respectively. We chose nodes5, 6 to have
identical access link capacities of1.

B. Abilene Topology

Our second network represents the major nodes of the
Abilene network topology [19], shown in Fig. 3(b). The
network consists of high bandwidth links, and connects sev-
eral universities and research labs. Traffic consists of large
scale data transfers (low quality constraints) and distributed
computation (where flows have strict delay constraints).

We consider3 flows over the Abilene network as shown
in Fig. 3(b) with labels denoting the capacity of the corre-
sponding link. Note, they are of same order. We call the flow
on bottom to be flow 1 and one on the top, flow 2. These
two flows have QoS constraint on dissatisfaction8 and 15
respectively. Flow 3 has the zigzag path and has the most
stringent QoS constraint of1. We plot the convergence of flow
rates in Fig. 5(a). We also plot loadyl andeffective capacitỹyl
for the link of capacity3 shared by flows 2 and 3, in Fig. 5(b).
We have also plotted the quality seen by the zigzag flow and
it’s acceptable constraintσ3 = 1 in Fig. 5(c).

The conclusions that we draw from our simulations are
(i) our value-aware resource allocation algorithm converges
to a stable solution, (ii) user quality constraints are satisfied
at equilibrium, i.e., the algorithm performs as designed, and
(iii) the effective capacity is identical to the actual linkload
at equilibrium showing that our relaxation produces a tight
solution.

VII. NS-2 EXPERIMENTS

We adopt utility functions of the formUr(xr) = ar log(xr).
We takear = 100 and normalize source-ratesxr to Megabits
per second. The header of each packet transmitted by a source
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Fig. 5. Convergence performance on Abilene topology.

contains two additional fields, (i) source dissatisfactionwr and
(ii) route priceqr. Dissatisfaction is updated for each packet
at the destination node as indicated by our dual algorithm.
We selected the scaling functionkr(wr) to be a constant103.
Route priceqr is initialized to zero and is updated by the links.
Depending on the current value, sources update their current
rate as indicated by the algorithm.

As indicated by our algorithm, the price-update can be
implemented by a virtual queue being served at rate equal
to theeffective capacitywith an arrival rate ofyl. This virtual
queue is implemented by traffic shaping (TS) queue, described
below. We also need to compute the quality degradation at
each linkVl(ỹl). We choose quality degradation per link to
be the delay experienced by packets arriving in a queue with
a rateỹl and being served at link-capacitycl. This queue is
implemented by the router queue that buffers packets pending
transmission over the link. The queues are shown in Fig. 6.

yl ỹl cl

Link

TS Queue Router Queue

Fig. 6. Each node in our system contains a TS-queue and a router queue
for each out-going link.

The Traffic Shaping Queue:The purpose of this queue is
to shape traffic entering the router queue, and is illustrated
by the queue on the left in Fig. 7. Since our system requires
decoupling of the real loadyl on link l from the effective
capacityỹl, we need to either add or subtract packets arriving
at the link. For example, if two sources (S1, S2) are using
link l, then a packet arrival fromS1 or S2 is enqueued into
the TS queue. The TS queue is drained at a rateỹl. The queue
dynamics are implemented using a token generator at each
link. Tokens are created at ratẽyl. Each token observes the
TS queue and if it is non-empty, it places the packet at the
head of the TS queue into the router queue. Otherwise, the
token itself is placed in the router queue. Delays are created
due to the time that packets spend in the TS queue, but we
will see that these delays are small. We choose a large buffer
size (10, 000 packets) to ensure that very few packets are lost.

The Router Queue:We approximate the delay in router
queue with a decreasing function of difference in link-capacity
cl and the effective capacitỹyl. In particular, we takeV ′

l (ỹl) ≈

yl ỹl cl

Tokens
Tokens Dropped

TS Queue Router Queue

Fig. 7. The dynamics of the TS-queue and router queue in our system.
Tokens are used in order to modulate the arrival rate into the router queue.
Tokens are dropped when they reach the head of the router queue.

K/(cl − ỹl)
2. Therefore, we can update effective capacityỹl

at periodic time intervals according to the following equation

ỹl = cl −
√

Kνl/pl. (14)

We chooseK = 109 for fast convergence. Unlike the analyt-
ical result presented earlier, we note that in reality it takes a
while for the impact of changing effective capacityỹl to be felt
on the end-to-end delay. Therefore, we do not changeỹl at the
same time scale as source rates. Instead, we do so periodically
at each link. The times at which each link changes its value
of ỹl are not synchronized. The objective is to get the source
rates to converge to effective capacityỹl . The value ofỹl
is again changed after a time interval, assuming that the sum
of source rates converged to thatỹl, and hence the observed
delay isVl(ỹl).

We now study the performance of our protocol using
a network simulator (ns-2) on the two realistic topologies
presented that we saw earlier in Section VI. LetTi denote
the propagation delay for flowi with no queueing delays.
Our objective is to study the performance of our value-aware
controller in different networking scenarios, and our example
situations are shown in Fig. 8.

Abilene Topology:As shown in Fig. 8(a), the rates of the
three flows arex1, x2 and x3. In the system considered,
T1 = 50 ms, T2 = 45 ms andT3 = 25ms. We consider two
cases. In the first case, flow 1 has stringent quality degradation
constraint. In particular, respective degradation tolerances in
terms of delays areσ1 = 55 ms andσ2 = σ3 = 1000 s. Thus,
we have set a very high delay tolerance for flows 2 and 3,
whereas for flow 1 this tolerance is very low and nearly equals
the propagation delay of50 ms, and hence allows a queuing
delay of only5 ms for the five intermediate queues at routers 1,
5, 4, 6 and 10. The tight delay constraint on flow 1 has an effect
on the other two flows which share the link between routers 6
and 10 with it. In Fig. 9(a) we plot the rates associated with
individual flows. Figure 9(b) shows the acceptable delay for
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packets for flow 1, the delay through the router queues (the
control delay), and the actual total delay (TS queue plus router
queue) for packets to reach node 11 from node 1. Figure 9(c)
plots the effective capacitỹy for the link between nodes 6
and 10 (shared by all the three flows), which is less than the
total link capacity of25 Mbps. It is clear that the protocol is
successful in ensuring a good delay performance for flow 1,
at the expense of overall system throughput.

Access-Core Topology:Our other experiment involves
the Access-Core topology, with flows of interest shown in
Fig. 8(b). In the system consideredT1 = T3 = 20 ms and
T2 = 25 ms. Flow 1 has very stringent delay constraint. In
particular, delay tolerances areσ1 = 25 ms,σ2 = σ3 = 1000
s. In this case, flows 2 and 3 are highly delay tolerant,
while flow 1 has low delay tolerance and it nearly equals
the propagation delay of 20ms, and allows a queuing delay
of 5ms for the three intermediate queues at routers 1,r1 and
r4. The tight delay constraint on flow 1 has an effect on the
other two flows which share the link betweenr4 and 4 with
it. In Fig. 10(a) we plot the three rates for flows 1, 2 and
3. Fig. 10(b) shows the acceptable delay for packets for flow
1, the delay through the router queue (control delay) and the
actual total delay (TS queue plus router queue) for packets
to reach node 4 from node 1. The total delay is close to the
target. Fig. 10(c) plots thẽy at routerr4 which is shared by
all the three flows. Again, the throughput is less than the link
capacity of15 Mbps in the interest of reducing delay.

VIII. C ONCLUSIONS

In this paper we considered the design of a distributed
resource allocation algorithm that would allow each individ-
ual flow to specify its measure of value. We assumed that
every flow passing through a link suffers a certain quality-
degradation due to the load on the link, and that such degrada-
tion adds up over the multiple links that the flow traverses. The
objective is to ensure that the system throughput is maximized
in a fair manner, subject to each flow’s quality of service
satisfying a hard constraint. Our aim was to ensure that the
algorithm should be simple, use local information, and the
relays need not maintain per-flow information.

We first showed that attempting to solve this problem by
the usual optimization decomposition techniques using the
primal formulation yields an approximate solution, and using
the dual formulation yields a centralized solution. However,
the observation that decoupling the link-load from the quality
degradation using a secondary variable that we calleffective
capacity, allows us to design such a controller. Under our

scheme, the source chooses its rate based on aroute price,
and it declares adissatisfactionbased on the quality of service
that it sees. Links choose an effective capacity based on
dissatisfaction andlink-price, and modify the price as if the
effective capacity were the actual capacity of the link. The
control scheme only requires that links be aware ofaggregate
quantities of the flows using them, and the sources perform
computations solely based on the parameters obtained from
the links they traverse, hence satisfying our requirements.

We studied illustrative examples of quality-degradation
functions that helped us gain insight into the working of the
system. We performed simulations on realistic topologies to
illustrate the performance of our algorithm, and used it as a
basis for developing a delay-sensitive protocol. We showed
that the protocol does indeed trade delay and throughput, so
as to maximize the total utility of the system. In the future we
would like to test out our ideas on a real network.
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