
VLFM 2004 Preliminary Version

Termination of High-Level Replacement Units
with Application to Model Transformation ?

Paolo Bottoni a Manuel Koch b Francesco Parisi-Presicce a,d

Gabriele Taentzer c

a Università di Roma “La Sapienza - Italy
b Freie Universität Berlin - Germany

c Technische Universität Berlin - Germany
d George Mason University - USA

Abstract

Visual rewriting techniques are increasingly used to model transformations of
systems specified through diagrammatic sentences. Graph transformations, in par-
ticular, are a widespread formalism with several applications, from parsing to model
animation or transformation. Although a wealth of rewriting models have been pro-
posed, differing in the expressivity of the types of rules and in the complexity of
the rewriting mechanism, basic results concerning the formal properties of these
models are still missing for many of them. In this paper, we propose a contribution
towards solving the termination problem for rewriting systems with external control
mechanisms for rule application. In particular, we obtain results of more general
validity by extending the concept of transformation unit to high-level replacement
systems, a generalization of graph transformation systems. For the resulting high-
level replacement units, we state and prove several abstract properties based on
termination criteria. Then, we instantiate the high-level replacement systems by
attributed graph transformation systems and present concrete termination criteria.
These are used to show the termination of some replacement units needed to express
model transformations as a consequence of software refactoring.

1 Introduction

Visual rewriting techniques are increasingly used to model transformations of
systems specified through diagrammatic sentences. Researchers are moving
from the specification of static aspects of languages (defined through parsing
processes) to the modelling of their dynamics. Graph transformations, in

? Research partially supported by the European Community under RTN Segravis
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357631103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bottoni, Koch, Parisi-Presicce and Taentzer

particular, are a widespread formalism with applications to parsing, model
animation or transformation. Moreover, a whole new wealth of problems arises
from the diffusion of UML as a tool for the specification of both software and
general systems, such as software or model evolution [17,15,3,14].

When specifying such transformations, it is hardly the case that a single,
unstructured, diagram rewriting system is used to define complex transforma-
tions. A typical problem is to steer the progress of the transformation towards
some well-defined configuration of the diagram, i.e. state of the system. This
may involve the definition of some sequence of rule applications, as well as
the prevention of repeated application of a same rule to the same match, or
of cyclic repetitions of the same sequence of applications.

In general, guaranteeing such properties of the rewriting process is equiva-
lent to proving its termination, an undecidable problem in its uniform version
[16], but which can be studied for individual rewriting systems, following the
classical approach of proving termination by constructing a monotone mea-
sure function on some multiset, and showing that the value of such a function
decreases at each application, as introduced by Dershowitz and Manna in [6].

This problem is further complicated by the need for rule expressivity. In-
deed, there is always a trade-off between the inherent expressivity (and com-
plexity) of the rewriting relation for a single step and the availability of ex-
ternal control mechanisms steering the rewriting process. Although a number
of rewriting models have been proposed, differing in the expressivity of the
types of rules and in the complexity of the rewriting mechanism, basic results
concerning the formal properties of these models are still missing for many of
them. The combination of attributed rules and transformation units employ-
ing rule expressions seems to provide a transformation approach which can
already be used practically, but which is simple enough for formal reasoning.

In this paper we first study a more abstract version of attributed rules,
namely high-level replacement systems [9], to which we extend the notion of
transformation unit [13]. We thus obtain an abstract property that a function
has to satisfy in order to be used as a termination criterion for such units.
In particular, Section 2 introduces the related work, while Section 3 adapts
the concept of transformation units to define high-level replacement units. In
section 4 a motivating example from software transformation, namely refac-
toring, is presented. Section 5 discusses termination criteria for high-level
replacement systems and shows some concrete termination results. These are
illustrated by presenting some sample transformations in which replacement
units are used to specify transformations of UML models consequent to soft-
ware refactoring. Finally, conclusions are given in Section 6.

2 Related work

Transformation units have been introduced by Kreowski and Kuske in [13] and
extensively used for several types of visual transformations since. Küster et al.

2

Bottoni, Koch, Parisi-Presicce and Taentzer

have considered the role of transformation units in defining transformations
of UML models [14]. In particular, they have studied the problem of termi-
nation and confluence. Recognising, as demonstrated by Plump in [16], that
termination of graph rewriting is undecidable in general, they provide some
intuitive consideration on the causes for termination or non-termination of
transformation units iterating as long as possible the use of some given rules.
However, they do not present results on the iteration of sequences of rules,
for which we provide some termination criteria here. Termination criteria for
graph transformation have already been considered by Aßmann [1]. However,
he sticks to a concrete set of criteria and has not developed a general approach
to termination based on criteria as we will do in this paper.

The combined use of negative application conditions, set nodes, and con-
trol expressions for the management of visual transformation processes has
been proposed in several occasions. In [5], layering conditions were applied
to ensure termination of parsing processes. We can observe how the general
problem of proving termination of a given transformation unit is equivalent
to introducing some form of local layering, so that the conditions on elimina-
tion or insertion of elements in the diagram proceeds in accordance with the
decrease or increase of the adopted monotone function. It is to be considered,
however, that, rather than in parsing processes, we are interested here in gen-
eral types of transformations. Such a situation has also been considered in [2],
where transformation units were employed to define a semantics for OCL.

3 High-Level Replacement Units

High-Level Replacement Systems [9,7] are an instantiation of the general graph
transformation approach, at the basis of the definition of transformation units
[13]. The resulting notion is called high-level replacement unit. Its semantics
is given by the set of all possible derivation sequences. Thereafter, high-level
replacement units are instantiated by attributed graph transformation.

3.1 High-Level Replacement Units

Let CAT be a category with one distinguished class M of morphisms.

Definition 3.1 [rule] A rule p : L
l← I

r→ R is given by two morphisms l and
r of M . Let L(p) be the left-hand side and R(p) the right-hand side of rule p.

A transformation unit controls the rule application by a set of control
conditions specified by expressions over rule names.

Definition 3.2 [control expressions] The class C of control expressions over
Names (representing a set of rule names) is recursively defined by

• Names ⊆ C,

• C1; C2 ∈ C, if C1, C2 ∈ C, and

3

Bottoni, Koch, Parisi-Presicce and Taentzer

L

(1)m

²²

I

(2)

loo r //

²²

R

²²
G Dg

oo
h

// H

Fig. 1. The double-pushout approach

• asLongAsPossible C end ∈ C, if C ∈ C.

The intended meaning of the operator asLongAsPossible C is the (se-
quential) application of the expression C as long as its application is possible.

Definition 3.3 [High-level replacement unit] A high-level replacement unit
RU = (P, name,C) in a category CAT , or just replacement unit, consists of
a finite set P of rules, a bijective function name : P → Names, and a control
expression C ∈ C over Names.

High-level replacement units are units in the sense of [13]: we have a
graph transformation approach consisting of the class of objects in category
CAT , the class of rules in this category, the application operator as defined in
Definition 3.4, a class of control expressions as defined in Definition 3.2 and
a class of graph class expression being the class of objects in CAT itself. A
replacement unit is a transformation unit with initial and terminal graphs,
both objects of CAT . Moreover, the set of imported units for a high-level
replacement unit is always empty. In contrast to transformation units, the
semantics of high-level replacement units is defined by derivation sets.

Definition 3.4 [match and direct derivation] Given an object G and a rule

p : L
l← I

r→ R, a match of p to G is a morphism m : L → G. A direct
derivation d from G to H by p and match m, d : G ⇒p,m H, is given by a
double pushout. start and end are two projections from direct derivations to
objects such that start(d) = G and end(d) = H. A derivation id : G ⇒pid,m G,
is called identical. Given a set P of rules, Der(P) = {G ⇒p,m H|G,H ∈
Obj(CAT) ∧ p ∈ P} is the set of all direct derivations with rule set P .

Definition 3.5 [derivation sequence] Given a set P of rules, a derivation se-
quence on P is defined by a function s : N → Der(P) with start(s(i + 1)) =
end(s(i)) for i ≥ 0. The length of a derivation sequence s is n if s(i) is the
identity derivation ∀i > n, and end(s(n)) is called the derivation result. The
concatenation s ◦ t of two derivation sequences s – of length m – and t – such
that start(t(0)) = end(s(m)) – is the derivation sequence u with u(i) = s(i)
for 0 ≤ i ≤ m and u(m + i) = t(i− 1) for 0 < i.

Remark. If t has length n, then the concatenation is finite and u(m + i) =
t(i− 1) for 0 < i ≤ n.

Definition 3.6 [derivation subsequence] A derivation sequence d1 is a sub-
sequence of the derivation sequence d2 (d1 ¹ d2), if there exists a derivation

4

Bottoni, Koch, Parisi-Presicce and Taentzer

sequence d3 such that d1 ◦ d3 = d2. One sees that ¹ is a partial order.

Definition 3.7 [derivation sets] A derivation set der consists of a number
of derivations. If all derivations in der start at object G it is also called
derG. The concatenation of two derivation sets der1 and der2 is given by
der1 ◦ der2 = {d1 ◦ d2|d1 ∈ der1, d2 ∈ der2}. The product dern is defined by
dern−1 ◦der for n ∈ N . der0 is the empty set. The star product der∗ is defined
by

⋃
i≥0 deri.

Definition 3.8 [derived rule] Given a direct derivation d : G ⇒r,m H by a

double pushout as in 3.4, the derived rule is pd : G
g← D

h→ H. Given two
finite derivation sequences d1 : G ⇒∗ H and d2 : H ⇒∗ K with their derived

rules pd1 : G
g← D1

h1→ H and pd2 : H
h2← D2

k→ K, the derived rule of

d = d1 ◦ d2 is defined by pd : G
g◦c1← D

k◦c2→ K where c1 and c2 are the pullback
of h1 and h2.

Definition 3.9 [semantics of control expression] Given an object G and a
replacement unit RU = (P, name, C), the semantics of RU applied to G is
the set der(C)G of all possible derivation sequences starting at G and applying
rules of P according to C.

(i) C = name(p): der(C)G = {d ∈ Der(P)|start(d) = G},
(ii) C = C1; C2: der(C)G =

⋃{der(C1)G ◦ der(C2)H | H = end(d1), d1 ∈
der(C1)G},

(iii) C =asLongAsPossible C ′ end: der(C)G = {d ∈ der(C ′)∗G | d is maxi-
mal in der(C ′)∗G wrt. ¹}

Coeherently with this semantics, we consider that a replacement unit of
type name(p) fails if p is not applicable, C1; C2 fails if either C1 or C2 fails, as-
LongAsPossible C ′ end fails if C ′ fails and it is not of the form name(p); C ′′

or if C ′ is of this form and C ′′ fails. Due to the transactional nature of the
units, failure restores the situation prior to its attempted application.

3.2 Instantiation by attributed graph transformation

In the following, we present attributed graph structures as defined in [10].
For the category of attributed graph structures and homomorphisms with
a distinguished class M of morphisms, the Church-Rosser, Parallelism and
Concurrency Theorem have been shown in [10].

Definition 3.10 [category of attributed graph structure signatures] A graph
structure signature GSIG = (SG, OPG) is an algebraic signature with unary
operations op : s → s′ in OPG only. An attributed graph structure signature
ASSIG = (GSIG,DSIG) consists of a graph structure signature GSIG and
a data signature DSIG = (SD, OPD) with attribute value sorts S ′D ⊆ SD such
that S ′D = SD ∩ SG and OPD ∩OPG = ∅. ASSIG is called well-structured if
for each op : s → s′ in OPG we have s /∈ SD.

5

Bottoni, Koch, Parisi-Presicce and Taentzer

The category of all ASSIG-algebras and ASSIG-homomorphisms is denoted
by ASSIG-Alg . The distinguished class M for ASSIG-Alg is defined by
f ∈ M if fGSIG is injective.

Remark: Given an SDSIG-indexed set of variables X = (Xs)s∈SDSIG
, all rule

objects are attributed by the term algebra TDSIG(X).

Proposition 3.11 (local C-R, parallelism and concurrency) The local
Church-Rosser theorems I and II, the parallelism theorem and the concurrency
theorem as stated in [9] are valid for each graph transformation system based
on ASSIG-Alg.

Proof. See [10]. 2

4 Examples from UML refactoring

In this section we present an example of refactoring from [11], and model the
transformations that the model of a system software must go through to be
maintained consistent with the modifications in the code. Elsewhere ([4]) we
have illustrated how to coordinate transformations occurring in the code –
represented at the level of its abstract syntax – with those occurring in the
model, represented by graphs, typed according to the UML metamodel.

In [4], we studied how modifications of the code could affect different com-
ponents of the model, typically class and sequence/collaboration diagrams,
and we modelled the necessary coordination of the transformations of such
representations through transition units defined on hierarchical distributed
graph transformations. However, we are now interested in this example only
to illustrate the termination problem of replacement units. As distribution
does not add causes of non-termination (actually, it possibly reduces them),
we discuss here a refactoring involving only modifications in class diagrams.

PullUpVariable(class; attr) moves the variable named attr from sub-
classes of class to class. This is used when a variable of the same name with
the same type is used throughout all the subclasses of a given class. Previous
renamings of such variables may have occurred in order to create the condi-
tions for the application of this refactoring. It is important to note that a
requirement for this refactoring, as it guarantees behaviour preservation, is
that all the subclasses of class own a copy of this variable. Hence, this refac-
toring must be performed through the repeated application of a rule which
moves the variable from a subclass to its superclass, checking that this oc-
curs for all the (direct) subclasses of the class to which the variable has been
moved. In order to keep the theory simple, and to avoid using negative ap-
plication conditions to check that no subclass has been neglected, we propose
an adaptation of the metamodel for class diagrams, to the effect that each
class node n is associated with a node of type ClassDescriptor, possessing
an attribute which keeps a constantly updated list of the direct subclasses of
n.

6

Bottoni, Koch, Parisi-Presicce and Taentzer

To this end, we modify the rule for class creation, which does not have
preconditions, as shown in Figure 2. Declaring that a class is a subclass of
another, or removing the generalisation relation between two classes, produces
the effects described by the rules of Figures 3 and 4, respectively. In all the
rules discussed in this section, the values of the parameters of the rule, to be
matched on concrete instances, are indicated by showing their names in italic,
while variables present in the rule, and subject to a unification process, are
written with a capitalized initial. In this version of the rules, which do not
present negative application conditions, we do not check for the absence of
inheritance cycles or of multiple inheritance.

createClass(String class)

: Class

name = class list=

:ClassDescriptor

Fig. 2. The rule to create a class, associated with the node recording all its sub-
classes.

1: Class

name = parent

1: Class

name = parent

insertGeneralization(String parent, String child)

2:ClassDescriptor

List=X

2:ClassDescriptor

List=X {child}

:Generalization

3:Class

name=child

3:Class

name=child

generalization

specialization

Fig. 3. The rule to insert a generalization relation between two classes.

removeGeneralization(String parent, String child)

1: Class

name = parent

2:ClassDescriptor

List=X \{child}

3:Class

name=child

1: Class

name = parent

2:ClassDescriptor

List=X

:Generalization

specialization

3:Class

name=child

generalization

Fig. 4. The rule to remove a generalization relation.

The elimination of a class is accompanied by the destruction of its associate

7

Bottoni, Koch, Parisi-Presicce and Taentzer

ClassDescriptor node, as shown in Figure 5. As we are using the DPO
approach, class elimination is possible only when it has been stripped of all
owned features and relations with other classes.

removeClass(String class)

1: Class

name = class :ClassDescriptor

Fig. 5. The rule to remove a class.

The replacement unit which performs the pulling up of the variable starts
with a rule, called startCheck, which marks the class to which the variable
must be pulled up by associating with it an Auxiliary node, whose list

attribute will contain all the names of the class from which the pulled up
variable have been removed (see Figure 6).

startCheck(String class)

1: Class

name = class

1: Class

name = class list=

:Auxiliary

Fig. 6. The rule to attach an Auxiliary node to the class that the variable must
be pulled up to.

The rule startRefactoring, presented in Figure 7, extracts the variable
from one of the subclasses of class. The name of the subclass is added to the
list attribute of the Auxiliary node. Note that at least one such subclass
must exist, otherwise the whole replacement unit will fail.

The rule completeRefactoring, shown in Figure 8 is then applied as long
as possible, i.e. until there are subclasses of class owning a variable of the
same name and type as the one first moved. For each subclass to which the
rule is applied, the name of the class is added to the list attribute of the
Auxiliary node.

Finally, the rule doFinalCheck (see Figure 9) controls that all the sub-
classes of class have been considered and from each of them the variables
has been pulled up, by comparing the values of the two list attributes for
the nodes of type ClassDescriptor and Auxiliary, associated with class.
The failure of this rule indicates that some subclass did not possess the vari-
able, and makes the whole replacement unit fail. It is to be noted that if
this occurs, due to the transactional behaviour of units, the situation prior
to the attempted unit is restored. Hence, either because rule doFinalCheck

8

Bottoni, Koch, Parisi-Presicce and Taentzer

startRefactoring(String class, String attr)

4 : Variable

name=attr
1:Class

2: Class

name = class

feature

owner

3:Generalization

specialization

generalization

4: Variable

name=attr

1:Class

2: Class

name = class
feature

owner

3:Generalization

specialization

generalization

5:Auxiliary

list=X

5:Auxiliary

list=X {Subcl}

name=Subcl

Fig. 7. The rule to pull the variable attr from a non deterministically chosen
subclass of class.

: Variable

name=attr

2: Class

name = class

feature

owner

completeRefactoring(String class, String attr)

3:Generalization

specialization

generalization

4 : Variable

name=attr

2: Class

name = class
feature

owner

3:Generalization

specialization

generalization

4 : Variable

name=attrfeature

owner

5 : Type
5 : Type

1:Class

name=Subcl

1:Class

name=Subcl

6:Auxiliary

list=X

6:Auxiliary

list=X {Subcl}

Fig. 8. The rule to pull the variable attr from any subclass possessing a copy of
the variable to be pulled up.

1: Class

name = class

1: Class

name = class

doFinalCheck(String class)

2:ClassDescriptor

List=X

2:ClassDescriptor

:Auxiliary

List=X

List=X

Fig. 9. The final rule to check success of the pull up transformation.

9

Bottoni, Koch, Parisi-Presicce and Taentzer

removes the Auxiliary node, or because of restoration after failure, no such
node exists once the process is completed.

Hence, the complete replacement unit is expressed as:

pullUpVariable(String class, String attr) =

startCheck(class);

startRefactoring(class, attr);

asLongAsPossible completeRefactoring(class, attr) end;

doFinalCheck(class)

5 Termination of Replacement Units

Termination of replacement units is not always guaranteed. If an expression
asLongAsPossible contains a rule that can be applied indefinitely to the re-
sult graphs, the replacement unit does not terminate. Next, we give conditions
for the termination of replacement units.

5.1 A General Termination Criterion for High-Level Replacement Units

Let G be the set of all objects in a category CAT and P be the set of all the
rules on G. In the following, we discuss the notion of termination criterion,
by assigning a natural number to each object of CAT .

Definition 5.1 [termination criterion] A function F : G → N from objects
to natural numbers is a termination criterion for CAT if for any two arbitrary
morphisms a : C → A and b : C → B in M , the value F (A +C B) of the
pushout object A+CB of a and b is the sum of the values of the two component
objects, i.e. F (A+CB) = F (A)+F (B)−F (C). Given a rule p with morphisms
in M , a termination criterion F for CAT is a termination criterion for p if
F (L(p)) > F (R(p)).

The reason for removing the value of F in C is that it contains common
elements to A and B, which would otherwise be considered twice. Even if
in Definition 5.1 we have considered p to be a rule in the double pushout
approach, we refer only to its left-hand and right-hand sides. Hence, the same
definition could, under the appropriate definition of the class M , be used
also for the single pushout approach. We develop here the theory only for the
DPO approach, but will sketch out a consequence on the definition of concrete
criterion for SPO.

Proposition 5.2 (direct derivation) If F is a termination criterion for a
rule p, then it is also a termination criterion for the derived rules pd of all
d : G ⇒p H.

Proof. Since F is a termination criterion for the rule p : L
l← I

r→ R we
have F (L) > F (R). For each direct derivation G ⇒r H given by a double

10

Bottoni, Koch, Parisi-Presicce and Taentzer

pushout as in Figure 1 we need F (G) > F (H). From F (L) > F (R), we have
F (L) + F (C) − F (I) > F (R) + F (C) − F (I), i.e. F (L +I C) > F (R +I C),
i.e. F (G) > F (H). Hence, F is a termination criterion for the derived rule

pd : G
g← C

h→ H, . 2

Termination criteria for specific instances of derived rules can be used as
termination criteria for a rule, as shown by the following theorem.

Proposition 5.3 (termination of derived rules) If F is a termination cri-
terion for one derived rule pd of d : G ⇒p H, then it is a termination criterion
for the rule p.

Proof. Let p be the rule p : L
l← I

r→ R. If F is a termination criterion for the

derived rule pd : G
g← C

h→ H then it must hold that F (L) + F (C)− F (I) =
F (L +I C) = F (G) > F (H) = F (R +I C) = F (R) + F (C) − F (I). Hence
F (L) > F (R) and F is a termination criterion for p. 2

Definition 5.4 [terminating expressions] Given a replacement unit in CAT
RU = (P, name, C) and an expression E over Names, F is a termination
criterion for E if it is a termination criterion for CAT and

(i) if E = name(p) ∈ Names, then F (L(p)) > F (R(p));

(ii) if E = E1; E2, then, for each derived rule pd of d ∈ der(E), F (L(pd)) >
F (R(pd))

(iii) if E = asLongAsPossible E ′ end, then, for each derived rule pd of
d ∈ der(E ′), F (L(pd)) > F (R(pd))

Proposition 5.5 (sequential composition) If F is a termination crite-
rion for E1 and E2, then it is also a termination criterion for E = E1; E2.

Proof. If F is a termination criterion for the derived rule pd1 of the derivation
d1 : G ⇒ H ∈ der(E1)G and for the derived rule pd2 of the derivation d2 : H ⇒
K ∈ der(E2)H , then F (G) > F (H) and F (H) > F (K). Hence F is also a
termination criterion for the derived rules pd of all derivations d ∈ der(E)G.2

Note that the converse is not true, as there may be termination criteria for
the composition that are not termination criteria for one of the components.

Proposition 5.6 (as long as possible loops) If F is a termination crite-
rion for E ′, it is also a termination criterion for E = asLongAsPossible E ′

end.

Proof. If F is a termination criterion for each derived rule pd′ of derivations
d′ : G ⇒ H ∈ der(E ′)G, then F (L(pd′)) > F (R(pd′)). Applying E ′ as long as
possible, we get a derivation sequence s : N → der(E ′) with F (start(s(i))) >
F (start(s(i+1))) for i ≥ 0. SinceN has no infinite descending sequence, there
must be an m ∈ N such that for j > m, F (start(s(j))) = F (start(s(j + 1)))
= F (end(s(j))) so that s(j) is the identity derivation, i.e. all derivations in
der(E) terminate. 2

11

Bottoni, Koch, Parisi-Presicce and Taentzer

Theorem 5.7 (terminating derivations) All derivation sequences over rules
in P ∈ P are terminating if there is a termination criterion F which holds
for all p ∈ P .

Proof. Given any derivation sequence s : N → Der(P), we know that
F (start(s(i))) > F (start(s(i + 1))) for i ≥ 0, due to proposition 5.2. Thus,
there must be an m ∈ N such that for j > m, s(j) is the identity derivation,
i.e. all derivations in der(E) are terminating. 2

The result of Theorem 5.7 is adapted to replacement units where control
conditions are used, in the following corollary.

Corollary 5.8 (termination of replacement units I) Given a replacement
unit RU = (P, name, C), all derivations in der(C) terminate, if there is a ter-
mination criterion F which holds for all p ∈ P .

Proof. Direct consequence of Theorem 5.7. 2

The following theorem shows that the termination criterion need not be
unique over a whole control expression.

Theorem 5.9 (Termination of replacement units II) A replacement u-
nit RU = (P, name,C) terminates if each asLongAsPossible-subexpression
C ′ of C has a termination criterion F .

Proof. The proof is by induction on the structure of the expression C:

(i) Base step:
C is a rule name: in this case, since each single rule application termi-
nates, then RU is terminating.

(ii) inductive step:
• C = C1; C2

By induction hypothesis, both C1 and C2 define sets of only finite
derivation sequences der(C1) and der(C2); hence also der(C1; C2) con-
tains only finite derivations.

• C = asLongAsPossible C ′

By induction hypothesis, C ′ has a termination criterion F which, by
proposition 5.6, is also a termination criterion for C. Hence RU termi-
nates.

2

Hence, Theorem 5.9 states that a replacement unit is terminating if, for
each asLongAsPossible-subexpression of C, there is a suitable termination
criterion. The important aspect of this is that these criteria may differ from
subexpression to subexpression.

12

Bottoni, Koch, Parisi-Presicce and Taentzer

5.2 Concrete termination criteria for Attributed Graph Transformation

We show now how some functions which naturally arise from counting elements
in a graph can be used to establish criteria for termination.

Definition 5.10 [Concrete termination criteria] Let n : G → N be a function
returning the number of nodes in G, i.e. n(G) = |GN |, and e : G → N a
function computing the number of edges in G, i.e. e(G) = |GE|, for each
graph G in the category ASSIG-Alg . If s is a sort in SG, the function
ts : G → N yields, for each graph A in ASSIG-Alg , the number of elements
in ASG

s .

We show that n, e, and ts can be used as termination criteria within the
category ASSIG-Alg .

Proposition 5.11 The functions n, e, and ts, for each s ∈ SG, satisfy the
termination criterion in Definition 5.1.

Proof. We can prove that the functions n(G), e(G), and ts satisfy the crite-
rion for the pushout construction on two morphisms a : C → A and b : C → B
where a ∈ M and b is arbitrary, so that a fortiori it holds when b ∈ M , which
is what is required by Definition 5.1. Since the graph part of a is injective, the
pushout construction glues graphs A and B only at elements of the graph C,
by taking, for nodes and edges separately, the disjoint union of B and the part
of A not in the image of C under a i.e. D = B] (A − a(C)). Thus n(D) =
n(A +C B) = n(A) + n(B)− n(C), e(D) = e(A +C B) = e(A) + e(B)− e(C),
and ts(D) = ts(A +C B) = ts(A) + ts(B)− ts(C) for each s ∈ SGS. 2

A concrete criterion, other than based on simple counting of nodes and
edges, can be obtained for any rule p in the SPO approach by considering the
function Fp(G) which counts the number of matches and partial matches for
L, the left-hand side of p, in G. The class M is here considered that of partial
morphisms m such that if i 6= j, then m(i) 6= m(j). Hence, we consider the
partial morphism L → R, given by the rule p, and the match L → G. The
pushout construction produces the graph H as the result of the application of
p. Now, if Fp(L) > Fp(R), we have Fp(H) = Fp(G)+Fp(R)−Fp(L), so that H
has fewer total or partial matches for p. This means that at each application
of p the number of possible future applications of it decreases, so that it can
be applied only a finite amount of time, as the original graph G was finite.

5.3 Termination of Sample UML Refactorings

The replacement unit of Section 4 is terminating. Indeed, we only have to
check the termination of completeRefactoring for any possible choice of class
and attr, as this is the only rule to be looped on. At each application of this
rule, a node of type Variable is removed (together with the edges connecting
it to nodes of type Class and Type). Hence, both functions n and e of Section
5.2 can be used as termination criteria to prove termination of this sub-unit.

13

Bottoni, Koch, Parisi-Presicce and Taentzer

6 Conclusions

Termination is an important issue for model transformations. Specifying them
by graph transformation in the double-pushout approach has the advantage
that they are precisely defined and can be formally analyzed.

In this paper, we are concerned with the termination of transformations
and propose a general termination criterion for high-level replacement sys-
tems, a generalization of graph transformation systems. Since model trans-
formations can become complex, we do not only consider the application of
single rules but replacement units where rule applications are restricted ac-
cording to an additional control flow. For the description of the control flow
we allow application of single rules, sequential composition of rule expressions,
and loops applying an expression as long as possible. This paper contains a
number of results concerning termination of replacement units.

We plan to extend the presented results in several ways: Study additional
operators for control expressions, such as optional rule applications, if-then-
else expressions, priorities, etc. By doing so, we could show that the termi-
nation of layered graph transformation to be used for graph parsing would
be a special case of the results for our framework. Layered graph transfor-
mation systems can be considered as a special case of high-level replacement
units where the control expressions are sequential compositions of as-long-as-
possible loops applying a set of rules each. Moreover, we plan to study wider
criteria to establish termination of sequential compositions of rules.

Furthermore, we would like to take negative application conditions (NACs)
into account. NACs for graph transformation have been introduced in [12] and
have proven useful when applying graph transformation to practical prob-
lems. Recently, they have been incorporated into the high-level replacement
framework in [8]. We would like to build up on this approach to formulate
termination results for replacement units taking NACs into account.

Acknowledgments We thank the anonymous referees and Kathrin Hoffmann
for several useful observations on a previous version of this paper.

References

[1] Aßmann, U., Graph rewrite systems for program optimization, ACM TOPLAS
22 (2000), pp. 583–637.

[2] Bottoni, P., M. Koch, F. Parisi Presicce and G. Taentzer, Automatic consistency
checking and visualization of OCL constraints, in: UML 2000 - The Unified
Modeling Language (2000), pp. 294–308.

[3] Bottoni, P., F. Parisi-Presicce and G.Taentzer, Specifying Integrated
Refactoring with Distributed Graph Transformation, in: Applications of Graph
Transformations with Industrial Relevance, LNCS 3062 (2004), pp. 220–235.

14

Bottoni, Koch, Parisi-Presicce and Taentzer

[4] Bottoni, P., P. Parisi-Presicce and G. Taentzer, Specifying Coherent Refactoring
of Software Artefacts with Distributed Graph Transformations, in: P. v. Bommel,
editor, Transformation of Knowledge, Information, and Data: Theory and
Applications (2004), to appear.

[5] Bottoni, P., G. Taentzer and A. Schürr, Efficient parsing of visual languages
based on critical pair analysis (and contextual layered graph transformation),
in: IEEE Symposium Visual Languages (2000), pp. 59–61.

[6] Dershowitz, N. and Z. Manna, Proving termination with multiset orderings,
Commun. ACM 22 (1979), pp. 465–476.

[7] Ehrig, H., M. Gajewsky and F. Parisi-Presicce, High-Level Replacement Systems
applied to Algebraic Specifications and Petri Nets, in: Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 3: Concurrency,
Parallelism and Distribution, World Scientific, Singapore, 2000 pp. 341–400.

[8] Ehrig, H. and A. Habel, Constraints and Application Conditions: From Graphs
to High-Level Structures, in: Proc. Int. Conf. on Graph Transformation 2004,
2004, to appear.

[9] Ehrig, H., A. Habel, H.-J. Kreowski and F. Parisi-Presicce, Parallelism and
concurrency in High Level Replacement Systems, Math. Struc. in Comp. Science
1 (1991), pp. 361–404.

[10] Ehrig, H., U. Prange and G. Taentzer, Fundamental Theory of Typed Attributed
Graph Transformation, in: Proc. Int. Conf. on Graph Transformation 2004,
2004, to appear.

[11] Fowler, M., K. Beck, W. Opdyke and D. Roberts, “Refactoring: Improving the
Design of Existing Code,” Addison-Wesley, 1999.

[12] Habel, A., R. Heckel and G. Taentzer, Graph Grammars with Negative
Application Conditions, Fundamenta Informaticae 26 (1996), pp. 287–313.

[13] Kreowski, H.-J., S. Kuske and A. Schürr, Nested graph transformation units,
Int. Journal on Software and Knowledge Engineering 7 (1997), pp. 479–502.

[14] Küster, J. M., R. Heckel and G. Engels, Defining and Validating
Transformations of UML Models, in: Proc. HCC 2003 (2003), pp. 145–152.

[15] Mens, T., S. Demeyer and D. Janssens, Formalising behaviour preserving
program transformations, in: A. Corradini, H. Ehrig, H.-J. Kreowski and
G. Rozenberg, editors, Proc. ICGT02, 2002, pp. 286–301.

[16] Plump, D., Termination of graph rewriting is undecidable, Fundamenta
Informaticae 33 (1998), pp. 201–209.

[17] Sunyé, G., D. Pollet, Y. L. Traon and J.-M. Jézéquel, Refactoring UML models,
in: M. Gogolla and C. Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4th International
Conference (2001), pp. 134–148.

15

